

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

0

FlashPix Format
Specification

Version 1.0

September 11, 1996

ii © 1996 Eastman Kodak Company Version 1.0

© 1996

Eastman Kodak Company

Portions copyright

Hewlett-Packard Company

, 1996

All rights reserved. No parts of this document may be reproduced, in whatever form,
without express and written permission of

Kodak

.

The information in this document is believed to be accurate as of the date of publication.
However,

Kodak

 will not be liable for any damages, including indirect or consequential,
from use of this document.

The

FlashPix

TM

 format is defined in a specification and a test suite, developed and published
by

Eastman Kodak Company

 in collaboration with

Hewlett-Packard Company, Live Picture
Inc.

 and

Microsoft Corporation

. Only products that meet the specification and pass the test
suite may use the

FlashPix

 file format name.

For change requests, please send e-mail to “format_change_request@kodak.com”

A public listserver has been established for interested parties to share information and
ideas regarding the

 FlashPix

 format. To subscribe to this listserver do the following:

1. Compose an e-mail message to “maillist@pixel.kodak.com”

2. The note should not contain a subject line and should have only one line in the body
as follows:

subscribe FORMAT firstname lastname (i.e. subscribe FORMAT John Doe)

3. Whatever address you send this note from will be the address all listserver messages
are sent to (i.e. john_doe@kodak.com)

4. A confirmation message will be sent back to you containing instructions on how to
communicate with the listserver.

Version 1.0 © 1996 Eastman Kodak Company

iii

0

Contents

SECTION 1 Introduction 1

1.1 Purpose 1

1.2 Specification Organization 1

1.3 Conventions 2

1.4 Structured Storage 2
1.4.1 Property Sets 3
1.4.2 Summary Information Property Set 4
1.4.3 File identification 7
1.4.4 OS-level file treatment in Windows or with OLE 7
1.4.5 FlashPix Streams 8
1.4.6 String and Character Representation 8

1.4.6.1 Storage and Stream Names 8
1.4.6.2 Property Set Code Page and Strings 9

1.5 Format Compliance 10

1.6 FlashPix File Overview 11
1.6.1 Extension management 13

SECTION 2 Image Data Representation 15

2.1 Coordinate systems 15
2.1.1 Resolution-Independent Coordinates 15
2.1.2 Resolution-Dependent Coordinates 16

2.2 Multiple resolutions 17
2.2.1 Resolution sizes 18
2.2.2 Non-Hierarchical FlashPix Images 19

2.3 Tiling 19
2.3.1 Breaking an Image into Tiles 19

SECTION 3 The FlashPix Image Object 23

3.1 FlashPix Image Object Structure 23
3.1.1 Resolution Storages 24
3.1.2 Summary Info Property Set (required) 25
3.1.3 CompObj Stream (required) 25
3.1.4 Image Info Property Set (optional) 26
3.1.5 Image Contents Property Set (required) 26

iv © 1996 Eastman Kodak Company Version 1.0

3.1.5.1 Primary description group 26
3.1.5.2 Resolution Description Groups 27
3.1.5.3 Compression Description Group 33

3.1.6 ICC Profile (optional) 34
3.1.7 Extension List Property Set (optional) 34

SECTION 4 Image Data Format 41

4.1 The Subimage Header Stream 41
4.1.1 Subimage Header Stream Data 42
4.1.2 Tile header table 43

4.2 The Subimage Data Stream 47
4.2.1 Channel Ordering 47
4.2.2 Tile Data Format 47

4.2.2.1 Uncompressed 47
4.2.2.2 Single Color Compressed 47
4.2.2.3 JPEG Compressed 47

SECTION 5 Color Space Specifications 49

5.1 Introduction 49

5.2 PhotoYCC and NIF RGB Reference Viewing Environments 50
5.2.1 PhotoYCC Reference Viewing Environment 50
5.2.2 NIF RGB Reference Viewing Environment 50

5.3 Colorimetric Definitions and Digital Encodings 51
5.3.1 PhotoYCC Colorimetric Definition and Digital Encoding 51
5.3.2 NIFRGB Colorimetric Definition and Digital Encoding 54

5.4 Monochrome Encoding Definition 56

SECTION 6 Image Info Property Set 57

6.1 Informational Groups 57

6.2 File Source Group 58

6.3 Intellectual Property Group 60

6.4 Content Description Group 61

6.5 Camera Information Group 63

6.6 Per Picture Camera Settings Group 63

6.7 Digital Camera Characterization Group 69

6.8 Film Description Group 74

Version 1.0 © 1996 Eastman Kodak Company

v

6.9 Original Document Scan Description Group 75

6.10 Scan Device Property Group 77

SECTION 7 FlashPix Image View Object 79

7.1 FlashPix Image View Object 79
7.1.1 CompObj Stream (required) 81
7.1.2 Source and Result FlashPix Image Objects 81
7.1.3 Source and Result Description Property Sets 82
7.1.4 Transform Property Set (optional) 85
7.1.5 Operation Property Set (optional) 89
7.1.6 Global Info Property Set (required) 89
7.1.7 Extension List Property Set (optional) 91

7.2 Viewing Transform Parameters 97
7.2.1 Selection via Rectangle of Interest 97
7.2.2 Filtering 98

7.2.2.1 The Measure 98
7.2.2.2 Subsystem information 99
7.2.2.3 User Sharpening Adjustment 99

7.2.3 Spatial Orientation 100
7.2.4 Tone and Color Corrections 100

7.2.4.1 Color Images 101
7.2.4.2 Monochrome Images 101

7.2.5 Contrast adjustments 101

7.3 Sequence of Viewing Parameters 103
7.3.1 Coordinate System 104
7.3.2 Image Size and Limits 104

APPENDIX A Structured Storage 105

vi © 1996 Eastman Kodak Company Version 1.0

Version 1.0 © 1996 Eastman Kodak Company vii

List of figures

FIGURE 1.1 Conventions for storages and streams in illustrations 3
FIGURE 1.2 FlashPix image view object 12
FIGURE 1.3 FlashPix image object 12
FIGURE 1.4 Contents of a resolution storage 13
FIGURE 2.1 Resolution-independent coordinates 16
FIGURE 2.2 Resolution-dependent coordinates 17
FIGURE 2.3 Sample resolution hierarchy 18
FIGURE 2.4 A tiled image 20
FIGURE 3.1 FlashPix image object storages and streams 24
FIGURE 3.2 Contents of a resolution storage 24
FIGURE 3.3 Example of pixel-centered alignment between adjacent resolutions 31
FIGURE 3.4 Frequency response curve and error bounds 32
FIGURE 5.1 Spectral responsivities of the Reference Image-Capture Device 52
FIGURE 7.1 FlashPix image view storages and streams 80

September 11, 1996

viii © 1996 Eastman Kodak Company Version 1.0

Version 1.0 © 1996 Eastman Kodak Company ix

List of tables

TABLE 1.1 Valid properties of the summary information property set 5
TABLE 3.1 Valid properties in the primary description group 26
TABLE 3.2 Legal display height/width units property values 27
TABLE 3.3 Valid properties in a resolution description group 27
TABLE 3.4 Format and fields of the subimage color property 28
TABLE 3.5 Valid color space subfield values 28
TABLE 3.6 Valid color subfield values 29
TABLE 3.7 Legal subimage color values 30
TABLE 3.8 Valid properties in the compression information properties group 33
TABLE 3.9 Format and entries of a JPEG abbreviated header table 33
TABLE 3.10 Valid properties for the extension list property set 36
TABLE 3.11 Legal values of the existence persistence property 37
TABLE 3.12 Example values of FlashPix stream identification 38
TABLE 3.13 Example values of property set identification 40
TABLE 3.14 Example of subimage identification 40
TABLE 4.1 Format and fields of the subimage header stream 42
TABLE 4.2 Format and fields in the tile header table 43
TABLE 4.3 Format and fields of a tile header 43
TABLE 4.4 Valid compression type values 44
TABLE 4.5 Format and entries of the compression subtype field for JPEG compressed

tiles 45
TABLE 4.6 Format and entries of a JPEG abbreviated format stream for tile data 48
TABLE 5.1 Comparison of PhotoYCC and NIF RGB viewing environments 50
TABLE 5.2 CIE chromaticities for CCIR-709 reference primaries and CIE standard

illuminant 52
TABLE 6.1 Properties in the file source group 58
TABLE 6.2 Valid file source property values 59
TABLE 6.3 Valid scene type property values 59
TABLE 6.4 Properties in the intellectual property group 61
TABLE 6.5 Properties in the content description group 62
TABLE 6.6 Valid test target in the image property values 62
TABLE 6.7 Properties in the camera information group 63
TABLE 6.8 Properties in the per picture camera settings group 64
TABLE 6.9 Valid exposure program property values 65
TABLE 6.10 Valid metering mode property values 66
TABLE 6.11 Valid scene illuminant property values 67
TABLE 6.12 Valid flash property values 67
TABLE 6.13 Valid flash return property values 67
TABLE 6.14 Valid back light property values 68
TABLE 6.15 Valid special effects optical filter property values 69
TABLE 6.16 Properties in the digital camera characterization group 69
TABLE 6.17 Valid sensing method property values 70
TABLE 6.18 Valid focal plane resolution unit property values 70
TABLE 6.19 Sample frequency response 71
TABLE 6.20 Structure and entries of spatial frequency response VT_VARIANT |

VT_VECTOR block 71
TABLE 6.21 Valid CFA pattern property values 72

September 11, 1996

x © 1996 Eastman Kodak Company Version 1.0

TABLE 6.22 Structure and entries of CFA pattern VT_VARIANT | VT_VECTOR block 72
TABLE 6.23 An example of measured OECF data 73
TABLE 6.24 Structure and entries of OECF VT_VARIANT | VT_VECTOR block 73
TABLE 6.25 Properties in the film description group 74
TABLE 6.26 Valid film category property values 74
TABLE 6.27 Structure and entries of original scanned image size VT_VARIANT |

VT_VECTOR block 75
TABLE 6.28 Properties in the original document scan description group 75
TABLE 6.29 Structure and entries of original scanned image size VT_VARIANT |

VT_VECTOR block 76
TABLE 6.30 Valid original medium property values 76
TABLE 6.31 Valid type of reflection original property values 77
TABLE 6.32 Properties in the scan device property group 77
TABLE 7.1 Valid properties for the source and result description property sets 83
TABLE 7.2 Structure and entries of the status property 84
TABLE 7.3 Valid status property values of the existence/location field 84
TABLE 7.4 Valid status property permissions field values 84
TABLE 7.5 Valid properties for the transform property set 86
TABLE 7.6 Format and fields of the rectangle of interest property 88
TABLE 7.7 Valid properties for the operation property set 89
TABLE 7.8 Valid properties in the global info property set 90
TABLE 7.9 Valid properties for the extension property list property set 92
TABLE 7.10 Legal values of the existence persistence property 94
TABLE 7.11 Example values of FlashPix stream identification 95
TABLE 7.12 Example values of property set identification 97

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

1

I

 S E C T I O N

1

1

Introduction

1.1 Purpose

This document is the technical specification that defines the image file format for Flash-
Pix images. The effort to define the FlashPix format is a cooperative endeavor that
includes the Eastman Kodak Company, Microsoft Corporation, the Hewlett-Packard
Company, and Live Picture, Inc. The FlashPix format builds on the best features of
existing formats (Kodak Image Pac, Live Picture IVUE, Hewlett-Packard JPEG, TIFF,
TIFF/EP, and so on), and combines these features with an object orientation and other
powerful new capabilities.The FlashPix format enables the industry to deliver desktop
computer solutions that make it easy, enjoyable, and commonplace to use digital color
photographic images in offices and homes.

1.2 Specification Organization

This document is divided into several sections, each isolating one aspect of the FlashPix
specification. The sections are as follows:

■ Section 1: Introduction defines structured storage.

■ Section 2: Image Data Representation describes the resolution hierarchy and the
organization of image data into tiles.

■ Section 3: The FlashPix Image Object describes the format, in terms of Structured
Storage, of the FlashPix image object.

September 11, 1996 FlashPix Format Specification

2 © 1996 Eastman Kodak Company Version 1.0

■

Section 4: Image Data Format

 describes the format of the individual streams used to
store the actual image data.

■

Section 5: Color Space Specifications

 defines the PhotoYCC and NIF RGB color
spaces.

■

Section 6: Image Info Property Set

 describes the non-image information in a

Flash-
Pix

 image.

■

Section 7: FlashPix Image View Object

 defines the

FlashPix

 image view object. This
object allows a default view (including orientation, crop and color adjustment) to be
specified for a

FlashPix

 image without modifying pixel values.

■

Appendix A: Structured Storage

 defines the binary format of structured storage files
and relevant data structures.

1.3 Conventions

The following conventions are used in this document.

■ All numbers starting with a “0x” are in hexadecimal.

■ Special characters in strings are indicated using the octal format, where any three
digit number preceded by a “\” represents the ASCII value of the character in octal.
For example, a newline character would be represented by “\012.”

■ Spaces in strings are explicitly indicated using their octal representation, “\040.”

■ Stream and storage names are specified in standard C language “printf” syntax.

1.4 Structured Storage

The FlashPix format is based on a compound object storage model called structured
storage. A file in structured storage format contains two types of objects: storages and
streams. Storages are analogous to directories in a file system; streams are analogous to
files. A storage may contain both zero or more additional storages and zero or more
streams. The streams and storages in a FlashPix file are individually addressable.
Figure 1.1 shows the convention used in this document to illustrate storages and
streams.

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 3

FIGURE 1.1 Conventions for storages and streams in illustrations

The entire structured storage file appears in the host file system as one file. In this exam-
ple, storage 1 represents the root storage. It is the highest level storage of the file and is
the entity that is visible in the host file system. It contains two storages (2 and 3) and one
stream (1). Storage 2 contains one empty storage (4). Storage 3 contains two streams (2
and 3).

All entities in a FlashPix file have a class ID that identifies the type of the object. Class
IDs are defined as globally unique identifiers (GUID’s). They are represented as 128 bit
numbers that are considered impossible to duplicate. GUID’s are generated using the
algorithm specified for the generation of universal unique identifiers for remote proce-
dure calls[17].

1.4.1 Property Sets
Structured storage defines property sets as a stream for storing tagged data. The Flash-
Pix format uses this mechanism extensively for storing data other than actual pixel val-
ues.

As defined, property sets are very flexible. All property sets must be in Windows For-
mat. Windows format is indicated in the property set header by setting the wByteOrder
field to 0xFFFE and the wFormat field to 0x0. Furthermore, the codepage must be writ-
ten into the requisite property (PID = 1) in each and every FlashPix property set as
described below. A binary specification of property sets is include in this specification
in Section A.2.

With the sole exception of the OLE standard Summary Information Property Set each
and every FlashPix property set must be in the Unicode (1200) codepage, and all strings
in that set must be stored as wide 16-bit characters (LPWSTR). Due to its origin and
use in non-FlashPix applications, the Summary Information Property set has different
conditions than all other property sets. This property set must be in the Western Euro-
pean ANSI (1252) code page, and all strings in it must be stored as 8-bit characters
(LPSTR). For legacy reasons, all FlashPix property set readers must be able to handle a
1200 codepage in the Summary Information Property set as if it was 1252. (Note - this

Storage 1

Stream 2

Storage 4Storage 2

Storage 3

Stream 1

Stream 3

September 11, 1996 FlashPix Format Specification

4 © 1996 Eastman Kodak Company Version 1.0

last restriction will not introduce any character shifts since the 8-bit subsection of the
Unicode codepage is exactly the 1252 codepage.)

The properties defined for each property set are listed in the property set definition. All
property ID codes not explicitly listed for the property set are reserved for registered
extensions. Where valid property values are listed, those not explicitly listed are
reserved for registered extensions.

1.4.2 Summary Information Property Set

Stream name:

\005

SummaryInformation
Class ID: F29F85E0-4FF9-1068-AB91-08002B27B3D9
Format ID: F29F85E0-4FF9-1068-AB91-08002B27B3D9

Structured storage defines one property set that can be found in every

FlashPix

 object to
provide a basic level of information about the object. This summary information prop-
erty set is used in

FlashPix

 image objects and

FlashPix

 image view objects. This prop-
erty set is in general use in OLE. It must be in the Western European ANSI (1252)
codepage. Because of this restriction, this property set is not truly internationalizable in
version 1.0 of the

FlashPix

 specification.

The property set must also have at least one section that has a format ID the same as the
class ID. The properties of the summary information property set are listed in Table 1.1.

Title property (optional)

This property is available for the application to record the object title.

Subject property (optional)

This property is available for the application to record the subject of the object.

Author property (optional)

This property is available for the application to record the author of the object.

Keywords property (optional)

This property is available for the application to record keywords about the object.

Comments property (optional)

This property is available for the application to record comments about the object.

Template property (optional)

This property is not used with

FlashPix

 objects.

Last saved by property (optional)

This property is available for the application to record the name of the user who last
saved the object.

Revision number property (optional)

This property is available for the application to record the number of times the object
has been saved.

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 5

Total editing time property (optional)

This property is available for the application to record the duration of an object editing
session.

Last printed property (optional)

This property is available for the application to record when the object was last printed.

Create date/time property (optional)

This property is available for the application to record the creation date and time for the
object. This value should not be updated after it is initially written.

Last saved date/time property (optional)

This property is available for the application to record the date and time that the object is
saved. It is strongly recommended that this property be used in

FlashPix

 objects.

Number of pages property (optional)

This property is not used in

FlashPix

 objects.

Number of words property (optional)

This property is not used in

FlashPix

 objects.

TABLE 1.1 Valid properties of the summary information property set

Property Name ID Code Type

Title 0x00000002 VT_LPSTR

Subject 0x00000003 VT_LPSTR

Author 0x00000004 VT_LPSTR

Keywords 0x00000005 VT_LPSTR

Comments 0x00000006 VT_LPSTR

Template 0x00000007 VT_LPSTR

Last saved by 0x00000008 VT_LPSTR

Revision number 0x00000009 VT_LPSTR

Total editing time 0x0000000A VT_FILETIME

Last printed 0x0000000B VT_FILETIME

Create time/date 0x0000000C VT_FILETIME

Last saved time/date 0x0000000D VT_FILETIME

Number of pages 0x0000000E VT_I4

Number of words 0x0000000F VT_I4

Number of characters 0x00000010 VT_I4

Thumbnail 0x00000011 VT_CF

Name of creating application 0x00000012 VT_LPSTR

Security 0x00000013 VT_I4

September 11, 1996 FlashPix Format Specification

6 © 1996 Eastman Kodak Company Version 1.0

Number of characters property (optional)

This property is not used in

FlashPix

 objects.

Thumbnail property (required in some situations)

This property is available for the application to record a small bitmap representation of
the

FlashPix

 object. For the

FlashPix

 image view object, the thumbnail property is
optional for the summary information property set if this

FlashPix

 image view points to
a non-hierarchical source image object written in an embedded capture environment.
The thumbnail is otherwise required for

FlashPix

 image view objects. The thumbnail is
optional for the source and result

FlashPix

 image objects.

■

Thumbnail data should reflect image contents within the thumbnail format lim-
its and must be oriented the same way as the object it is contained in. Refer to
Sections 3.1.2 and 7.1 for additional information about how the thumbnail
property is used.

■

The thumbnail image is stored in CF_DIB format which is a simple rectangular
array of pixels with a small header as defined in [23].

■

For single channel images (including opacity only images), treat them as
monochrome without an opacity channel for purposes of the thumbnail.

■

For multicolored images, all pixels are stored in 24 bit (bi.BitCount = 24) BGR
format (in the NIF RGB color space). For single channel images, all pixels are
stored in 8 bit (bi.BitCount = 8) format.

■

Palettized color representations are not allowed for 24 bit DIB’s. However, for
single channel thumbnails, a palette entry must be provided which serves as the
8 to 24 bit identity lookup table. It is highly suggested that this palette be a
pure grayscale ramp of exactly 256 RGBQUAD elements (e.g. biClrUsed = 0)
running from black to white. The palette should consist of a sequence of 256
32-bit RGBQUAD structures [x,x,x,0] for all x running from 0 to 255. Note
that DIB palettes require the fourth (reserved) channel to be identically zero as
defined in [23].

■

The thumbnail image data is stored uncompressed.

■

For images with an opacity channel in addition to image data channels, the
thumbnail should be stored as if it had been composited on a fully opaque
white background.

■

The larger of the thumbnail stored height and width must be 96 pixels. The
image should be resized to this dimension instead of padding a smaller image.
It is not required to pad the smaller dimension to 96 pixels.

Name of creating application property (optional)

This property is available to the application to record the name of the application that
created the object. It is strongly recommended that this property be used in

FlashPix

objects.

Security property (optional)

This property is not used in

FlashPix

 objects.

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 7

1.4.3 File identification

A

FlashPix

 file must be an image view object and its object type class ID must be stored
in the root storage header. Many object based systems (e.g. OLE) will use the class ID
found in the header of the root storage as a key for launching an application. In this way
an application can be designated to handle all files of this object type by default, regard-
less of their creator.

The

FlashPix

 image view object and

FlashPix

 image object storages are required to
have a CompObj type stream. Their object type class ID is required to be stored in the
clipboard format field of that stream as well as in the header of the storage. The clip-
board format field is what should be used to determine the class ID of these objects.

In non-OLE environments,

 FlashPix

 format files are identified by other means; includ-
ing file name extensions and file types.

Macintosh systems use a file type designation to identify file content [24]. The file type
is a 4-character code stored with each file. For example, the code 'TEXT' indicates that
the file contains ASCII text. The Macintosh also associates a "file creator" with each file.
This is also a 4-character code. It identifies the application that created the file.

These two codes are stored in the Finder Desktop Database [24]. When a file is double-
clicked, the Finder uses the file's creator ID to determine its associated application. On
the Macintosh,

FlashPix

 files have been registered with a file type of "FPix" (Hex)
46506978.

On platforms (e.g., UNIX) that do not support GUIDs or file types as a means of associ-
ating files and applications/components, file extensions should be used. These are speci-
fied by the user as a period (".") followed by up to 3 letters. For example, an extension of
(".FPX") can be used to indicate that the file contains a

FlashPix

 file.

1.4.4 OS-level file treatment in Windows or with OLE

It is recommended that in Windows or OLE-enabled environments, core

FlashPix

 files
be managed independent of their creating application and that the user receives some
control over which

FlashPix

 reader becomes the server for

FlashPix

 files.

The former can be accomplished by writing and saving core

FlashPix

 files using the
class ID of the

FlashPix

 object type in the header portion of the root storage. Such files
should also use a ‘.FPX’ extension. Cases where it is more appropriate to use the creat-
ing application’s class ID as the root storage class ID include: images with significant
use of an application’s extensions, user approval via explicit prompting or preference
setting, or for images used in a closed system.

In OLE-enabled environments, core

FlashPix

 reader applications should be able to reg-
ister as the server application for the

FlashPix

 image view object class ID. If all core

FlashPix

 readers did this, the last installed application would become the default server
application. Due to the confusion this can cause the user, it is strongly recommended

September 11, 1996 FlashPix Format Specification

8 © 1996 Eastman Kodak Company Version 1.0

that the installation procedure for a core

FlashPix

 reader application offer it as the
default

FlashPix

 application. The installation would not insert the new application as the
server of the

FlashPix

 image view object class ID unless the user agreed. Whenever
possible, the installation procedure would also register the application as serving the
.FPX extension.

1.4.5

FlashPix

 Streams

FlashPix

 class IDs are used to identify the type of an entity. Unfortunately, standard
structured storage streams do not have a class ID. To deal with this problem a

FlashPix

stream differs from an OLE stream in that the first 28 bytes of the actual stream contain
header information, part of which is the class ID of the stream. These bytes are not
counted when determining offsets into the stream nor when determining the stream
length. For example, the first byte of data in a

FlashPix

 stream is stored in byte 28 of the
actual stream (the first byte is byte 0). These 28 bytes are in the format of a property set
header, as defined in Section A.2.1.1.

Note that property sets, on the other hand, do have a class ID field, and thus do not need
modification. Property sets in the

FlashPix

 format are not stored as

FlashPix

 streams,
but as standard streams. However, the header of a

FlashPix

 stream is the same as the
header of a property set.

1.4.6 String and Character Representation

There are numerous fields in the

FlashPix

 format that contain character strings. These
may be broken down into two general classes: structured storage related names such as
stream and storage pathnames, and descriptive strings stored in property sets such as
image title, film type and keywords.

To promote the ability to transfer

FlashPix

 images internationally, nearly all strings in
the

FlashPix

 format are stored in the Unicode format. However, to promote the ability to
transfer

FlashPix

 files among different operating systems, all structured storage related
names are required to be in the 7-bit ASCII compatible part of Unicode. Descriptive
strings are allowed a much wider range, since they can be ignored outside the language
they were generated in.

1.4.6.1 Storage and Stream Names

The

FlashPix

 file is built on top of structured storage files, which in turn are built on top
of the host file system. Hence, it must follow the conventions placed on stream and stor-
age names, and the file system names.

Each structured storage file has a single root storage. The name of the file root storage
may be any valid storage name. However, it is recommended that the file name in the
host file system be used.

Names of

FlashPix

 streams contained within storage objects are managed by the imple-
mentation of the particular storage object in question. Names are stored case-preserving,

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 9

but are compared case-insensitive. As a result, all

FlashPix

 writers which define storage
and stream names must choose names which will work in either situation.

FlashPix

streams and storage names may be up to 31 characters in length.

Although storage and stream names are actually stored as 16-bit Unicode characters, the
characters must be within the lower 7-bit ASCII range with the following additional
restrictions:

■

The names “.” and “..” are reserved for future use.

■

The four characters “\”, “/”, “:”, or “!” are not allowed.

Restricting such string names to 7-bit ASCII greatly promotes interoperability across
different platforms without significantly impacting internationalization, as these stream
and storage names are rarely exposed to the user.

In addition, the name space in a storage is partitioned into different areas of ownership.
Different pieces of code have the right to create elements in each area of the name
space:

■

Storage and stream names beginning with characters “

\001

” through “

\004

” are
reserved for OLE.

■

Property set names must begin with the “

\005

” character.

■

Storage and stream names beginning with character “

\006

” through “

\037

” are
reserved for OLE or for future use.

■

Any other character may be used to begin a storage or stream name.

1.4.6.2 Property Set Code Page and Strings

The other major area string names kept in the

FlashPix

 format are in property sets.
Property sets are defined with a “code page” specifying the type of characters allowed,
and numerous strings. All strings in the property set share the same code page.

All property sets in the

FlashPix

 format must belong to the Unicode code page, as spec-
ified in Section 1.4.1. The code page ID must be stored in property ID 0x00000001 in
all

FlashPix

 property sets. These property sets are defined in the rest of this document.
Hence it is an error to not specify the code page, or to specify it with any other value
than 0x04B0, in any property set in a

FlashPix

 file, as described in Section A.2.2.2.
However, applications may write application specific property sets in a

FlashPix

 file.
Only the stream names for the private extensions are not required to be in the Unicode
code page, although this is strongly recommended. Note that the count at the start of
VT_LPWSTR is to be interpreted as a character count, not a byte count. The count
includes the null character at the end of the string.

Descriptive strings such as names, camera types, and subjects are not required to be
within the 7-bit ASCII subset of Unicode. They are more often displayed and manipu-
lated by the user, and it is a requirement that the storage of the full character set is sup-
ported.

However, it is not required that a non-internationalized application be able to display
and manipulate characters outside the ASCII and local character set. It is perfectly

September 11, 1996 FlashPix Format Specification

10 © 1996 Eastman Kodak Company Version 1.0

acceptable for a German

FlashPix

 reader/writer, for instance, to display question marks
or similar symbols if passed Kanji characters. However, it is required that all Unicode
characters be preserved on copying. If that string was not modified by the German user,
it must remain readable under a Japanese version of the application.

String properties may be stored as either 8-bit strings (VT_LPSTR) or 16-bit strings
(VT_LPWSTR). Note because of Unicode compatibility, the upper 128 elements in an
8-bit string fall into the Western-European 8-bit character range in the Unicode code
page[20]. Hence, strings in those languages may be adequately stored as 8-bit strings.
Characters from other languages (Greek, Russian, Japanese, for example) must be
stored in 16-bit strings.

All

FlashPix

 property set readers must be able to read either 8 or 16 bit (Unicode)
strings for any property. This imposes a requirement that all property set readers be able
to convert 8 or 16 bit strings into the desired internal format for the application. It is
advised that 16-bit strings be utilized whenever possible.

1.5 Format Compliance

The FlashPix image format has a core definition and defined extensions. FlashPix files,
reader software, and writer software must be compliant with the core definition and may
optionally support one or more extensions.

The core FlashPix format definition specifies the required and optional data elements
and allowed data values that compose FlashPix files and default actions of FlashPix
reader software:

■ Core FlashPix files must contain all required core FlashPix data elements and any of
the core FlashPix optional data elements using only those values enumerated in the
core FlashPix definition.

■ Core FlashPix reader software must read all valid core FlashPix file permutations
and take all default actions defined in the core FlashPix specification.

■ Core FlashPix writer software must write at least one valid core FlashPix file per-
mutation.

Extensions to the core FlashPix format may be defined to add features that are not sup-
ported in the core FlashPix definition. Each extension must be defined in a way which
does not prevent core FlashPix reader software from productively interpreting FlashPix
files with the extension present. Core FlashPix reader software that doesn’t support a
particular extension will ignore its added data elements and will resort to default actions
when non-core values are present in core data elements.

Extensions to the FlashPix format are characterized by the feature capability being
added and defined by the required and optional data elements and values associated with
the feature. An extended FlashPix file meets the definition of core FlashPix files, but
has additional data elements for the extensions present in the file. Extended FlashPix

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 11

reader software is core

FlashPix

 reader software with additional capability to produc-
tively interpret one or more defined

FlashPix

 extensions. Extended

FlashPix

 writer soft-
ware is core

FlashPix

 writer software with additional capability to create the data
elements associated with one or more defined

FlashPix

 extensions.

FlashPix

 extensions may either be registered or private. Registered extensions are col-
laboratively defined via the the

FlashPix

 format Advisory Council and published pub-
licly as separate documents from the core

FlashPix

 format specification. Private
extensions are defined by any interested party and shared at their discretion.

1.6 FlashPix File Overview

A core FlashPix file is composed of a FlashPix image view object which contains
scriptable image transforms, a source FlashPix image object, and, optionally, a result
FlashPix image object containing the result of applying the transforms to the source
FlashPix image object. The FlashPix image object is defined in Section 3: The FlashPix
Image Object and the remainder of the FlashPix image view object is defined in
Section 7: FlashPix Image View Object. Those storages and streams in italics are
optional or optional under specific circumstances.

Figure 1.2 is an overview of a FlashPix file, a FlashPix image view object. Figure 1.3
describes the content of each FlashPix image object in the FlashPix image view object
and Figure 1.4 describes the content of each resolution storage in the FlashPix image
objects.

September 11, 1996 FlashPix Format Specification

12 © 1996 Eastman Kodak Company Version 1.0

FIGURE 1.2 FlashPix image view object

FIGURE 1.3 FlashPix image object

Global info.
property set

Source desc.CompObj
stream

Extension list
property set

FlashPix

 image
 view object root

Source

FlashPix
image object

Result FlashPix
image object

Summary info.
property set

Transform

Operation

property set

property set

property set

Result desc.
property set

Resolution 0

Resolution 1

Resolution

n

…

CompObj
stream

Image info.
property set

Image contents
property set

ICC profile

FlashPix

 image
 object

Summary info.
property set

Extension list
property set

Section 1: Introduction

Version 1.0 © 1996 Eastman Kodak Company 13

FIGURE 1.4 Contents of a resolution storage

1.6.1 Extension management
Both the FlashPix image view object and the FlashPix image objects may be indepen-
dently extended. The extensions associated with each object are recorded in that object’s
extension list property set. Extensions to the FlashPix image view object may be located
anywhere within the FlashPix file, even within a FlashPix image object. It is, however,
not recommended that a FlashPix image view object extension place all of its data ele-
ments within a FlashPix image object. Extensions to a FlashPix image object must be
entirely within the FlashPix image object.

FlashPix reader software must be able to interpret the extension list property sets and
may also be an extended reader with the capability to interpret specific extensions which
may be present in extended objects.

A particular FlashPix extension may not be valid if the core FlashPix data elements are
edited. Each extension must have its persistence defined by the authoring application.
The extension is marked as either: valid independent of any edits, invalid upon edits, or
potentially invalid upon edits.

When opening a FlashPix file, the reader software should determine if there are any
extensions present in the file which it does not support and which will become invalid or
potentially invalid upon editing. If there are such extensions in the file, the user should
be informed that the file is extended and that edits to the file may cause the loss of some
of the extensions. For each extension that the reader software supports and which is
marked as potentially invalid upon edits, the modification date of the extended object (in
its summary info property set) must be compared to the extension modification date. If
the extended object’s modification date is more recent than that of the extension, the
reader must determine if the extension is still valid. If it is not, it must either be updated
or all of its data elements listed in the extension list property set must be deleted.

Subimage
header

Subimage
data

September 11, 1996 FlashPix Format Specification

14 © 1996 Eastman Kodak Company Version 1.0

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

15

2

 S E C T I O N

2

2

Image Data
Representation

2.1 Coordinate systems

FlashPix files store image data in a hierarchy of resolutions from the highest available
for an image down to the lowest defined in the format. Image editing operations need to
be supported within an individual resolution, but must also be applied to all other reso-
lutions.

Therefore, two different coordinate systems are defined: resolution-independent and
resolution-dependent.

2.1.1 Resolution-Independent Coordinates
In some situations, the image must be described by a coordinate system independent of
the pixel.

Figure 2.1 shows a resolution-independent coordinate system. The image is described in
a Cartesian system, with the X-axis horizontal and pointing to the right, the Y-axis verti-
cal and pointing downward, and the origin at the upper left corner. The scale is such that
the height of the image is normalized to 1.0. To keep the scale of the X-axis and the Y-
axis the same, the image width is its aspect ratio (width/height). Thus, a square part of
any image has equal width and height in this coordinate system.

September 11, 1996 FlashPix Format Specification

16 © 1996 Eastman Kodak Company Version 1.0

FIGURE 2.1 Resolution-independent coordinates

2.1.2 Resolution-Dependent Coordinates
At a given resolution, the normalized coordinate system described above must be con-
verted to a set of discrete pixels. Then the continuous resolution-dependent coordinate
system in Figure 2.2 is used. This is simply a scaled version of the previous coordinates.
The values (x, y) in this coordinate system are still real (floating point) numbers.

To define the actual pixels of the image, an integer grid is overlaid on the coordinate sys-
tem. The discrete pixel referred to by (i, j), where i and j are integers, is centered at loca-
tion (i+0.5, j+0.5). The half-unit shift makes the conversion between discrete and
continuous descriptions simple. The point (x, y) falls in the unit square labelled (,

) and containing the pixel at (+0.5, +0.5). No rounding is required.

X

Y

(0,0)

(R, 1)

(R, 0)

(0,1)

R
W
H
-----=

x
y x y

Section 2: Image Data Representation

Version 1.0 © 1996 Eastman Kodak Company 17

FIGURE 2.2 Resolution-dependent coordinates

2.2 Multiple resolutions

A FlashPix file must contain either a single resolution or the entire multi-resolution
hierarchy. Each resolution in the full hierarchy is separated from the next higher resolu-
tion version by a spatial factor of 2

× in both the x and y directions.

The series of resolutions continues until both the width and height of the smallest reso-
lution are less than or equal to the width and height of a tile, 64 pixels. In the Figure 2.3
example, the tile width is smaller than R/4 but no smaller than R/8.

In Figure 2.3, the full resolution image is R rows × C columns. The actual spatial resolu-
tion (in pixels per inch, for example) is irrelevant, since neither the desired output size
nor the output resolution is known. Each successively smaller resolution has half the
number of rows and columns as the previous resolution. In this example, the second res-
olution is R/2 rows × C/2 columns.

Note that the FlashPix format uses centered subsampling. The pixels in resolution i-1
fall between the pixels in resolution i.

X

Y

(0,0) (W,0)

(W,H)(

H,0)

1 2

1
2

…

…

September 11, 1996 FlashPix Format Specification

18 © 1996 Eastman Kodak Company Version 1.0

FIGURE 2.3 Sample resolution hierarchy

2.2.1 Resolution sizes
The size of a decimated image is determined from equation 2.1, where (w0,h0) is the
width and height of the larger resolution and (w1,h1) are the width and height of the
smaller resolution:

(2.1)

Note that this rounding affects the size of the image in resolution independent coordi-
nates. The height of the largest resolution image is defined to be 1.0. Using the rounding
method in Equation 2.1, the height of one resolution given the height of the next largest
resolution can be determined as follows, where h0 is the height of the larger resolution
in resolution independent coordinates, p0 is the height of the larger resolution in pixels,
h1 is the height of the next smaller resolution in resolution independent coordinates, and
p1 is the height of the next smaller resolution in pixels, as defined by Equation 2.1:

(2.2)

Failing to make this correction to the height and width of the image (in resolution inde-
pendent coordinates) when dealing with resolutions other than the largest resolution
may cause slight errors in the alignment of the multiple resolutions of the image.

R/8

C/8

R/4

C/4

R/2

C/2

R

C

w1 h1,() w0 1+()
2

h0 1+()

2
-------------------, 

 

=

h

1

2 p1

p0
--------- h0

×=

Section 2: Image Data Representation

Version 1.0 © 1996 Eastman Kodak Company 19

2.2.2 Non-Hierarchical

FlashPix

 Images

This specification also defines a non-hierarchical version of

FlashPix

 images. In some
cases, such as in the case of a digital camera, the system has neither the computing
power to generate the full hierarchy nor the space to store the additional resolutions. In
these cases, only the full-resolution image is stored. However, when this image can be
used in an interactive manner, the full hierarchy must be constructed. This may happen
in an acquire module accessing the device, in a separate converter program, or when an
interactive core reader application opens the image and finds that it’s hierarchy does not
exist. A result image object, as defined in Section 7.1, also must be hierarchical when
used in an interactive environment.

Non-hierarchical

FlashPix

 images differ from fully hierarchical

FlashPix

 images in that
there is only one resolution. This distinction is specified in Section 3.1.5.1.

2.3 Tiling

In addition to providing the image at several resolutions, each resolution image is orga-
nized into tiles to provide more efficient access to any portion of the image.

2.3.1 Breaking an Image into Tiles
Figure 2.4 shows an image divided into tiles.

September 11, 1996 FlashPix Format Specification

20 © 1996 Eastman Kodak Company Version 1.0

FIGURE 2.4 A tiled image

The example image is Ri rows × Ci columns, organized into Rt row × Ct column tiles.
For any image, the number of tiles per row (NR) and the number of tiles per column (NC)
are:

(2.3)

For the image shown in Figure 2.4, NR = 4 and NC = 6.

However, it is unlikely that the image size will be a multiple of the tile size. As illus-
trated in Figure 2.4, the tiles on the right and bottom of the image will only partially
contain valid image data. Since only full tiles can be stored in a FlashPix image, incom-
plete tiles must be padded to the full tile width and height. Tiles should be padded with
values extruded from the image itself. For example, pixels to the right of the image
should be padded with the value of the rightmost pixel in each row. Pixels specifying
opacity data should be padded just as if they were image data, as the actual image size is
specified by the actual width and height, not by the opacity data.

To access a particular pixel, the tile containing that pixel must first be located. To calcu-
late the tile, described by the coordinate pair (TC, TR), where the upper left tile is (0, 0)
and the lower right tile is (NC - 1, NR - 1), containing the pixel (c+0.5, r+0.5), use the
following formulas:

(2.4)

Ci

Ri

Rt

Ct

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

N

R
Ri

Rt
-----= NC

Ci

Ct
-----=

T

R
r

RT
------= TC

c
CT
------=

Section 2: Image Data Representation

Version 1.0 © 1996 Eastman Kodak Company 21

The tiles are numbered sequentially, starting at the upper left tile and proceeding from
left to right and top to bottom. The number of the tile (

T

C

,

T

R

),

T

, is given by the follow-
ing formula:

(2.5)

Once the correct tile has been located, the location (

c

',

r

') of the unit square containing
the desired pixel, with respect to the tile, can be determined:

(2.6)

where ‘%’ represents the modulus operator.

T T

R NC TC

+×

=

r

' r RT%= c' c CT

%=

September 11, 1996 FlashPix Format Specification

22 © 1996 Eastman Kodak Company Version 1.0

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

23

3

 S E C T I O N

3

3

The FlashPix Image
Object

3.1

FlashPix

 Image Object
Structure

The FlashPix image object is a storage whose contents are together treated as an image
in the FlashPix format. Figure 3.1 shows the storages and streams in a FlashPix image
object.

Storage name: Data\040Object\040Store\040%06d
Class ID: 56616000-C154-11CE-8553-00AA00A1F95B

The single numeric parameter in the storage name represents the index of the image as
described in Section 7.1.2. This class ID is to be used for all FlashPix image objects
whether or not they contain any extensions.

September 11, 1996 FlashPix Format Specification

24 © 1996 Eastman Kodak Company Version 1.0

FIGURE 3.1 FlashPix image object storages and streams

3.1.1 Resolution Storages

Storage name: Resolution\040%04d
Class ID: 56616100-C154-11CE-8553-00AA00A1F95B

The decimal parameter in the storage name is the resolution number. Resolutions are
numbered in sequence starting at 0, which is the lowest resolution.

FIGURE 3.2 Contents of a resolution storage

This series of storages contains the image data for each resolution. Storage contents are
the same for every resolution, as implied by the connection point in Figure 3.1 and
Figure 3.2.

Resolution 0

Resolution 1

Resolution

n

…

CompObj
stream

Image info.
property set

Image contents
property set

ICC profile

FlashPix

 image
 object

Summary info.
property set

Extension list
property set

Subimage
header

Subimage
data

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 25

Future extensions to the

FlashPix

 format may include additional subimages, but in the
core definition, only one subimage is allowed. The format includes provisions for multi-
ple subimages, which is accomplished by treating the one subimage in the core defini-
tion as subimage 0.

Each resolution storage contains a header stream and a data stream that contain all the
image data for that resolution. (

Section 4: Image Data Format

describes the format of
the header and data streams.) The subimage must be in the same color space and numer-
ical format for all resolutions.

3.1.2 Summary Info Property Set (required)

This property set is an instance of the standard Summary Information property set, as
described in Section 1.4.2. This property set must adhere to the definition specified in
Section 1.4.1.

The thumbnail property value, if defined, must be representative of the image. There-
fore, in the result instance of the image object, the thumbnail must have had all trans-
forms applied to it.

3.1.3 CompObj Stream (required)

The CompObj stream is a standard Structured Storage stream and is not a

FlashPix

stream. The header of the stream is not extended for storage of a stream class ID. This
stream is required and is defined in Section A.3. The Unicode versions of the CompObj
stream fields are required.

The CompObj stream Clipboard Format field is used to store the class ID of the

Flash-
Pix

 image object. The

FlashPix

 image object class ID is converted to a string for storage
in the Clipboard Format field and must be bracketed by the bracket characters ‘{‘ and
‘}’ just as returned by the OLE function StringFromGUID2.

The CompObj stream User Type field is generally used to store the User Type informa-
tion from the OLE registry for the class ID. In OLE-enabled environments, the string
contents should be retrieved from the OLE registry. In non-OLE-enabled environments,
a string which is a user-understandable brief description of the object contents should be
used.

The CompObj stream ProgID field is generally used to store the ProgID information
from the OLE registry for the class ID. In OLE-enabled environments, the string con-
tents should be retrieved from the OLE registry. In non-OLE-enabled environments, a
string which identifies the program associated with the class ID should be used. This
string cannot contain any spaces.

September 11, 1996 FlashPix Format Specification

26 © 1996 Eastman Kodak Company Version 1.0

3.1.4 Image Info Property Set (optional)

Stream name:

\005

Image

\040

Info
Class ID: 56616500-C154-11CE-8553-00AA00A1F95B
Format ID: 56616500-C154-11CE-8553-00AA00A1F95B

The image info property set contains properties that describe the actual image. (See

Section 6: Image Info Property Set

 for a definition of this property set.)

3.1.5 Image Contents Property Set (required)

Stream name:

\005

Image

\040

Contents
Class ID: 56616400-C154-11CE-8553-00AA00A1F95B
Format ID: 56616400-C154-11CE-8553-00AA00A1F95B

The image contents property set contains properties that describe how the image data is
stored. The properties may appear in any order, but they are conceptually divided into
three groups. The

primary description group

 describes the

FlashPix

 image as a whole,
specifying the number of resolutions, the size of the largest resolution, etc. The

resolu-
tion description group

describes the subimage at each resolution. The

compression
description group

contains image compression information.

The image contents property set is stored in standard property set format, adhering to
the restrictions in Section 1.4.1. All property ID codes not explicitly listed are reserved
for registered extensions.

3.1.5.1 Primary description group

This group contains properties (Table 3.1) describing the

FlashPix

 image object as a
whole.

Number of resolutions property (required)

This property specifies the number of resolutions contained in the

FlashPix

 image. This
property is required. The value must be the number of resolutions in the fully populated
hierarchy or one for a non-hierarchical

FlashPix

 image. That single stored resolution
must be the highest resolution image. Its resolution number must be the number that
would be assigned to the highest resolution image if the hierarchy were fully populated

TABLE 3.1 Valid properties in the primary description group

Property name ID Code Type

Number of resolutions 0x01000000 VT_UI4

Highest resolution width 0x01000002 VT_UI4

Highest resolution height 0x01000003 VT_UI4

Default display height 0x01000004 VT_R4

Default display width 0x01000005 VT_R4

Display height/width units 0x01000006 VT_UI4

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 27

(number of resolutions property value - 1 since lowest resolution is stored as resolution
0). The number of resolutions stored for a fully populated hierarchy can be calculated as
shown in Equation 3.1, where tile size is 64.

(3.1)

Highest resolution width and height properties (required)

These properties specify in pixels the height and width of the highest resolution image.
Values do not include the padded area if the image data is padded to tile boundaries.

Default display height and width properties (optional)

These properties specify the default height and width for displaying the image.

Display height/width units property (optional)

If the default display height and width properties are present, this property is used to
define their unit of measurement. Legal values are listed in Table 3.2. If this property is
not present,

FlashPix

 reader software must treat the image as though the value were
Inches (0x0).

3.1.5.2 Resolution Description Groups

These groups, one for each stored resolution, contain properties to describe the subim-
age at that resolution. Table 3.3 lists the properties, where “

ii

” in the ID code is the reso-
lution number.

TABLE 3.2 Legal display height/width units property values

Value Meaning

0x0 Inches

0x1 Meters

0x2 Centimeters

0x3 Millimeters

TABLE 3.3 Valid properties in a resolution description group

Property name ID code Type

Subimage width 0x02ii0000 VT_UI4

Subimage height 0x02ii0001 VT_UI4

Subimage color 0x02ii0002 VT_BLOB

Subimage numerical format 0x02ii0003 VT_UI4 | VT_VECTOR

Decimation method 0x02ii0004 VT_I4

Decimation prefilter width 0x02ii0005 VT_R4

Subimage ICC profile 0x02ii0007 VT_UI2 | VT_VECTOR

log2
max width height,()

TileSize
--

September 11, 1996 FlashPix Format Specification

28 © 1996 Eastman Kodak Company Version 1.0

Subimage width and height properties (required)

These properties specify the width and height of subimage in pixels. Values do not
include the padded area if the image data is padded to tile boundaries.

Subimage color property (required)

This property specifies the color of the subimage channels at this resolution. The format
of the data portion of the VT_BLOB is shown in Table 3.4.

Each color code is divided into two sections: the color space and the color. The upper 16
bits of the field specify the color space. The lower 16 bits specify the color.

Valid values for each of the color space subfields are shown in Table 3.5. If the most sig-

nificant bit of the color space subfield is not set, then the image is calibrated to the color
space as defined in

Section 5: Color Space Specifications.

 If the most significant bit of
the color space subfield is set, then the image channel definitions are that of the color
space, but the image is not calibrated. Core reader software should provide a means for
warning the application user that the image color is non-standard and unpredictable
color results may occur.

Each color space is defined in

 Section 5: Color Space Specifications

.

All the channels in the subimage must have the same color space value, including the
most significant bit. It is not legal to create the subimage with a PhotoYCC luminance
channel and a NIF RGB green channel. Core reader software must verify that the entire
subimage color property value is the same for each resolution of the

FlashPix

 image
object.

TABLE 3.4 Format and fields of the subimage color property

Field name Length Byte(s)

Number of subimages 4 0-3

Number of channels of subimage 4 4-7

Color of channel 0 of subimage 4 8-11

…

Color of channel last of subimage 4 variable

TABLE 3.5 Valid color space subfield values

Value Meaning

0x0 Colorless (CL)

0x1 Monochrome (M)

0x2 PhotoYCC (YCC)

0x3 NIF RGB (NRGB)

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 29

If the subimage contains an opacity channel in addition to other color channels, the
opacity channel color space codes should be that of the other channels in the subimage.
For example, if an opacity channel is placed in the subimage with NIF RGB data, the
complete color code for the opacity channel should be 0x00037FFE. If the subimage
contains only an opacity channel, the color space should be colorless (0x0000). For
example, an opacity channel alone in the subimage should have a complete color code
of 0x00007FFE.

Valid values for each of the color subfields are shown in Table 3.6.

If the most significant bit of the color subfield (0x8000) is set, that channel is part of a
subimage containing opacity data, which, in addition to being included as an additional
channel, has been premultiplied into the color channels. If one color channel has been
premultiplied, all channels except the opacity channel must be premultiplied. An opac-
ity channel may never have the premultiplied flag set. In color character codes (such as
R-NRGB), a lowercase “a” at the beginning of the character code indicates a channel
with premultiplied opacity (for example, aR-NRGB). If the primary subimage contains
an opacity channel, it must be premultiplied into the other channels.

TABLE 3.6 Valid color subfield values

Color Value Allowed color spaces

Monochrome (M) 0x0 M

Red (R) 0x0 NRGB

Green (G) 0x1 NRGB

Blue (B) 0x2 NRGB

PhotoYCC luminance (Y) 0x0 YCC

PhotoYCC chrominance1 (C1) 0x1 YCC

PhotoYCC chrominance2 (C2) 0x2 YCC

Opacity (A) 0x7FFE all

September 11, 1996 FlashPix Format Specification

30 © 1996 Eastman Kodak Company Version 1.0

Table 3.7 shows the valid subimage color value combinations. The channel color defini-

tions are expected to appear in the order in which they are listed under Color codes in
the table.

Subimage numerical format property (required)

This property specifies the numerical formats of the image data at this resolution. The
value and the image data may only be of the type VT_UI1 (8-bit unsigned integer). All
channels in the subimage must have the same numerical format. Core readers must ver-
ify that the same subimage numerical format value is given for all channels of each res-
olution of each subimage.

Decimation method property (required)

This property characterizes the quality of the decimation performed to create the images
at this resolution from the next higher resolution. If the value is 0x7FFFFFFF, this reso-
lution was decimated from the next larger resolution using the following 8-point deci-
mation prefilter:

(-0.046734,-0.059009,0.156544,0.449199,0.449199,0.156544,-0.059009,-0.046734).

Other values indicate the number of elements in the prefilter. For example, if a 6-point
filter was used to prefilter the image before decimation, this value would be 6. If this res-
olution is the full resolution image, the decimation method should have a value of zero.

If this resolution was artificially created by interpolating from a smaller resolution (it is
not recommended for images to be interchanged with other applications), the value of
the decimation method property should be negative. The absolute value is the width of
the filter applied to sharpen the image prior to interpolating the data. Then -1 indicates a
simple interpolation without sharpening.

Correct decimation filter design depends on the choice of pixel location (Figure 3.3).
The

FlashPix

 format convention requires that the positions of pixels in a resolution
layer (except for the full resolution layer) are offset by one half a pixel unit with respect
to the resolution layer above. This can be obtained by using an even-width symmetric
filter to prefilter the image before decimating. Note that most convolution code places
the center of the filter at the location of the filtered pixel and that a nearest neighbor dec-

TABLE 3.7 Legal subimage color values

Description Color codes

PhotoYCC Y-YCC, C1-YCC, C2-YCC

PhotoYCC with premultiplied opacity aY-YCC, aC1-YCC, aC2-YCC, A-YCC

NIF RGB R-NRGB, G-NRGB, B-NRGB

NIF RGB with premultiplied opacity aR-NRGB, aG-NRGB, aB-NRGB, A-NRGB

Monochrome M-M

Monochrome with premultiplied opacity aM-M, A-M

Opacity A-CL

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 31

imation (such as the Windows StretchBlt function) produces incorrect pixel alignment
and should not be used.

FIGURE 3.3 Example of pixel-centered alignment between adjacent resolutions

A developer may choose to design their own decimation prefilter. The filter must be a
finite impulse response filter (FIR) and should be designed according to the aim fre-
quency response curve and error bounds shown in Figure 3.4. The filter design process
should achieve a prefilter frequency response curve which approximates the aim curve
without ever entering the shaded region shown in the figure. A reader should assume
that the image was decimated by a filter approximating this frequency response; and a
writer should use a filter having the same aim frequency response.

Resolution i pixels Resolution i-1 pixels

September 11, 1996 FlashPix Format Specification

32 © 1996 Eastman Kodak Company Version 1.0

FIGURE 3.4 Frequency response curve and error bounds

Decimation prefilter width property (optional)
To perform resolution-independent image filtering, the algorithm must know the deci-
mation prefilter degree of blurring, which is expressed as the effective filter width, q.
This property specifies the value q.

The procedure is as follows: Approximate the prefilter MTF by the form , where q
is the width and s is the spatial frequency measured in cycles per pixel of the image
before filtering. If the MTF is far from a Gaussian form, fit the low-frequency portion
best. If this property is not found, it is assumed that the prefilter used had an aim fre-
quency response as specified in the decimation method property.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Aim Curve8 Point FIR

Rela t ive Frequency (cyc les /p ixe l)

F
il

te
r

R
e

s
p

o
n

s
e

e qs
2–

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 33

Subimage ICC profile property (optional)

This property specifies an optional ICC profile for the subimage. It is a 1-element array
whose value must be 1. The existence of this property indicates that an ICC profile
exists in the

FlashPix

 image object. The profile specifies the conversion of the subimage
into the ICC-PCS (Profile Connection Space). If an ICC profile is identified for the sub-
image, the same profile must be associated with the subimage at all resolutions and core
reader software must verify that this is the case.

3.1.5.3 Compression Description Group

This group of the image contents property set contains compression header information.
Only those properties that contain valid data must be present.

Table 3.8 specifies the properties in the compression description group. In the table, “

ii

”
in the ID code is the index of a JPEG table set selection.

JPEG tables property (optional)

This property (as specified in Table 3.8) contains the JPEG quantization tables and the
JPEG Huffman tables used across all resolutions of the

FlashPix

 image. The format of
the data in each of these properties should conform to the JPEG abbreviated format for
table specification data, consisting of JPEG markers surrounding the actual table data,
per the JPEG specification[9] Annex B.5 and Annex C. Note that it is possible to use
quantizers or Huffman tables not defined here by including them in the JPEG data
stream for the tile in which to apply them (as described in Section 4.1.2). The format of
a JPEG abbreviated header table is shown in Table 3.9.

Each

FlashPix

 image tile using JPEG compression must define at least one quantization
table and two Huffman tables. A typical JPEG abbreviated table stream includes two
quantization tables (numbered 0 and 1) for the luminance and chrominance components,
and two Huffman tables (numbered 0 and 1) for the DC and AC entropy coder. The stan-

TABLE 3.8 Valid properties in the compression information properties group

Property name ID code Type

JPEG tables 0x03ii0001 VT_BLOB

Maximum JPEG table index 0x03000002 VT_UI4

TABLE 3.9 Format and entries of a JPEG abbreviated header table

Field name Length Byte(s) Value

Start of image marker (SOI) 2 0-1 0xFFD8

Define quantization table segment marker (DQT) 2 2-3 0xFFDB

Quantization table data variable 4-variable variable

Define Huffman table segment marker (DHT) 2 variable 0xFFC4

Huffman table data variable variable variable

End of image marker (EOI) 2 variable 0xFFD9

September 11, 1996 FlashPix Format Specification

34 © 1996 Eastman Kodak Company Version 1.0

dard JPEG table specification syntax allows the definition of up to four quantization
tables and four Huffman tables.

By storing multiple JPEG abbreviated header tables (each in a uniquely identified prop-
erty), different sets of tables can be used by different tiles and multiple tiles can utilize
the same table. Up to 255 table streams, with indices ranging from 1 to 255, may be
defined in the compression property group.

Maximum JPEG table index property (optional)

This field specifies the maximum JPEG table index for the JPEG table properties. This
property is optional, but must exist if there are any JPEG table properties in this

Flash-
Pix

 image object. It is recommended that when a JPEG table property is added that the
index used be this property’s value + 1. When a JPEG table property is added, the maxi-
mum JPEG table index property must be adjusted if the new index value in use is greater
than the current property value.

3.1.6 ICC Profile (optional)

Stream name: ICC

\040

Profile

\040

0001
Class ID: 56616600-C154-11CE-8553-00AA00A1F95B

This stream contains an ICC profile describing the conversion between the

FlashPix

image color space and the ICC PCS. The data portion of the

FlashPix

 stream is stored in
standard ICC profile format[8]. The ICC profile may contain only standard PhotoYCC
to PCS or NIF RGB to PCS transforms.

3.1.7 Extension List Property Set (optional)

Stream name:

\005

Extension

\040

List
Class ID: 56616010-C154-11CE-8553-00AA00A1F95B
Format ID: 56616010-C154-11CE-8553-00AA00A1F95B

This property set identifies extensions present in the

FlashPix

 image object by class ID,
name, and description as well as the data elements changed or added by each extension.
The property set is optional, however, if the

FlashPix

 image object contains any exten-
sions, the extension list property set must be present and all extension, registered and
private, in the

FlashPix

 image object must be described.

The way in which the data associated with an extension is structured can take one or
more of the following forms:

■

New storage(s) may be added

■

New stream(s) may be added

■

New

FlashPix

 stream(s) may be added

■

New subimage(s) may be added to a

FlashPix

 image object

■

New property set(s) may be added

■

New property(s) may be added to an existing property set section

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 35

■

Element(s) may be added to core

FlashPix

 property set vector properties that are
defined as variable length

■

Value of a core

FlashPix

 stream field may be changed

■

Value of a core property set property may be changed

There are five restrictions to structuring the data elements of an extension. First, new
fields may not be added to existing

FlashPix

 streams. Second, due to the inability to
independently ensure property ID code uniqueness, only registered extensions may add
properties to an existing property set section. Third, private extensions may not change
the value of a core

FlashPix

 stream field or a core property set property. Fourth, exten-
sions can only add vector elements that are not already used by core or other extensions
present in the file. Upon removal of an extension, the vector element values associated
with the extension must be replaced with NULL and the vector must not be reordered.
Fifth, only registered extensions can add elements to core property set vector properties.

Although there are a few practical examples where reasonable core reader actions could
be defined for when an extension has changed the value of a core

FlashPix

 stream field
or a core property set property, these core reader actions must be considered in defining
the core

FlashPix

 specification. It is impractical to expect all core reader software to be
updated to incorporate default actions identified in the course of developing new exten-
sions. The definition of extensions must not impact the core definition unless some com-
pelling feature set is identified which the

FlashPix

 format Advisory Council agrees to
include in a revised definition of the core

FlashPix

 format. Therefore, efforts to define
public extensions will avoid impacting core

FlashPix

 stream field and core property set
property values.

The valid properties of the extension list property set are listed in Table 3.10. The
extensions present in the

FlashPix

 image object are numbered for the convenience of
grouping the descriptive information about each extension. Property ID codes
0xiiiixxxx describe the extension numbered 0x

iiii

.

Used extension numbers property (required)

This property lists all extension numbers iiii used in the extension list property set for
the

FlashPix

 image object. The property value is an unordered array of iiii values.

All applications must update this property each time an extension is added to or
removed from a

FlashPix

 image object.

Extension name property (required)

This property identifies the name of the extension. If the extension is registered, the
name used must be that which is published in the official

FlashPix

 Extension Specifica-
tion. For private extensions, the name is the whatever short, descriptive label the author-
ing application chooses.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

September 11, 1996 FlashPix Format Specification

36 © 1996 Eastman Kodak Company Version 1.0

Extension class ID property (required)

This property identifies a unique class ID for the extension. If the extension is regis-
tered, the class ID must be that which is published in the official

FlashPix

 Extension
Specification. For private extensions, the class ID is assigned by the authoring applica-
tion.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

 Extension persistence property (required)

This property identifies the persistence of the extension with respect to edits to the core
data elements of the

FlashPix

 image object. The legal values for the extension persis-
tence property are defined in Table 3.11.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

It is the responsibility of the reader/writer application upon save or copy functions to
retain the extension data elements by default, or in accordance with the extension persis-
tence property.

TABLE 3.10 Valid properties for the extension list property set

Property name ID code Type

Used extension numbers 0x10000000 VT_UI2 | VT_VECTOR

Extension name 0xiiii0001 VT_LPWSTR

Extension class ID 0xiiii0002 VT_CLSID

Extension persistence 0xiiii0003 VT_UI2

Extension creation date 0xiiii0004 VT_FILETIME

Extension modification date 0xiiii0005 VT_FILETIME

Creating application 0xiiii0006 VT_LPWSTR

Extension description 0xiiii0007 VT_LPWSTR

Storage / stream pathname 0xiiii1000 VT_LPWSTR | VT_VECTOR

FlashPix stream pathname 0xiiii2000 VT_LPWSTR | VT_VECTOR

FlashPix stream field offset 0xiiii2001 VT_UI4 | VT_VECTOR

Property set pathname 0xiiii3000 VT_LPWSTR | VT_VECTOR

Property set ID codes 0xiiii3jj1 VT_LPWSTR | VT_VECTOR

Property vector elements 0xiiii3jj2 VT_LPWSTR | VT_VECTOR

Subimage number/resolution 0xiiii4000 VT_LPWSTR | VT_VECTOR

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 37

Extension creation date property (optional unless extension persistence property
is 0x2)

This property specifies the time and date the authoring application added the extension
to the

FlashPix

 image object. If the property exists, all applications must retain it upon
save or copy functions by default, or in accordance with the extension persistence value.

Extension modification date property (optional unless extension persistence
property is 0x2)

This property specifies the time and date of the last modification to the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Creating application property (optional)

This property specifies the name of the application that authored the extension in the
file. If the property exists, any application editing the extension must update the value
and all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence value.

Extension description property (optional)

The description property is a short (<80 character) description of the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Storage/stream pathname property (optional)

This property lists the full storage or non-

FlashPix

 stream name, including the path in
the structured storage file from the

FlashPix

 image object storage, for each storage or
non-

FlashPix

 stream the extension added to the

FlashPix

 image object. The path is
specified using the standard Unix file specification tokens: "/" represents a directory
separator and must be the first character of the property value. Wildcard characters “*”
and “?” (where “*” matches any 0 or more characters and “?” matches any 1 character)
are permitted in the path portion of the property value. If a storage is listed in the exten-
sion list property set, its contents should not also be listed as they are assumed to also be
associated with that extension. If this property is omitted it is assumed that no storages
are added to the

FlashPix

 image object for the extension. If the property exists, all appli-
cations must retain it upon save or copy functions by default, or in accordance with the
extension persistence property value.

FlashPix

 stream pathname property (optional)

This property lists the full

FlashPix

 stream name, including the path from the

FlashPix

image object storage, for each

FlashPix

 stream the extension added to or modified in the

TABLE 3.11 Legal values of the existence persistence property

Value Meaning

0x0 Extension is valid independent of core element modifications

0x1 Extension is invalid upon core element modifications

0x2 Extension is potentially invalid upon core element modifications

September 11, 1996 FlashPix Format Specification

38 © 1996 Eastman Kodak Company Version 1.0

FlashPix

 image object. The path is specified using the standard Unix file specification
tokens: "/" represents a directory separator and must be the first character of the prop-
erty value. Wildcard characters “*” and “?” (where “*” matches any 0 or more charac-
ters and “?” matches any 1 character) are permitted in the path portion of the property
value. The array of values for the

FlashPix

 stream pathname property and the

FlashPix

stream field offset property array of values for extension iiii are associated as described
in Table 3.12. If this property is omitted it is assumed that no

FlashPix

 streams are
added to or modified in the

FlashPix

 image object for the extension. If the property
exists, all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

FlashPix

 stream field offset property (optional)

This property lists the byte offsets (after the header) into the

FlashPix

 stream identified
with the

FlashPix

 stream pathname property array of fields modified by the extension.
The array of values for the

FlashPix

 stream field offset property and the

FlashPix

stream pathname property array of values for extension 0xiiii are associated as
described in Table 3.12. This property is required only if the

FlashPix

 stream pathname
property exists. If this property exists, all applications must retain it upon save or copy
functions by default, or in accordance with the extension persistence property value.

In the Table 3.12 example, there are two

FlashPix

 stream data elements associated with
extension 0x17. The first, at Index = 0, is an added

FlashPix

 stream as there is a

Flash-
Pix

 stream pathname value but the

FlashPix

 stream field offset is 0xFFFFFFFF. The
second, at index 0xjj = 1, is a field in a core

FlashPix

 stream who's value is not among
those defined in core the

FlashPix

 format. This is indicated by the presence of a non-
0xFFFFFFFF

FlashPix

 stream field offset value in addition to a

FlashPix

 stream path-
name value.

Property set pathname property (optional)

This property is an array that lists the full property set name, including the path from the

FlashPix

 image object storage, for each property set the extension 0xiiii added, added
to, or modified in the

FlashPix

 image object. The path is specified using the standard
Unix file specification tokens: "/" represents a directory separator and must be the first
character of the property value. Wildcard characters "*" and "?" (where "*" matches any
0 or more characters and "?" matches any 1 character) are permitted in the path portion
of the property value. Table 3.13 shows an example of how the property set pathname,
property set ID codes, and property set vector elements for extension 0xiiii are associ-
ated. The array index of the property set pathname property corresponds to 0xjj in the
properties 0xiiii3jj1 and 0xiiii3jj2.

This property set is optional and if omitted it is assumed that no property sets are added,
added to, or modified in the

FlashPix

 image object for the extensions. If the property

TABLE 3.12 Example values of FlashPix stream identification

Property Index = 0 Index = 1

0x00172000 stream x pathname stream y pathname

0x00172001 0xFFFFFFFF 64

Section 3: The FlashPix Image Object

Version 1.0 © 1996 Eastman Kodak Company 39

exists all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

Property set ID codes property (optional)

This property lists the ID codes of properties which have been added to a core property
set, or defined with non-core values by an extension to the

FlashPix

 image object. The
value of each array posistion of the property is a VT_LPWSTR that may be composed
of comma separated values each of which are either an individual property ID code or
hyphen-separated pair of property ID codes. The array of values for the property set ID
codes and the property vector elements for particular property set 0xjj and extension
0xiiii are associated as described in Table 3.13. When a new property set is added by an
extension, the property set ID codes property is not required. This property is required
if an extension adds properties to a core property set or modifies core property set prop-
erties. If the property exists, all applications must retain it upon save or copy functions
by default, or in accordance with the extension persistence property value.

Property vector elements property (optional)

Extensions can add vector elements to core properties that are defined as variable length
vectors. This property lists the vector index for the values added to a particular vector
property. The value of each array posistion of the property is a VT_LPWSTR that may
be composed of comma separated values each of which are either an individual vector
element or hyphen-separated pair of vector elements. The array of values for the prop-
erty vector elements and the property set ID codes for a particual property set 0xjj and
extension 0xiiii are associated as described in Table 3.13. This property is only
required when an extension adds vector elements to a core property set property. If the
vector elements property is present, and vector elements have not been added to its asso-
ciated property set ID code(s), then the value of this property must be NULL . If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence property value.

In the Table 3.13 example, there are three property sets associated with extension 0x19.
The first index of the property 0x000193000, which corresponds to 0xjj=00, is a new
property set being added by the extension as there is a property set pathname value, but
the property set ID codes and property vector element properties for 0xjj=00 are not
listed. The second index of the property 0x00193000, which corresponds to 0xjj=01, is a
core property set in which property ID Codes 0x00011001-0x00011005 and
0x00001200 are being added by the extension. The third index of the property
0x00193000, which corresponds to 0xjj=02, is a core property set in which property ID
code 0x00033000 is of type VT_VECTOR and the extension has added values in ele-
ments 3,4, and 5 of that vector. Property ID codes $00044001-$00044004 are new ID
codes being added to the property set by the extension as well. In this case since the
property ID codes are new, the value of 0x00193022 for this array posistion is assigned

September 11, 1996 FlashPix Format Specification

40 © 1996 Eastman Kodak Company Version 1.0

to NULL. This example also shows that the extension has added a value in element 2 of
both the vectors defined by existing property ID codes, 0x00055000 and 0x00066000.

Subimage number/resolution property (optional)

This property is used to indicate that an extension has added new subimages to a

Flash-
Pix

 image object. It must be not used to indicate that an extension has modified core

FlashPix

 subimage 0. The value of each array position is a VT_LPWSTR that is com-
posed of comma-separate values each of which is either an individual subimage number
or a hyphen-separated pair of subimage numbers. The array element position indicates
the resolution indices to which the particular subimage(s) are added. If subimages are
not added to a particular resolution, the value of the corresponding array element must
be set to NULL.

The extension list must also list any additional storages, streams, property sets and prop-
erties added by the extension to store the subimage. This property is required if an
extension adds a subimage to a

FlashPix

 image object. All applications must retain this
property upon a save or copy function by default, or in accordance with the extension
persistence. Table 3.14 is an example of an extension that adds subimages to the

Flash-
Pix

 image object.This example shows that extension 0x49 has added subimages to reso-
lution 0, 1, and 2 of the core

FlashPix

 image object. The first element, at index 0xjj=0,
shows that subimages 1 and 3 have been added to resolution 0x00. No subimages have
been added to resolution 0x01. The third element, at index 0xjj=2, shows that the exten-
sion has added subimages 1, 3, and 4 through 6 to resolution 0x02.

TABLE 3.13 Example values of property set identification

Property Index=0 Index=1 Index=2

000193000 PS x pathname
(0xjj=00)

PS y pathname
(0xjj=01)

PS z pathname
(0xjj=02)

000193011 $000011001-$000011005,
$000012000

000193021 $000033000 $000044001-
$000044004

$000055000,
$000066000

000193022 3,4,5 NULL 2

TABLE 3.14 Example of subimage identification

Property 0xjj=0 0xjj=1 0xjj=2

0x00494000 1,3 NULL 1,3,4-6

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

41

IV

 S E C T I O N

4

4

Image Data Format

The subimage is stored as a separate entity within the

FlashPix

 image object. This chap-
ter specifies the format of the subimage, as described in Section 3.1.1.

The subimage is stored in two

FlashPix

 streams: a header stream and a data stream.

4.1 The Subimage Header Stream

Stream name: Subimage\0400000\040Header
Class ID: 00010000-C154-11CE-8553-00AA00A1F95B

The subimage header stream determines image data location in the data stream and con-
tains information for decoding the data stream into uncompressed pixel values. Values
are stored in little endian byte order.

September 11, 1996 FlashPix Format Specification

42 © 1996 Eastman Kodak Company Version 1.0

4.1.1 Subimage Header Stream Data

The format of the data portion of the subimage header stream is given in Table 4.1.

Length of header stream header field

This field specifies the length of the header stream header (from the beginning of the
length field to the end of the length of tile header entry field) in bytes.

Image width and height field

These fields specify the width and height of the subimage in pixels. These values do not
include any padding at the right or bottom of the image to fill partial tiles. The values of
these fields must be the same as the values of the subimage width and height in the pri-
mary description group of the image contents stream (Section 3.1.5.1, Table 3.1).

Number of tiles field

This field specifies the number of tiles in the subimage.

Tile width field

This field specifies the width of a tile in pixels. The tile width must be 64 pixels.

Tile height field

This field specifies the height of a tile in pixels. The tile height must be 64 pixels.

Number of channels field

This field specifies the number of channels in the subimage. This value is also specified
in the image contents property set (Section 3.1.5, Table 3.4).

Offset to tile header table field

This field specifies the offset in bytes from the beginning of the data portion of the

FlashPix

 stream to the tile header table (Section 4.1.2).

TABLE 4.1 Format and fields of the subimage header stream

Field name Length Byte(s)

Length of header stream header 4 0-3

Image width 4 4-7

Image height 4 8-11

Number of tiles 4 12-15

Tile width 4 16-19

Tile height 4 20-23

Number of channels 4 24-27

Offset to tile header table 4 28-31

Length of tile header entry 4 32-35

Tile header table variable variable

Section 4: Image Data Format

Version 1.0 © 1996 Eastman Kodak Company 43

Length of a tile header entry field

This field specifies the length of a single entry in the tile header table (Section 4.1.2).

Tile header table field

This field specifies the header data for each tile. The format of a tile header table is spec-
ified in Section 4.1.2.

4.1.2 Tile header table

The format of the tile header table is given in Table 4.2.

Tile header 0-

last

These fields specify the location and encoded form of the image data tiles. Tiles are
ordered from top to bottom, left to right, in row major order. The tile containing pixel
(0, 0) is first, followed by the tile containing pixel (

tile width

, 0). This order continues
across the row, through the tile containing pixel (

width

 -

tile width

, 0). Subsequent rows
of tiles follow in the same order. Table 4.3 specifies the format of a tile header.

Tile offset field

This field specifies the offset of the tile data from the beginning of data portion of the
subimage data

FlashPix

 stream in bytes. This value is zero if the compression algorithm
requires no data other than the compression type and compression subtype fields.

Tile size field

This field specifies the size of the tile data for this tile, in bytes. This value is zero if the
compression algorithm requires no data other than the compression type and compres-
sion subtype fields.

TABLE 4.2 Format and fields in the tile header table

Field Name Length Byte(s)

Tile header 0 16 0-15

…

Tile header last 16 variable

TABLE 4.3 Format and fields of a tile header

Field name Length Byte(s)

Tile offset 4 0-3

Tile size 4 4-7

Compression type 4 8-11

Compression subtype 4 12-15

September 11, 1996 FlashPix Format Specification

44 © 1996 Eastman Kodak Company Version 1.0

Compression type field

This field specifies the compression algorithm used to encode the data for this tile. Valid
compression type values are given in Table 4.4.

The invalid tile compression type may be used to temporarily indicate that the tile has
no valid data. Situations where marking a tile as invalid may be useful are during resolu-
tion hierarchy regeneration or during a partial resynchronize operation between resolu-
tions. Images with invalid tiles should not be saved permanently.

Images with any tile having the invalid tile compression type are considered to be
invalid. If reader software encounters the invalid tile compression type when preparing
to access a tile, it has no responsibility to attempt to create usable image data from
higher resolutions. It is permitted to respond as though a read error occurred.

Compression subtype field

This field specifies compression algorithm information for this tile. The format of this
field depends on the value of the compression type field. The different formats are
described below.

If the compression type is set to uncompressed data (0x0) or invalid tile (0xFFFFFFFF),
the compression subtype is unused and must be set to 0x0.

If the compression type is set to single color compression (0x1), the compression sub-
type identifies the actual color value of all pixels in the tile. Individual channel values
are stored in little endian format, in the same order and bit depth as specified by the sub-
image color and subimage numerical format properties (Section 3.1.5.3), aligned at the
0th bit of the field.

TABLE 4.4 Valid compression type values

Value Meaning

0x0 Uncompressed data

0x1 Single color compression (4-byte)

0x2 JPEG (8-bit)

0xFFFFFFFF Invalid tile

Section 4: Image Data Format

Version 1.0 © 1996 Eastman Kodak Company 45

If the compression type is set to JPEG compression (0x2), the compression subtype field

will contain additional information needed by the reader to process the JPEG com-
pressed data. The format of the compression subtype subfields is shown in Table 4.5.

Interleave type subfield

This field specifies the interleaving of the data within the JPEG data stream. If the value
is 0x0, all channels in the tile are stored in a single scan with the 8

×

8 blocks for each
channel interleaved. If the value is 0x1, each channel is stored as a separate scan. All
other values are illegal. In either case, the channels are found in the same order as spec-
ified by the subimage color property of the image contents property set.

Chroma subsampling subfield

This field specifies the amount of subsampling performed on chroma components of the
image (either the native components of some YCrCb image or those generated by rotat-
ing some RGB image through the standard JPEG CCIR 601 RGB to YCrCb conver-
sion). The most significant nibble of the field indicates the horizontal subsampling ratio.
The least significant nibble of the field indicates the vertical subsampling ratio. Legal
values of the subsampling fields are 1 and 2.

Both the values for horizontal and vertical subsampling must be either 1 or 2, and if hor-
izontal subsampling is 1, then vertical subsampling must also be 1. The specific hori-
zontal and vertical subsampling pairs (h.v) allowed are (2,2), (2,1), and (1,1).
Subsampling in the horizontal direction by 2x and the vertical direction by 1x is allowed
for compatibility with digital video standards.

Under no circumstances should an Opacity channel be subsampled.

Internal color conversion subfield

This field specifies whether a color conversion was performed in the JPEG compression
process. Valid values are 0x0 and 0x1. All other values are illegal.

If the value is 0x0, no color conversion was performed and the pixel values output from
the JPEG decoder are in the color space specified by the subimage color value from the
Image Contents property set. If the field value is 0x1, the effect of this field is depen-
dent on the existence of an Opacity channel as described below.

TABLE 4.5 Format and entries of the compression subtype field for JPEG compressed tiles

Field name Length Byte(s)

Interleave type 1 0

Chroma subsampling 1 1

Internal color conversion 1 2

JPEG tables selector 1 3

September 11, 1996 FlashPix Format Specification

46 © 1996 Eastman Kodak Company Version 1.0

For NIF RGB subimage color value:

If the color space specified by the subimage color value (Table 3.7) is NIF RGB
(whether calibrated or not calibrated), i.e. NIF RGB with no opacity channel, then the
following standard RGB to YCrCb conversion (or an equivalent integer implementation)
is performed on the input data in the JPEG encoding process:

Y = 0.29900*R + 0.58700*G + 0.11400*B (4.1)

Cb = (B - Y)/1.772 + 0.5 = -0.16874*R - 0.33126*G + 0.50000*B + 0.5 (4.2)

Cr = (R - Y)/1.402 + 0.5 = 0.50000*R - 0.41869*G - 0.08131*B + 0.5 (4.3)

where R, G, B, Y, Cb and Cr values are in the 0 ... 1 range.

When decoding, the inverse transformation from YCrCb to RGB is done according to
the following equations (or an equivalent integer implementation):

R = Y + 1.40200*Cr - 0.70100 (4.4)

G = Y - 0.34414*Cb - 0.71414*Cr + 0.52914 (4.5)

B = Y + 1.77200*Cb - 0.88600 (4.6)

For NIF RGB with premultiplied opacity subimage color value:

If the value is 0x1 and the color space specified by the subimage color value is NIF RGB
with premultiplied opacity (whether calibrated or not calibrated), then to retain interop-
erability with early

FlashPix

 applications, the RGB input was 'inverted' before the stan-
dard RGB to YCbCr transform was applied. Please note that the opacity channel is not
affected by this operation and must not be inverted or color converted. The sequence of
conversion steps is:

(a) Invert the RGB values, i.e., for RGB encoded with 8 bits calculate new color values
R' = (255-R), G'= (255-G) and B'= (255-B).

(b) Transform R'G'B' to the new space Y'Cb'Cr' using equations (4.1), (4.2), (4.3).

Compression is done in the Y'Cb'Cr' space. On the decoder side, the inverse transforma-
tion should take place, i.e.,

(c) Transform Y'Cb'Cr' to R'G'B' using equations (4.4), (4.5), (4.6).

(d) Transform R'G'B' to RGB, e.g., R = (255-R').

Please note that the current requirement for this legacy 'inversion' results in minor differ-
ences when compared to compression done to RGB without opacity channels, but may
preclude the use of some kinds of hardware acceleration.

Section 4: Image Data Format

Version 1.0 © 1996 Eastman Kodak Company 47

JPEG tables selector subfield

This byte selects a set of quantizer and Huffman tables to use to decompress this tile. If
the index is 0x0, the tables are included at the beginning of the tile data stream and it is
not necessary to load a separate tile stream into the JPEG decompressor to decompress
the tile. A value from 1 to 255 indicates that this tile uses a set of tables stored in one of
the JPEG tables properties in the compression property group (Section 3.1.5.3). Specifi-
cally, if the value is 0x

ii

, a

FlashPix

 reader should load the value of property 0x03ii0001
into the JPEG decompressor.

4.2 The Subimage Data Stream

Stream name: Subimage\0400000\040Data
Class ID: 00010100-C154-11CE-8553-00AA00A1F95B

The subimage data stream contains the data referenced by the tile headers in the header
stream.

4.2.1 Channel Ordering
The channels of multi-channel tiles are ordered as specified in the color space property
in the image contents property set (Section 3.1.5.2).

4.2.2 Tile Data Format

4.2.2.1 Uncompressed
Data in uncompressed tiles is stored in row major order in a pixel interleaved fashion.
Pixel channels are ordered as specified by the color space property in the image contents
property set. Pixel values are stored in little endian format in the type specified by the
numerical format property.

4.2.2.2 Single Color Compressed
No tile data is needed for single-color compressed tiles. Both the tile data offset and tile
size in the tile header table must be set to zero.

4.2.2.3 JPEG Compressed
The format of compressed tile data conforms to the “Abbreviated Format for Com-
pressed Image Data” described in Annex B, Section B.4 of the ISO JPEG Specifications
[9]. At a minimum, this format contains the following JPEG markers and marker seg-
ments, as well as the entropy-coded data for the tile (Table 4.6).

Quantizer tables and Huffman table marker segments are not required, but may be
included to force a decoder to use tables other than those defined in Section 3.1.5.3.

September 11, 1996 FlashPix Format Specification

48 © 1996 Eastman Kodak Company Version 1.0

Note that some JPEG CODECS may identify the encoded color space through JPEG
specific markers. The

FlashPix

 format provides other mechanisms for identifying color
in the Image Contents property set which are the subimage color property and the color
space subfield value. No other mechanism or values, besides those found in the Image
Contents property set, can be utilized to make any decisions about what color space is
intended for a given

FlashPix

 file.

TABLE 4.6 Format and entries of a JPEG abbreviated format stream for tile data

Field name Length Byte(s) Value

Start of image marker (SOI) 2 0-1 0xFFD8

Start of frame marker (SOF) 2 2-3 0xFFC0

Frame header variable 4-variable variable

Start of scan marker (SOS) 0 2 variable 0xFFDA

Scan header 0 variable variable variable

Entropy coded data 0 variable variable variable

…

Start of scan marker (SOS) last 2 variable 0xFFDA

Scan header last variable variable variable

Entropy coded data last variable variable variable

End of image marker (EOI) 2 variable 0xFFD9

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

49

V

 S E C T I O N

5

5

Color Space
Specifications

5.1 Introduction

The method of encoding for color imagery is critical to how consistently the colors in an
image will be reproduced across different systems and different media types. The Flash-
Pix format defines two colorspaces, PhotoYCC and NIF RGB, along with respective
reference viewing environments for the flexible and unambiguous encoding. The Flash-
Pix format also provides a well-defined monochrome encoding space for the storage of
greyscale imagery and optional support for InterColor Consortium(ICC) color manage-
ment used in conjunction with the FlashPix color encoding.

PhotoYCC and NIF RGB color values represent color appearance with respect to a
defined reference viewing environment. For color stimuli that are meant to be viewed in
the reference viewing environment, PhotoYCC and NIF RGB values are computed by a
series of simple mathematical operations from standard CIE colorimetric values. For
color stimuli that are meant to be viewed in an actual viewing environment that is differ-
ent from the reference environment, it is necessary to include appropriate colorimetric
transformations to determine visually corresponding CIE colorimetric values for the ref-
erence environment (the corresponding CIE colorimetric values define a stimulus that, if
viewed in the reference viewing environment, would produce the same color appearance
as the actual stimulus viewed in the actual environment). These transformations account
for differences in the amount of viewing flare in the actual and reference environments,
as well as for alterations in observer perception that would be induced by the differences
in the environments. The corresponding CIE colorimetric values resulting from these
transformations are then encoded in terms of PhotoYCC or encoded in terms of NIF
RGB.

September 11, 1996 FlashPix Format Specification

50 © 1996 Eastman Kodak Company Version 1.0

5.2 PhotoYCC and NIF RGB Reference
Viewing Environments

Reference viewing environments are defined for both PhotoYCC and NIF RGB in
Table 5.1. The reference viewing environments are provided to give a single aim for
each color space to allow for the unambiguous definition of color for use in interchange.
The two definitions serve different purposes, yet with proper colorimetric and color
appearance transformations, it is possible to encode values in one space which were
originally encoded in the other.

5.2.1 PhotoYCC Reference Viewing Environment
The PhotoYCC reference viewing environment corresponds to conditions typical of out-
door scenes.

■ Viewing flare is specified as “none.” Any flare light in an original-scene environment
is part of the scene itself.

■ The image surround is defined as “average.” Scene objects typically are surrounded
by other similarly illuminated objects.

■ The illuminance level is representative of typical daylight levels. Note that the illu-
minance is at least an order of magnitude higher than average indoor levels.

■ The chromaticities of the adaptive white are those of CIE D65. An adaptive white is
defined here as a color stimulus that an observer would judge as perfectly achro-
matic, with a luminance corresponding to that of a perfect white diffuser. While the
chromaticities of the adaptive white will most often be those of the scene illuminant,
they may, in certain cases, also be quite different. For example, the observer may be
only partially adapted to the illuminant. The adaptive white therefore defines only
the chromatic adaptive state of the observer. The adaptive white does not define the
chromaticities or the spectral power distribution of the scene illuminant.

5.2.2 NIF RGB Reference Viewing Environment
The NIF RGB reference viewing environment corresponds to conditions typical of
indoor viewing of computer CRT monitors.

TABLE 5.1 Comparison of PhotoYCC and NIF RGB viewing environments

Condition PhotoYCC NIF RGB

Viewing flare None 1.0%

Image surround Average 20%

Illuminance level/Luminance level > 5,000 lux 80 cd/m2

Adaptive white x = 0.3127, y = 0.3290 x = 0.3127, y = 0.3290

Section 5: Color Space Specifications

Version 1.0 © 1996 Eastman Kodak Company 51

■

Viewing flare

 is specified to be 1.0% of the maximum white-luminance level.

■

The

image surround

 is defined as “20%” of the maximum white luminance. This is
close to a CIELAB L* value of 50, while maintaining computational simplicity. The
areas surrounding the image being viewed are similar in luminance and chrominance
to the image itself. This surround condition would correspond, for example, to an
image displayed on a computer monitor where the image on the CRT screen is sur-
rounded by a gray background equivalent to twenty percent of the maximum white.

■

The

luminance level

 is representative of typical CRT display levels. Note that the
illuminance is at least an order of magnitude lower than average outdoor levels.

■

The chromaticities of the

adaptive white

 are those of CIE D65. An adaptive white is
defined here as a color stimulus that an observer would judge as perfectly achro-
matic, with a luminance corresponding to that of a perfect white diffuser. While the
chromaticities of the adaptive white will most often be those of the viewing illumi-
nant, they may also, in certain cases, be quite different. For example, the observer
may be only partially adapted to the illuminant. The adaptive white therefore defines
only the chromatic adaptive state of the observer. It does

not

 define the chromatici-
ties or the spectral power distribution of the viewing illuminant.

5.3 Colorimetric Definitions and Digital
Encodings

PhotoYCC and NIF RGB in combination with their reference viewing environments can
be defined from standard CIE colorimetric values through simple mathematical transfor-
mations. Resulting colorimetric values can then be encoded in terms of digital code val-
ues for storage in a FlashPix Image.

While NIF RGB and PhotoYCC encode colors using similar standards and equations,
the definitions presented in this specification do not constitute a means of conversion
between the two color spaces. The conversions are an implementation topic.

5.3.1 PhotoYCC Colorimetric Definition and Digital
Encoding

PhotoYCC is defined from standard CIE colorimetric values and the PhotoYCC refer-
ence viewing environment which corresponds to daylight-illuminated outdoor scenes.
This definition describes the encoding of a daylight-illuminated scene, captured using a
Photo CD Reference Image-Capture Device, when the observer adaptive white corre-
sponds to D65 chromaticities. Examples of the encoding of colors not represented by
this definition are given in the FlashPix Implementation Guide.

September 11, 1996 FlashPix Format Specification

52 © 1996 Eastman Kodak Company Version 1.0

The red, green, and blue spectral responsivities of the Reference Image-Capture Device
in Figure 5.1 correspond to the color-matching functions for the reference primaries
defined in CCIR Recommendation 709[1]. The CIE chromaticities for the red, green,
and blue CCIR-709 reference primaries, and for CIE Standard Illuminant D65, are given
in Table 5.2.

FIGURE 5.1 Spectral responsivities of the Reference Image-Capture Device

TABLE 5.2 CIE chromaticities for CCIR-709 reference primaries and CIE standard illuminant

Red Green Blue D65

x 0.6400 0.3000 0.1500 0.3127

y 0.3300 0.6000 0.0600 0.3290

z 0.0300 0.1000 0.7900 0.3583

u' 0.4507 0.1250 0.1754 0.1978

v' 0.5229 0.5625 0.1579 0.4683

-1

0

1

2

3

400 450 500 550 600 650 700

R
el

at
iv

e
re

sp
on

si
vi

ty

Wavelength (nm)

rλ

gλ

bλ

Section 5: Color Space Specifications

Version 1.0 © 1996 Eastman Kodak Company 53

Reference Image-Capture Device RGB

709

 tristimulus values for the illuminated objects
of the scene can be calculated using the spectral responsivities of the Reference Image-
Capture Device:

(5.1)

where

P

λ

 is the spectral power of the scene illuminant at each wavelength

λ

;

R

λ

 is the
spectral reflectance or transmittance of a scene object; and , , and are the spec-
tral responsivities of the Reference Image-Capture Device. Normalizing factors

k

r

,

k

g

,
and

k

b

 are determined such that

R

,

G

, and

B

 tristimulus values of 1.00 will result for a
perfect white diffuser. It is assumed that the reference image capture device produces
flareless measurements; it is therefore unnecessary to adjust the resulting RGB values
for instrument flare.

Since the spectral responsivities of the Reference Image-Capture Device are simply lin-
ear combinations of the 1931 CIE color-matching functions, , and [3] its

RGB

tristimulus values can also be computed using the following relationship:

(5.2)

where

(5.3)

In the PhotoYCC encoding process, negative RGB

709

 tristimulus values, and RGB

709

tristimulus values greater than 1.00 are retained. The luminance dynamic range and the
color gamut defined by the RGB tristimulus values of the Reference Image-Capture
Device are therefore unlimited.

Reference Image-Capture Device RGB

709

 tristimulus values are next transformed to
nonlinear R'G'B'

709

 values as follows:

R709 kr PλRλrλ
λ
∑

=

G709 kg PλRλgλ
λ

∑=

B709 kb PλRλbλ
λ

∑=

rλ gλ bλ

xλ yλ zλ

R709

G709

B709

3.2410 1.5374– 0.4986–

0.9692– 1.8760 0.0416

0.0556 0.2040– 1.0570

Xscene

Yscene

Zscene

=

X

scene kr PλRλxλ
λ

∑

=

Y

scene kg PλRλyλ
λ

∑=

Z

scene kb PλRλzλ
λ

∑=

September 11, 1996 FlashPix Format Specification

54 © 1996 Eastman Kodak Company Version 1.0

For

R

709

,

G

709

,

B

709

≥

 0.018:

(5.4a)

For

R

709

,

G

709

,

B

709

≤

 -0.018:

(5.4b)

For –0.018 <

R

709

,

G

709

,

B

709

 < 0.018:

(5.4c)

For PhotoYCC, the nonlinear R'G'B'

709

 values are rotated to luma and chromas as in
Equation 5.5:

(5.5)

For PhotoYCC, luma/chroma signals are converted to digital values. For 24-bit (8-
bits/channel) encoding, PhotoYCC values are formed according to Equation 5.6:

(5.6)

5.3.2 NIFRGB Colorimetric Definition and Digital Encoding

NIFRGB is defined from standard CIE colorimetric values and the NIFRGB reference
viewing environment which corresponds to indoor viewing of computer CRT displays.
This definition describes the encoding of the appearance of the colors displayed on a
reference monitor based on the reference primaries and transfer function implied in

R'709 1.099 R709
0.45 0.099–

×=

G'709 1.099 G709
0.45 0.099–

×=

B'709 1.099 B709
0.45 0.099–

×=

R'709 1.099 R709
0.45 0.099+

×–=

G'709 1.099 G709
0.45 0.099+

×–=

B'709 1.099 B709
0.45 0.099+

×–=

R'709 4.50 R709×=

G'709 4.50 G709

×=

B'709 4.50 B709×=

Luma

Chroma1

Chroma2

0.299 0.587 0.114

0.299– 0.587– 0.886

0.701 0.587– 0.114–

R'709

G'709

B'709

=

Y 255 1.402⁄()

Luma×

=

C1 111.40 Chroma1 156+

×=

C2 135.64 Chroma2 137+

×=

Section 5: Color Space Specifications

Version 1.0 © 1996 Eastman Kodak Company 55

CCIR Recommendation 709[1] when the observer adaptive white corresponds to D65
chromaticities. This transfer function is consistent with a large variety of legacy images
including video and Microsoft Windows based imagery.

The CIE chromaticities for the red, green, and blue CCIR-709 reference primaries, and
for CIE Standard Illuminant D65[2], are given in Table 5.2.

For NIFRGB, the goal is to communicate the appearance of the presentation of the
appearance of the colors as displayed on a reference monitor in terms of 8-bit digital
code values. Given the CIE XYZ

D65

tristimulus values for the colors represented on the
monitor, a transformation can be made to reference monitor RGB

NIF

tristimulus values.

(5.7)

In the NIFRGB encoding process, RGB

NIF

 values between 0.0 and 1.0 are encoded,
while values outside that range are clipped and not retained. Therefore the luminance
dynamic range and color gamut defined by the RGB tristimulus values of the reference
monitor are limited.

Reference monitor RGB

NIF

 tristimulus values are next transformed to nonlinear
RGB’

NIF

 values as follows:

For

R

NIF

,

G

NIF

,

B

NIF

≥

 0.00304:

(5.8a)

For 0.0 <

R

709

,

G

709

,

B

709

 < 0.00304:

(5.8b)

For NIF RGB, the nonlinear R'G'B'

NIF

 values are converted to digital code values. For
24-bit (8-bits/channel) encoding, NIF RGB values are formed according to the follow-
ing Equation 5.9:

(5.9)

RNIF

GNIF

BNIF

3.2410 1.5374– 0.4986–

0.9692– 1.8760 0.0416

0.0556 0.2040– 1.0570

XD65

YD65

ZD65

=

R'NIF 1.055 RNIF
0.42 0.055–×=

G'NIF 1.055 GNIF
0.42 0.055–×=

B'NIF 1.055 BNIF
0.42 0.055–×=

R'NIF 12.92 RNIF×=

G'NIF 12.92 GNIF×=

B'NIF 12.92 BNIF×=

R8bit 255.0 R ′NIF×=

G8bit 255.0 G ′NIF×=

B8bit 255.0 B ′NIF×=

September 11, 1996 FlashPix Format Specification

56 © 1996 Eastman Kodak Company Version 1.0

5.4 Monochrome Encoding Definition

The FlashPix format supports the encoding and storage of 8-bit monochrome imagery.
NIF monochrome is defined in terms of luminance, LumaNIF, and is the defined in terms
of luminance, LumaNIF, and is designed to encode the appearance of a monochrome
image on a reference monitor based on the primaries and tone transfer function defined
in CCIR Recommendation 709.

Section 2.1 of CCIR Recommendation 601-4 defines a relationship between an analog
luminance signal, E’y and red, green, and blue analog color signals (E’R, E’G, E’B) and
that relationship is given here as Equation 5.10.

(5.10)

The definition of NIF monochrome uses this relationship, however, the definitions and
values of E’y, E’R, E’G, E’B are not used from CCIR Recommendation 601-4. Instead,
NIF monochrome is defined in terms of a luminance, LumaNIF, and builds from the non-
linear, R’NIF, G’NIF, and B’NIF signals given in Equation 5.8a and Equation 5.8b of the
definitions of NIFRGB. The relationship is given in Equation 5.11.

(5.11)

The 8-bit digital encoding of Luma for NIF Monochrome is given in Equation 5.12.

(5.12)

E'y 0.299E'R 0.587E'G 0.114E'B+ +=

LumaNIF 0.299R'NIF 0.587G'NIF 0.114B'NIF+ +=

YNIF 255.0 LumaNIF×=

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

57

VI

 S E C T I O N

6

6

Image Info Property Set

In addition to image data, a

FlashPix

 image object also contains information to enhance
the use of the image (information, for example, about the image itself, as well as how it
was captured and how it might be used). This non-image data is stored in the image info
property set in the

FlashPix

 image object storage.

Stream name:

\005

Image

\040

Info
Class ID: 56616500-C154-11CE-8553-00AA00A1F95B
Format ID: 56616500-C154-11CE-8553-00AA00A1F95B

6.1 Informational Groups

Though the properties may appear in any order, the property set is divided into several
conceptual groups, each describing a different aspect of the image. The property groups
are:

■ File source

■ Intellectual property

■ Content description

■ Camera information

■ Per picture camera settings

■ Digital camera characterization

■ Film description

■ Original document scan description

■ Scan device

September 11, 1996 FlashPix Format Specification

58 © 1996 Eastman Kodak Company Version 1.0

The information in these groups provides the framework to document facts about image
capture, intellectual property concerns, and descriptive information about the image
itself. With some images, users need to know who is in the picture, where and when it
was taken, and so on, to understand the significance of the image.

For instance, a photograph of an automobile accident is useless to an insurance com-
pany unless it is known to which accident the picture applies. Similarly, an old family
picture is far more interesting if it is known which ancestor is in the picture, and when
and where it was taken. One problem with traditional methods of dealing with images is
that it is easy for this data to become separated from the images, greatly diminishing the
value of the images.

A fundamental concept of the

FlashPix

 format is that an image should be as self-
describing as possible. As an image moves across a network, or is written to various
types of media, the self-describing data should move with the image.

Any property may be omitted. If omitted, that property should be treated as if the value
is unknown. All property ID codes not explicitly listed are reserved for registered exten-
sions.

6.2 File Source Group

This group of properties specify how the image was created. Table 6.1 lists the proper-
ties in this group:

File source property (optional)
This property specifies the device source of the digital file, such as a film scanner, reflec-
tion print scanner, or digital camera. Possible values are listed in Table 6.2. Values
greater than 0x5 must be handled by core reader software as though they were Unidenti-
fied (0x0).

TABLE 6.1 Properties in the file source group

Property name ID code Type

File source 0x21000000 VT_UI4

Scene type 0x21000001 VT_UI4

Creation path vector 0x21000002 VT_UI4 | VT_VECTOR

Software Name/Manufacturer/Release 0x21000003 VT_LPWSTR

User defined ID 0x21000004 VT_LPWSTR

Sharpness approximation 0x21000005 VT_R4

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 59

Scene type property (optional)

This property specifies the type of scene that was captured. It differentiates “original
scenes” (direct capture of real-world scenes) from “second generation scenes” (images
captured from pre-existing hardcopy images). It provides further differentiation for
scenes that are digitally composed. Values greater than 0x3must be handled by core
reader software as though they were Unidentified (0x0). Possible values are listed in
Table 6.3.

Creation path vector property (optional)

This property encodes the conversion path that an image takes as defined by both analog
and digital capture processes. Each element of the vector is a property ID that corre-
sponds to a property in the non-image data

FlashPix

 properties. The first element of the
vector is the

last

capture of the scene, corresponding to the property for File Source.
Some examples are as follows.

A reflection print from an original scene would be listed as “File source, Type of reflec-
tion original, Film type, Camera model name, Scene type.”

A reflection print from a second generation scene would be listed as “File source, Type
of reflection original, Film type, Camera model name, Original medium, Scene type.”

Film from the original scene would be listed as “File source, Film type, Camera model
name, Scene type.”

Film from a second generation scene would be listed as “File source, Film type, Camera
model name, Original medium, Scene type.”

TABLE 6.2 Valid file source property values

Value Meaning

0x0 Unidentified

0x1 Film scanner

0x2 Reflection print scanner

0x3 Digital camera

0x4 Still from video

0x5 Computer graphics

TABLE 6.3 Valid scene type property values

Value Meaning

0x0 Unidentified

0x1 Original scene

0x2 Second generation scene

0x3 Digital scene generation

September 11, 1996 FlashPix Format Specification

60 © 1996 Eastman Kodak Company Version 1.0

An image from a digital camera capture of the original scene would be listed as “File
source, Camera model name, Scene type.”

An image from a digital camera capture of a second generation scene would be listed as
“File source, Camera model name, Original medium, Scene type.”

A still from a video camera would be listed as “File source, Camera model name, Scene
type.”

A computer generated image would be listed as “File source, Software name/manufac-
turer/release.”

Software name/release property (optional)

This property encodes the name of the software, its manufacturer’s name, and the ver-
sion of the software used to create the

FlashPix

 image.

User defined ID property (optional)

This property encodes the values of an identification system assigned to an image by the
user. This property is useful when users have their

own

 filing or accounting scheme with
an identification system already in place, and enables users to cross-reference their digi-
tal files to a pre-existing analog one.

Sharpness approximation property (optional)

To perform image filtering in a resolution independent manner (Section 7.3.2), the algo-
rithm must have information on the degree of blurring introduced by the system compo-
nents which generated the digital image (digital camera, scanner, etc.). This is expressed
as the effective filter width,

q

. Approximate the total capture MTF by the form ,
where

q

 is the width and

s

 is the spatial frequency measured in cycles per pixel at the
captured resolution delivered by the input device. If the MTF is far from Gaussian form,
fit the low-frequency portion best. This property specifies the value

q

.

6.3 Intellectual Property Group

The intellectual property group contains information about the ownership and copyright
status of the image. Rights for an original artifact may be stated, along with the rights
for the digital file. Table 6.4 lists the properties in this group.

Copyright message property (optional)
This property encodes the copyright notice of the Legal Broker for the digital file. The
complete copyright statement should be listed in this field, including any dates and
statements of claims. If desired, this property can also list details concerning the Legal
Broker.

e qs
2–

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 61

Legal broker for the original image property (optional)

This property encodes the name of the person or organization that holds the legal right
to grant permissions or restrict use of the original image. The original image is either the
analog source scanned to create the digital file or the original digital capture of a scene.

Legal broker for the digital image property (optional)

This property encodes the name of the person or organization that holds the legal right
to grant permissions or restrict use of the digital file.

Authorship property (optional)

This property encodes the name of the camera owner, photographer or image creator.

Intellectual property notes property (optional)

This property encodes additional information beyond the scope of other properties in
this group.

6.4 Content Description Group

These properties describe the content of the image. Typically it is text that the user
enters, either when the pictures are taken or later in the process. Table 6.5 lists the prop-
erties in this group.

Test target in the image property (optional)
This property encodes information about the type of scale or test target that is captured
within the image frame. The values are in Table 6.6.

Group caption property (optional)
This property is text that describes the subject or purpose of a group of images (e.g., a
roll of film). The image in the digital file is one member of the “group.”

Caption text property (optional)
This property is text that describes the subject or purpose of the image. It may be addi-
tionally used to provide any other type of information related to the image.

TABLE 6.4 Properties in the intellectual property group

Property name ID code Type

Copyright message 0x22000000 VT_LPWSTR

Legal broker for the original image 0x22000001 VT_LPWSTR

Legal broker for the digital image 0x22000002 VT_LPWSTR

Authorship 0x22000003 VT_LPWSTR

Intellectual property notes 0x22000004 VT_LPWSTR

September 11, 1996 FlashPix Format Specification

62 © 1996 Eastman Kodak Company Version 1.0

People in the image property (optional)

This property encodes the personal or “role” names of people in the image. Personal
names are any variation of FirstName, Initial, LastName, Titles of Address denotations
(for example, Dr. Jane Smith). Roles may be occupational or situational denotations (for
example, doctor). Multiple entries are allowed.

Things in the image property (optional)

This property encodes the names of tangible objects depicted in the image, (Washington
Monument, for example). Multiple entries are allowed.

Date of the original image property (optional)

This property encodes the date and time the image was originally captured. In the case
of a scanned photograph, this would be the date and time of the original photograph, not
the date and time it was scanned. The date and time the digital file was created is stored
in the property Scan Date. In the case of other printed materials, this would be the date
the item was originally published.

TABLE 6.5 Properties in the content description group

Property name ID code Type

Test target in the image 0x23000000 VT_UI4

Group caption 0x23000002 VT_LPWSTR

Caption text 0x23000003 VT_LPWSTR

People in the image 0x23000004 VT_LPWSTR | VT_VECTOR

Things in the image 0x23000007 VT_LPWSTR | VT_VECTOR

Date of the original image 0x2300000A VT_FILETIME

Events in the image 0x2300000B VT_LPWSTR | VT_VECTOR

Places in the image 0x2300000C VT_LPWSTR | VT_VECTOR

Content description notes 0x2300000F VT_LPWSTR

TABLE 6.6 Valid test target in the image property values

Value Meaning

0x0 Unidentified

0x1 Color chart

0x2 Grey card

0x3 Greyscale

0x4 Resolution chart

0x5 Inch scale

0x6 Centimeter scale

0x7 Millimeter scale

0x8 Micrometer scale

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 63

Events in the image property (optional)

This property encodes the events depicted in the image. Events may be personal or soci-
etal (e.g., birthday, anniversary, New Year’s Eve). Editorial applications may use this
property to describe historical, political, or natural events (e.g., a coronation, the
Crimean War, Hurricane Andrew).

Places in the image property (optional)

This property encodes the place depicted in the image (Chicago, Illinois). Multiple
entries are allowed (e.g., the image may contain a map or an aerial view of a region).

Content description notes property (optional)

This property encodes additional user/application defined information beyond the scope
of other properties in this group.

6.5 Camera Information Group

This group of properties describes the camera used to take a photograph. Table 6.7 lists
the properties in this group.

Camera manufacturer name property (optional)
This property encodes the name of the manufacturer or vendor of the camera or origi-
nal-scene capture device.

Camera model name property (optional)
This property encodes the model name or number of the camera, and can include the
serial number of the camera.

Camera serial number property (optional)
This property encodes the manufacturer’s serial number of the camera as a text string.

6.6 Per Picture Camera Settings Group

This group of properties describes the camera settings used when the image was cap-
tured.

TABLE 6.7 Properties in the camera information group

Property name ID code Type

Camera manufacturer name 0x24000000 VT_LPWSTR

Camera model name 0x24000001 VT_LPWSTR

Camera serial number 0x24000002 VT_LPWSTR

September 11, 1996 FlashPix Format Specification

64 © 1996 Eastman Kodak Company Version 1.0

New generations of digital and film cameras make it possible to capture more informa-
tion about the conditions under which a picture was taken. This may include informa-
tion about the lens aperture and exposure time, whether a flash was used, which lens
was used, etc. This technical information is useful to professional and serious amateur
photographers. In addition, some of these properties are useful to image database appli-
cations for populating values useful to image analysis and retrieval. Table 6.8 lists the
properties in this group.

Capture date property (optional)

This property encodes the date and time the image was captured.

Exposure time property (optional)

This property encodes the exposure time used when the image was captured. The units
are seconds.

F-number property (optional)

This property encodes the lens f-number (ratio of lens aperture to focal length) used
when the image was captured.

TABLE 6.8 Properties in the per picture camera settings group

Property name ID code Type

Capture date 0x25000000 VT_FILETIME

Exposure time 0x25000001 VT_R4

F-number 0x25000002 VT_R4

Exposure program 0x25000003 VT_UI4

Brightness value 0x25000004 VT_R4 | VT_VECTOR

Exposure bias value 0x25000005 VT_R4

Subject distance 0x25000006 VT_R4 | VT_VECTOR

Metering mode 0x25000007 VT_UI4

Scene illuminant 0x25000008 VT_UI4

Focal length 0x25000009 VT_R4

Maximum aperture value 0x2500000A VT_R4

Flash 0x2500000B VT_UI4

Flash energy 0x2500000C VT_R4

Flash return 0x2500000D VT_UI4

Back light 0x2500000E VT_UI4

Subject location 0x2500000F VT_R4 | VT_VECTOR

Exposure index 0x25000010 VT_R4

Special effects optical filter 0x25000011 VT_UI4 | VT_VECTOR

Per picture notes 0x25000012 VT_LPWSTR

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 65

Exposure program property (optional)

This property encodes the class of exposure program that the camera used at the time
the image was captured. Typical exposure programs include normal-program (general-
purpose auto-exposure), aperture-priority (user sets aperture, camera selects shutter
speed to properly expose), shutter-priority (user sets shutter speed, camera selects aper-
ture to properly expose), etc. Values greater than 0x8 must be handled by core reader
software as though they were Unidentified (0x0). Possible values are listed in Table 6.9.

Brightness value property (optional)

This property encodes the Brightness Value (BV) measured when the image was cap-
tured, using APEX units. The expected maximum value is approximately 13.00 corre-
sponding to a picture taken of a snow scene on a sunny day, and the expected minimum
value is approximately -3.00 corresponding to a night scene.

If the value supplied by the capture device represents a range of values rather than a sin-
gle value, it is encoded as a VT_VECTOR of two VT_R4 real numbers. The first value
represents the lower value of the range, and the second represents the higher value. If
the capture device supplies an exact value, it is encoded as a VT_VECTOR with a single
VT_R4 value in the vector.

Exposure bias value property (optional)

This property encodes the actual exposure bias (the amount of over- or under-exposure
relative to a normal exposure, as determined by the camera’s exposure system) used
when capturing the image, using APEX units. The range is between -99.99 and 99.99.

The value is the number of exposure values (stops). For example, -1.00 indicates 1 eV (1
stop) underexposure, or half the normal exposure.

Subject distance property (optional)

This property encodes the distance (in meters) between the front nodal plane of the lens
and the position at which the camera was focusing when the image was captured. Note
that the camera may have focused on a subject within the scene which may not have
been the primary subject.

TABLE 6.9 Valid exposure program property values

Value Meaning

0x0 Unidentified

0x1 Manual

0x2 Program normal

0x3 Aperture priority

0x4 Shutter priority

0x5 Program creative (biased toward greater depth of field)

0x6 Program action (biased toward faster shutter speed)

0x7 Portrait mode (intended for close-up photos with the background out of focus)

0x8 Landscape mode (intended for landscapes with the background in good focus)

September 11, 1996 FlashPix Format Specification

66 © 1996 Eastman Kodak Company Version 1.0

If the value supplied by the capture device represents a range of values rather than a sin-
gle value, it is encoded as a VT_VECTOR of two VT_R4 real numbers. The first value
represents the lower value of the range, and the second represents the higher value. If
the capture device supplies an exact value, it is encoded as a VT_VECTOR with a single
VT_R4 value in the vector. Focus at infinity is encoded as -1.

Metering mode property (optional)

This property encodes the metering mode (the camera’s method of spatially weighting
the scene luminance values to determine the sensor exposure) used when capturing the
image. Values greater than 0x4 must be handled by core reader software as though they
were Unidentified (0x0). Possible values are listed in Table 6.10.

Scene illuminant property (optional)

This property encodes the light source (scene illuminant) that was present when the
image was captured. Values between 0xB and 0x7FFF must be handled by core reader
software as though they were Unidentified (0x0).

Note: Bit 15 of this 16-bit word is used as the key to whether or not a color temperature
value is being stored. If bit 15 is 0, the value described within bits 0-14 will provide one
of the prescribed color values depicted within the table below. If bit 15 is 1, bits 0-14
contain the actual color temperature value stored in units of Kelvin. In this case, color
temperatures are limited to values in the range of 0 to 32767 Kelvin. Valid values are
listed in Table 6.11. Values between 0xB and 0x7FFF must be handled by core reader
software as though they were Unidentified (0x0).

Focal length property (optional)

This property encodes the lens focal length (in millimeters) used to capture the image.

Max aperture value property (optional)

This property encodes the maximum possible aperture opening (minimum lens f-num-
ber) of the camera or image capturing device, using APEX units. The allowed range is
1.00 to 99.99.

Flash property (optional)

This property encodes whether flash was used. Possible values are listed in Table 6.12.
Values greater than 0x2 must be handled by core reader software as though they were
Unidentified (0x0).

TABLE 6.10 Valid metering mode property values

Value Meaning

0x0 Unidentified

0x1 Average

0x2 Center weighted average

0x3 Spot

0x4 Multi-spot

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 67

Flash energy property (optional)

This property encodes the amount of flash energy that was used. The measurement units
are Beam Candle Power Seconds (BCPS).

Flash return property (optional)

This property encodes whether the camera judged that the flash was not effective at the
time of exposure. Values greater than 0x2 must be handled by core reader software as
though they were Unidentified (0x0). Possible values are listed in Table 6.13.

TABLE 6.11 Valid scene illuminant property values

Value Meaning

0x0 Unidentified

0x1 Daylight

0x2 Fluorescent light

0x3 Tungsten lamp

0x4 Flash

0x5 Standard illuminant A

0x6 Standard illuminant B

0x7 Standard illuminant C

0x8 D55 illuminant

0x9 D65 illuminant

0xA D75 illuminant

> 0x7FFF The encoded actual temperature

TABLE 6.12 Valid flash property values

Value Meaning

0x0 Unidentified

0x1 No flash used

0x2 Flash used

TABLE 6.13 Valid flash return property values

Value Meaning

0x0 Unidentified

0x1 Subject outside flash range

0x2 Subject inside flash range

September 11, 1996 FlashPix Format Specification

68 © 1996 Eastman Kodak Company Version 1.0

Back light property (optional)

This property encodes the camera's evaluation of the lighting conditions at the time of
exposure. The definitions of the conditions are:

■

Front lit: the subject is illuminated from the front side.

■

Back lit 1: The brightness value difference between the subject center and the sur-
rounding area is greater than one full step (APEX). The frame is exposed for the sub-
ject center.

■

Back lit 2: The brightness value difference between the subject center and the sur-
rounding area is greater than one full step (APEX). The frame is exposed for the sur-
rounding area.

Values greater than 0x3 must be handled by core reader software as though they were
Unidentified (0x0). Possible values are listed in Table 6.14.

Subject location property (optional)

This property identifies the approximate location of the subject in the scene. It provides
an X column number and Y row number that corresponds to the center of the subject
location. It is stored as a VT_VECTOR of two VT_R4 values, where the first value of
the vector is the X location and the second value of the vector is the Y location, in reso-
lution-independent coordinates where the height of the image is 1.0 and the width is the
aspect ratio.

Exposure index property (optional)

This property encodes the exposure index setting the camera selected.

Special effects optical filter property (optional)

This property encodes the type of filter used. The property contains an array of filter val-
ues, where the order of the elements in the array indicates the stacking order of the fil-
ters. The first value in the array is the filter closest to the original scene. Possible values
are listed in Table 6.15. Values greater than 0x7 must be handled by core reader software
as though they were Unidentified (0x0).

Per picture camera settings notes property (optional)

This property encodes additional information not provided by the other properties. Both
professional and amateur photographers may want to keep track of a variety of miscella-
neous technical information, such as the use of extension tubes, bellows, close-up
lenses, and other specialized accessories.

TABLE 6.14 Valid back light property values

Value Meaning

0x0 Unidentified

0x1 Front lit

0x2 Back lit 1

0x3 Back lit 2

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 69

6.7 Digital Camera Characterization
Group

This group of properties stores technical data specific to digital cameras. Table 6.16 lists
the properties in the group.

Sensing method property (optional)
This property encodes the type of image sensor used in the camera or image capturing
device. Possible values are listed in Table 6.17. Values greater than 0x8 must be handled
by core reader software as though they were Unidentified (0x0).

TABLE 6.15 Valid special effects optical filter property values

Value Meaning

0x0 Unidentified

0x1 None

0x2 Colored

0x3 Diffusion

0x4 Multi-image

0x5 Polarizing

0x6 Split-field

0x7 Star

TABLE 6.16 Properties in the digital camera characterization group

Property name ID code Type

Sensing method 0x26000000 VT_UI4

Focal plane X resolution 0x26000001 VT_R4

Focal plane Y resolution 0x26000002 VT_R4

Focal plane resolution unit 0x26000003 VT_UI4

Spatial frequency response 0x26000004 VT_VARIANT | VT_VECTOR

CFA pattern 0x26000005 VT_VARIANT | VT_VECTOR

Spectral sensitivity 0x26000006 VT_LPWSTR

ISO speed ratings 0x26000007 VT_UI2 | VT_VECTOR

OECF 0x26000008 VT_VARIANT | VT_VECTOR

September 11, 1996 FlashPix Format Specification

70 © 1996 Eastman Kodak Company Version 1.0

Focal plane X resolution property (optional)

This property encodes the number of pixels per

FocalPlaneResolutionUnit

in the
ImageWidth direction for the main image. This property specifies the actual

FocalPlan-
eXResolution

 at the focal plane of the camera. If this property is stored, the Focal length
property in the per picture camera settings group must also be stored.

Focal plane Y resolution property (optional)

This property encodes the number of pixels per

FocalPlaneResolutionUnit

in the
ImageLength direction for the main image. This property specifies the actual

FocalPlaneYResolution

 at the focal plane of the camera. If this property is stored, the
Focal length property in the per picture camera settings group must also be stored.

Focal plane resolution unit property (optional)

This property encodes the unit of measurement for the

FocalPlaneXResolution

 and

FocalPlaneYResolution

. This property is mandatory if

FocalPlaneXResolution

 or

FocalPlaneYResolution

 exist. If this property is stored, the Focal length property in the
per picture camera settings group must also be stored. Values other than those explicitly
listed in Table 6.18 are not supported.

TABLE 6.17 Valid sensing method property values

Value Meaning

0x0 Undefined

0x1 Monochrome area sensor

0x2 One-chip color area sensor

0x3 Two-chip color area sensor

0x4 Three-chip color area sensor

0x5 Color sequential area sensor

0x6 Monochrome linear sensor

0x7 Trilinear sensor

0x8 Color sequential linear sensor

TABLE 6.18 Valid focal plane resolution unit property values

Value Meaning

0x0 Inches

0x1 Meters

0x2 Centimeters

0x3 Millimeters

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 71

Spatial frequency response property (optional)

This property encodes the spatial frequency response (SFR) of the camera or image cap-
turing device. The camera measured SFR data, described in ISO/TC42/WG18 Work
Item [188] Working Draft 6.0, “Photography - Electronic still picture cameras - Resolu-
tion measurements,” can be stored as a table of spatial frequencies, horizontal SFR val-
ues, vertical SFR values, and diagonal SFR values. The following is a simple example
of measured SFR data table (Table 6.19):

The spatial frequency response is stored as a VT_VARIANT | VT_VECTOR in the for-
mat shown in Table 6.20.

The number of entries in the column headings vector is the same as the number of col-
umns, and the number of entries in the data field is the product of the number of rows
and columns. Data entries are stored in row major order.

CFA pattern property (optional)

This property encodes the actual color filter array (CFA) geometric pattern of the image
sensor used to capture a single-sensor color image. It is not relevant for all sensing
methods.

The first value,

CFARepeatRows

, encodes the number of rows in the vertical direction
needed to uniquely define the repeat pattern of the CFA. The second value,

CFARepeat-
Cols

, encodes the number of columns in the horizontal direction that are needed to
uniquely define the repeat pattern of the CFA. These two values are followed by a list of
integer values of length (

CFARepeatRows

 x

CFARepeatCols

) that define the color filter
pattern, using the integers given in Table 6.21.

a. line widths per picture height

TABLE 6.19 Sample frequency response

Spatial frequency (lw/pha) Horizontal SFR Vertical SFR

0.1 1.00 1.00

0.2 0.90 0.95

0.3 0.80 0.85

TABLE 6.20 Structure and entries of spatial frequency response VT_VARIANT | VT_VECTOR
block

Field Type

Number of columns VT_UI4

Number of rows VT_UI4

Column headings VT_LPWSTR | VT_VECTOR

Data VT_R4 | VT_VECTOR

September 11, 1996 FlashPix Format Specification

72 © 1996 Eastman Kodak Company Version 1.0

This property is stored in the form of a VT_VARIANT | VT_VECTOR, as shown in
Table 6.20.

where

CFARepeatRows

 and

CFARepeatCols

 are the minimum number of rows and col-
umns, respectively, needed to uniquely define the CFA pattern, and where

CFAArray

 is a
list of unsigned 1 byte integers, in row major order that define the pattern. For example,
the property:

CFARepeatRow

= 2

CFARepeatCol

= 2

CFAArray

= 1 0 2 1

corresponds to the Bayer CFA pattern shown below:

Line 0 = G R G R G R …
Line 1 = B G B G B G …
Line 2 = G R G R G R …
Line 1 = B G B G B G …

Spectral sensitivity property (optional)

This property field can be used to describe the spectral sensitivity of each channel of the
camera used to capture the image. It is useful for certain scientific applications.

The property field is an ASCII string compatible with the “New Standard Practice for
the Electronic Interchange of Color and Appearance Data” being developed within an
ASTM Technical Committee. The ASCII string consists of a mandatory keyword list

TABLE 6.21 Valid CFA pattern property values

Value Meaning

0x0 Red

0x1 Green

0x2 Blue

0x3 Cyan

0x4 Magenta

0x5 Yellow

0x6 White

TABLE 6.22 Structure and entries of CFA pattern VT_VARIANT | VT_VECTOR block

Field Type

CFARepeatRows VT_UI2

CFARepeatCols VT_UI2

CFAArray VT_UI1 | VT_VECTOR

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 73

followed by the associated data values. Mandatory keywords include
NUMBER_OF_FIELDS, which equals the number of channels (spectral bands) + 1,
and NUMBER_OF_SETS, which specifies the number of spectral frequency (wave-
length) entries.

ISO speed ratings property (optional)

The property field is a VT_VECTOR of two VT_UI2 values. The first value is the ISO
saturation speed rating classification and the second value is the ISO noise-based speed
rating classification as defined in [21] tables 1 and 2.

OECF property (optional)

This property encodes the “Opto-Electronic Conversion Function” (OECF). The OECF
is the relationship between the optical input and the image file code value outputs of an
electronic camera. The property allows OECF values defined in [22] to be stored as a
table of values. Table 6.23 shows a simple example of measured OECF data.

The OECF is stored as a VT_VARIANT | VT_VECTOR in the following format
(Table 6.20).

The number of entries in the column headings vector is the same as the number of col-
umns, and the number of entries in the data field is the product of the number of rows
and columns. Data entries are stored in row major order.

TABLE 6.23 An example of measured OECF data

Log exposure Red output level Green output level Blue output level

-3.0 10.2 12.5 8.9

-2.0 48.1 47.5 48.3

-1.0 150.2 152.0 149.8

TABLE 6.24 Structure and entries of OECF VT_VARIANT | VT_VECTOR block

Field Type

Number of columns VT_UI2

Number of rows VT_UI2

Column headings VT_LPWSTR |
VT_VECTOR

Data VT_R4 | VT_VECTOR

September 11, 1996 FlashPix Format Specification

74 © 1996 Eastman Kodak Company Version 1.0

6.8 Film Description Group

This group of properties is used for images originating on photographic film. Table 6.25
lists the properties in the group.

Film brand property (optional)
This property encodes the name of the film manufacturer, the brand name, product code
and generation code (for example, Kodak Gold100, Kodak Aerial 100).

Film category property (optional)
This property encodes the category of film used. Legal values are listed in Table 6.26.

Values greater than 0x7 must be handled by core reader software as though they were
Unidentified (0x0).

Note: Chromagenic refers to B/W negative film that is developed with a C41 process
(i.e., color negative chemistry).

Film size property (optional)
This property encodes the size of the X and Y dimension of the film used, and the unit of
measurement. These properties are encoded as VT_VARIANT | VT_VECTOR, and

TABLE 6.25 Properties in the film description group

Property name ID code Type

Film brand 0x27000000 VT_LPWSTR

Film category 0x27000001 VT_UI4

Film size 0x27000002 VT_VARIANT | VT_VECTOR

Film roll number 0x27000003 VT_UI4

Film frame number 0x27000004 VT_UI4

TABLE 6.26 Valid film category property values

Value Meaning

0x0 Unidentified

0x1 Negative B/W

0x2 Negative color

0x3 Reversal B/W

0x4 Reversal color

0x5 Chromagenic

0x6 Internegative B/W

0x7 Internegative color

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 75

internally consists of two VT_R4 dimensions and one VT_UI2 unit value indicator as
shown in Table 6.27.

Film size X and Y are the width and height of the original film used, respectively, repre-
sented in the unit specified by Film size unit. Film size unit has the same values as the
focal plane resolution unit (Table 6.18).

Film roll number property (optional)

This property encodes the roll number of the film. For some film, this number is
encoded on the film cartridge as a bar code.

Film frame number property (optional)

This property encodes the frame number from the roll of film.

6.9 Original Document Scan
Description Group

This group of properties is used for images originating as documents or prints.
Table 6.28 lists the properties in the group.

Original scanned image size property (optional)
This property encodes the lengths of the X and Y dimension of the scanned area, and the
unit of measurement. These properties are encoded as VT_VARIANT | VT_VECTOR,
and internally consists of two VT_R4 dimensions and one VT_UI2 unit value indicator
as shown in Table 6.29.

TABLE 6.27 Structure and entries of original scanned image size VT_VARIANT | VT_VECTOR
block

Field Type

Film size X VT_R4

Film size Y VT_R4

Film size unit VT_UI2

TABLE 6.28 Properties in the original document scan description group

Property name ID code Type

Original scanned image size 0x29000000 VT_VARIANT | VT_VECTOR

Original document size 0x29000001 VT_VARIANT | VT_VECTOR

Original medium 0x29000002 VT_UI4

Type of original 0x29000003 VT_UI4

September 11, 1996 FlashPix Format Specification

76 © 1996 Eastman Kodak Company Version 1.0

Original size X and Y are the width and height of the original scanned image, respec-
tively, represented in the unit specified by Original size unit. Original size unit has the
same values as the focal plane resolution unit (Table 6.18).

Original document size property (optional)

This property encodes the lengths of the X and Y dimension of the original photograph
or document, and the unit of measurement. These values are encoded as VT_VARIANT
| VT_VECTOR, and internally consist of two VT_R4 dimensions and one VT_UI2 unit
value indicator. It has the same format as the original scanned image size property
(Table 6.29).

Original medium property (optional)

This property encodes the medium of the original photograph, document, or artifact.
Possible values are shown in Table 6.30.

TABLE 6.29 Structure and entries of original scanned image size VT_VARIANT | VT_VECTOR
block

Field Type

Original size X VT_R4

Original size Y VT_R4

Original size unit VT_UI2

TABLE 6.30 Valid original medium property values

Value Meaning

0x0 Unidentified

0x1 Continuous tone image

0x2 Halftone image

0x3 Line art

Section 6: Image Info Property Set

Version 1.0 © 1996 Eastman Kodak Company 77

Type of reflection original property (optional)

This property encodes the type of the original document or photographic print. Possible
values are shown in Table 6.31.

6.10 Scan Device Property Group

This group of properties is used for images scanned from reflection prints, documents,
photographic slides, or negatives. It contains the properties listed in Table 6.32.

Scanner manufacturer name property (optional)
This property encodes the manufacturer or vendor of the scanner.

Scanner model name property (optional)
This property encodes model name or number of the scanner. It can also include the
serial number of the scanner.

TABLE 6.31 Valid type of reflection original property values

Value Meaning

0x0 Unidentified

0x1 B/W print

0x2 Color print

0x3 B/W document

0x4 Color document

TABLE 6.32 Properties in the scan device property group

Property name ID code Type

Scanner manufacturer name 0x28000000 VT_LPWSTR

Scanner model name 0x28000001 VT_LPWSTR

Scanner serial number 0x28000002 VT_LPWSTR

Scan software 0x28000003 VT_LPWSTR

Scan software revision date 0x28000004 VT_DATE

Service bureau/organization name 0x28000005 VT_LPWSTR

Scan operator ID 0x28000006 VT_LPWSTR

Scan date 0x28000008 VT_FILETIME

Last modified date 0x28000009 VT_FILETIME

Scanner pixel size 0x2800000A VT_R4

September 11, 1996 FlashPix Format Specification

78 © 1996 Eastman Kodak Company Version 1.0

Scanner serial number property (optional)

This property encodes the manufacturer’s serial number of the scanner as a text string.

Scan software property (optional)

This property encodes the name and version of the scanner software or firmware.

Scan software revision date property (optional)

This property encodes the revision date of the scanner software or firmware. The date
should be in GMT.

Service bureau/organization name property (optional)

This property encodes the name of the service bureau, photofinisher, or organization
performing the scan.

Scan operator ID property (optional)

This property encodes a name or ID for the person operating the scanner.

Scan date property (optional)

This property encodes the date and time the image was originally captured and digi-
tized. This property should never be changed after it is written in the image capture
device.

Last modified date property (optional)

This property encodes the last modification date of the scanned data.

Scanner pixel size property (optional)

This property specifies the pixel size, in micrometers, of the scanner.

September 11, 1996

Version 1.0 © 1996 Eastman Kodak Company

79

VII

 S E C T I O N

7

7

FlashPix Image View
Object

7.1 FlashPix Image View Object

The FlashPix format allows the specification of a viewing transform through a FlashPix
image view object which references a FlashPix image. The viewing transform enables
applications to represent a set of simple edits as a list of “commands” which are applied
to the image in real time without altering the original image.

Storage name: Any valid storage name (recommend the file name in host file system)
Class ID: 56616700-C154-11CE-8553-00AA00A1F95B

This class ID is to be used for all FlashPix image view objects whether or not they con-
tain any extensions. Figure 7.1 shows the storages and streams in a FlashPix image
view. Those streams and storages in italics are optional or optional under certain cir-
cumstances.

September 11, 1996 FlashPix Format Specification

80 © 1996 Eastman Kodak Company Version 1.0

FIGURE 7.1 FlashPix image view storages and streams

A FlashPix image view object contains the following storages and streams which are
defined in more detail in subsequent sections. All property sets must abide by the
restrictions specified in Section 1.4.1.

Source FlashPix image (required)
This storage is an instance of a FlashPix image object as defined in Section 3: The
FlashPix Image Object. Transforms may be applied to the source (original) image to
produce the result image (below).

Result FlashPix image (optional)
This storage is an instance of a FlashPix image object as defined in Section 3: The
FlashPix Image Object. Transforms may be applied to the source image (above) to pro-
duce the result image.

Summary info property set (required)
This property set is an instance of the standard Summary Information property set, as
described in Section 1.4.2. The viewing transform must be applied in creating the
thumbnail image which is optional if the FlashPix file is authored with a non-hierarchi-
cal source image object in an embedded capture environment. It is otherwise required.

CompObj stream (required)
This stream contains the class ID of the FlashPix image view object.

Global info property set (required)
This property set contains generic information about the image view.

Global info.
property set

Source desc.CompObj
stream

Extension list
property set

FlashPix

 image
 view object root

Source

FlashPix
image object

Result FlashPix
image object

Summary info.
property set

Transform

Operation

property set

property set

property set

Result desc.
property set

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 81

Source description property set (required)

This property set describes location and type of the source

FlashPix

 image.

Result description property set (optional)

This property set describes the location and type of the result

FlashPix

 images. It is
required if the result

FlashPix

 image object exists or if there is a viewing transform
specified.

Transform property set (optional)

This property set describes the viewing transform specified for this image view.

Operation property set (optional)

This property set describes the actual view transform operation.

Extension list property set (optional)

This property set identifies extensions present in the

FlashPix

 image view object includ-
ing the data structures modified or added by each extension.

7.1.1 CompObj Stream (required)

The CompObj stream is a standard Structured Storage stream and is not a

FlashPix

stream. The header of the stream is not extended for storage of a stream class ID. This
stream is required and is defined in Section A.3. The unicode versions of the CompObj
stream fields are required.

The CompObj stream Clipboard Format field is used to store the class ID of the

Flash-
Pix

 image view object. The

FlashPix

 image view object class ID is converted to a string
for storage in the Clipboard Format field and must be bracketed by the bracket charac-
ters ‘{‘and ‘}’ just as returned by the OLE function StringFromGUID2.

The CompObj stream User Type field is generally used to store the User Type informa-
tion from the OLE registry for the class ID. In OLE-enabled environments, the string
contents should be retrieved from the OLE registry. In non-OLE-enabled environments,
a string which is a user-understandable brief description of the object contents should be
used.

The CompObj stream ProgID field is generally used to store the ProgID information
from the OLE registry for the class ID. In OLE-enabled environments, the string con-
tents should be retrieved from the OLE registry. In non-OLE-enabled environments, a
string which identifies the program associated with the class ID should be used. This
string cannot contain any spaces.

7.1.2 Source and Result

FlashPix

 Image Objects

Names: Data

\040

Object

\040

Store

\040

%06d
Class ID: 56616000-C154-11CE-8553-00AA00A1F95B

September 11, 1996 FlashPix Format Specification

82 © 1996 Eastman Kodak Company Version 1.0

The source and result

FlashPix

 image objects are instances of the

FlashPix

 image object
as defined in

Section 3: The FlashPix Image Object

. The source

FlashPix

 image object
is required and the result

FlashPix

 image object is optional. The single numeric parame-
ter in the name represents the index of the source and result image objects. Upon cre-
ation, the index used must be unique in the

FlashPix

 image view object. The maximum
image index property of the global info property set must always be the maximum

FlashPix

 image object index in the

FlashPix

 image view.

The source image object represents the image to be processed through the viewing
transform. For example, it may be an image that needs to be cropped and rotated or its
color balance adjusted. The result image object is the image generated by applying the
viewing transform to the source image object. The result image object cannot exist
unless the

FlashPix

 image view contains a viewing transform.

7.1.3 Source and Result Description Property Sets

Name:

\005

Data

\040

Object

\040

%06d
Class ID (for both): 56616080-C154-11CE-8553-00AA00A1F95B
Format ID: 56616080-C154-11CE-8553-00AA00A1F95B

These property sets have only one section, which has a format ID that is the same as the
property set class ID.

These property sets are associated with the source and result image objects in this image
view object. This association is indicated by matching index values in the

FlashPix

image object storage and description property set names.

Source description properties describe the source image object. Result description prop-
erties describe the result image object. Both property sets have the same format, as
described below.

If the

FlashPix

 image view does not contain a viewing transform, the result description
property set is unused and may not exist.

The

FlashPix

 image object to be used as the input to the image view must be character-
ized in the source description property set. After applying the viewing transform to the
source image object, an actual

FlashPix

 image may be stored in a result

FlashPix

 image
object. Even if the result image object is not stored, the result description property set
must exist if there is a viewing transform to specify how the result is created.

The valid properties for these property sets are shown in Table 7.1.

Data object ID property (required)

This property specifies a unique ID used to identify the associated

FlashPix

 image
object. These values may be used, for example, in a networked system, to determine if a
local copy of the images exist or if they must be pulled across the network.

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 83

Locked property list property (optional)

This property specifies a list of properties that are locked. Each value in the list is taken
as a property ID of a property found in this instance of the property set. If an editing
application finds a property which is also found in the locked property list, it may not
modify the value of the property. If the value of a locked property is modified, the
results of rendering the

FlashPix

 image view from another application will be unde-
fined. If this property exists, it may not be deleted. This property is used to provide guid-
ance to an editing application in situations where the

FlashPix

 image view is a template
to be “filled out” by the user.

Data object title (optional)

This property specifies a title for the associated image object. If this property exists, an
editing application must keep the value updated.

Last modifier property (optional)

This property specifies the name of the last person (or system if the last modification
was made by an automatic editing system) to modify the contents of the associated
image object. If this property exists, an editing application must keep the value updated.

Revision number property (optional)

This property specifies the number of times the associated image object has been modi-
fied since its creation. If this property exists, an editing application must keep the value
updated.

Creation time and date property (optional)

This property specifies the time and date of creation of the associated image object. If
this property exists, an editing application must keep the value updated.

TABLE 7.1 Valid properties for the source and result description property sets

Property name ID code Type

Data object ID 0x00010000 VT_CLSID

Locked property list 0x00010002 VT_UI4 | VT_VECTOR

Data object title 0x00010003 VT_LPWSTR

Last modifier 0x00010004 VT_LPWSTR

Revision number 0x00010005 VT_UI4

Creation time and date 0x00010006 VT_FILETIME

Modification time and date 0x00010007 VT_FILETIME

Creating application 0x00010008 VT_LPWSTR

Status 0x00010100 VT_UI4

Creator 0x00010101 VT_UI4

Users 0x00010102 VT_UI4 | VT_VECTOR

Cached image height 0x10000000 VT_UI4

Cached image width 0x10000001 VT_UI4

September 11, 1996 FlashPix Format Specification

84 © 1996 Eastman Kodak Company Version 1.0

Modification time and date property (optional)

This property specifies the time and date of the last modification to the associated image
object. If this property exists, an editing application must keep the value updated.

Creating application property (optional)

This property specifies the name of the application that created the associated image
object. If this property exists, an editing application may not delete it.

Status property (required)

This property (Table 7.2) indicates the status of the value of the associated image. Possi-

ble values of existence/location field are shown in Table 7.3.

The existence field indicates whether the associated image object exists or is stored for
direct application access. If the existence field is 0x0 (not cached), the permissions field
is ignored. The source image object must be cached (the value of the existence field
must be 0x1). The result image object may or may not be cached, at the discretion of the
writer. Possible values of the permissions field are shown in Table 7.4.

If the associated image object is marked purgeable, a clean-up utility may delete the
image object to recover storage space if it can be recreated from a source transform.
Therefore, the source image object must be set to not purgeable (0x1). The result image
object should be set to purgeable (0x0).

TABLE 7.2 Structure and entries of the status property

Field name Length Byte(s)

Existence data 2 0-1

Permissions set for data 2 2-3

TABLE 7.3 Valid status property values of the existence/location field

Value Meaning

0x0 The data object associated with this property set does not exist.

0x1 The data object associated with this property set does exist.

TABLE 7.4 Valid status property permissions field values

Value Meaning

0x0 The data object is purgeable

0x1 The data object is not purgeable

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 85

Creator property (required)

This property specifies the number of the transform node that created the image object.
For the source image object, the creator should be set to zero (NULL). For the result
image object, the creator should be set to the index of the viewing transform.

Users property (required)

This property specifies a list of transforms that take this image object as an input. Each
entry in the list specifies the index of a transform. The array is unordered. If the associ-
ated image object is not used by any transforms, the number of elements in the array
should be zero. Therefore, the users property must be zero for the result image object.

In the source description property set, the users property must be an array with one and
only one element, the index used to name the transform property set. For the result
description, a

FlashPix

 image view writer should write an array with zero elements.

Cached image height and width properties (required if associated image exists)

These properties specify the height and width, respectively, of the image cached in the
associated

FlashPix

 image object. These properties are the height and width of the larg-
est resolution in the associated

FlashPix

 image object. These properties are required if
the status property existence flag is set to cached (0x1). If the status property existence
flag is set to not cached (0x0), these properties may not exist. Note that the height prop-
erty precedes the width property contrary to other height and width property pairs in the
format. Note also that the cached image height and width properties for the result

Flash-
Pix

 image object take precedence over the rectangle of interest and result aspect ratio
properties should they exist in the transform property set.

7.1.4 Transform Property Set (optional)

Name:

\005

Transform

\040

%06d
Class ID: 56616A00-C154-11CE-8553-00AA00A1F95B
Format ID: 56616A00-C154-11CE-8553-00AA00A1F95B

This property set describes the viewing transform specified for the image view. The sin-
gle numeric parameter in the name represents the index of the transform. In a

FlashPix

image view, this array has only one element, the viewing transform. Upon creation, the
index used must be unique in the

FlashPix

 image view object. The maximum transform
index property of the global info property set must always be the maximum transform
index in use in the

FlashPix

 image view object. The index is referenced by both the cre-
ator property of the result description property set and the users property of the source
description property set, which must both have the same value. The transform property
set is unused and must not exist if the

FlashPix

 image view does not contain a viewing
transform. Table 7.5 lists the possible properties of the transform list property set.

Transform node ID property (required)

This property specifies a unique ID used to identify the viewing transform. Note that
this identifies the transform itself, not the value of the parameters. For example, this ID
specifies that this transform node is performing the viewing transform on a particular

September 11, 1996 FlashPix Format Specification

86 © 1996 Eastman Kodak Company Version 1.0

source image. This ID does not change if the actual viewing parameters change (the
transform is reexecuted).

Operation class ID property (required)

This property specifies the class ID of the operation to be performed by this transform
node. This property (along with the class ID of this stream) specifies the code that actu-
ally executes the viewing transform. This property must have the value 56616A00-
C154-11CE-8553-00AA00A1F95B.

Locked property list property (optional)

This property specifies a list of properties that are locked for the viewing transform.
Each value in the list is a property ID of a property found in the transform property set.
Editing applications may not modify the value of properties found in the locked prop-
erty list. If the value of a locked property is modified, the results of rendering the

Flash-
Pix

 image view from another application will be undefined. If this property exists, it
may not be deleted. This property is used to provide guidance to an editing application
in situations where the

FlashPix

 image view is a template to be “filled out” by the user.

Transform title property (optional)

This property specifies a title for the viewing transform. If this property exists, an edit-
ing application must keep the value updated.

TABLE 7.5 Valid properties for the transform property set

Property name ID code Type

Transform node ID 0x00010000 VT_CLSID

Operation Class ID 0x00010001 VT_CLSID

Locked property list 0x00010002 VT_UI4 | VT_VECTOR

Transform title 0x00010003 VT_LPWSTR

Last modifier 0x00010004 VT_LPWSTR

Revision number 0x00010005 VT_UI4

Creation time and date 0x00010006 VT_FILETIME

Modification time and date 0x00010007 VT_FILETIME

Creating application 0x00010008 VT_LPWSTR

Input data object list 0x00010100 VT_UI4 | VT_VECTOR

Output data object list 0x00010101 VT_UI4 | VT_VECTOR

Operation number 0x00010102 VT_UI4

Result aspect ratio 0x10000000 VT_R4

Rectangle of interest 0x10000001 VT_R4 | VT_VECTOR

Filtering 0x10000002 VT_R4

Spatial orientation 0x10000003 VT_R4 | VT_VECTOR

Colortwist matrix 0x10000004 VT_R4 | VT_VECTOR

Contrast adjustment 0x10000005 VT_R4

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 87

Last modifier property (optional)

This property specifies the name of the last person (or system if the last modification
was made by an automatic editing system) to modify the contents of the viewing trans-
form. If this property exists, an editing application must keep the value updated.

Revision number property (optional)

This property specifies the number of times the viewing transform has been modified
since its creation. If this property exists, an editing application must keep the value
updated.

Creation time and date property (optional)

This property specifies the time and date of creation of the viewing transform. If this
property exists, an editing application may not delete it.

Modification time and date property (optional)

This property specifies the time and date of the last modification to the viewing trans-
form. If this property exists, an editing application must keep the value updated.

Creating application property (optional)

This property specifies the index of the application that created the viewing transform. If
this property exists, an editing application must keep the value updated.

Input data object list property (required)

This property specifies the index used in naming the source

FlashPix

 image that is input
to the viewing transform. There may be only one element in the array.

Output data object list property (required)

This property specifies the index of the result image (in the sparse array of images).
There may be only one element in the array.

Operation number property (required)

This property specifies the index used in naming the viewing operation.

Result aspect ratio property (optional)

The result aspect ratio property allows applications to specify the desired aspect ratio
for image output. The value is an IEEE 4-byte floating point number.

The value (R) defines a rectangle with the top-left corner at (0,0) and the bottom-right
corner at (R,1). The result aspect ratio must be applied to the output of the spatial orien-
tation matrix as a cropping function. Pixels outside the rectangle are cropped and 100%
transparent. If the property is not present, applications must operate as though the result
aspect ratio is the same as the raw image aspect ratio. Note that the cached image height
and width properties in the result

FlashPix

 image object result description property set
take precedence over the rectangle of interest and result aspect ratio properties.

Rectangle of interest property (optional)

The rectangle of interest property lets applications select part of the image. Only a rect-
angular region with sides parallel to the edges of the image can be specified. Each ele-
ment of the rectangle of interest property array is an IEEE 4-byte floating point number.
The format of the rectangle of interest property is given in Table 7.6. It is discussed in

September 11, 1996 FlashPix Format Specification

88 © 1996 Eastman Kodak Company Version 1.0

more detail in Section 7.2.1. Applications must operate as though this property is
defined with the array values (0,0,R,1) if the property is not present. This indicates that
the entire image is selected. Note that the cached image height and width properties in

the result

FlashPix

 image object result description property set take precedence over the
rectangle of interest and result aspect ratio properties.

Filtering property (optional)

The filtering property specifies the degree of filtering (sharpening / blurring) applied to
the raw image data. The value is an IEEE 4-byte floating point number. The interpreta-
tion of the value is discussed in Section 7.2.2. Applications must operate as though this
property has a zero value if it is not present to indicate that the raw image is not filtered.

Spatial orientation property (optional)

The spatial orientation property allows applications to rotate, flip, stretch, and shear an
image. The value is an array of 16 IEEE 4-byte floating point numbers, with the first
number starting at vector element 0. The position of the sixteen elements is as follows:

(7.1)

The interpretation of the value is discussed in Section 7.2.3. Applications must operate
as though this property is defined with the array value (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1) if
the property is not present. This indicates that there is no spatial transformation applied
to the raw image.

Colortwist matrix property (optional)

The colortwist matrix property allows applications to make minor changes to the tone
and color of a raw image. It is not intended to support correcting faults in the imaging
chain. The value is an array of 16 IEEE 4-byte floating point numbers, with the first
number starting at vector element 0. The position of the sixteen elements is as follows:

(7.2)

The interpretation of the value is discussed in Section 7.2.4. Applications must operate
as though this property is defined with the array value (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1) if

TABLE 7.6 Format and fields of the rectangle of interest property

Field Length Vector Element

left edge (x) 4 0

top edge (y) 4 1

width (w) 4 2

height (h) 4 3

aij ARRAY k[]≡

k i 1–() 4 j 1–+×=

aij ARRAY k[]≡

k i 1–() 4 j 1–+×=

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 89

the property is not present. This indicates that there is no tone or color correction
applied to the raw image.

Contrast adjustment property (optional)

The contrast adjustment property allows applications to modify the contrast of a raw
image. The value is an IEEE 4-byte floating point number. The interpretation of the
value is discussed in Section 7.2.5. Applications must operate as though this property
has a value of 1.0 if the property is not present. This indicates that there is no contrast
adjustment applied to the raw image.

7.1.5 Operation Property Set (optional)

Name:

\005

Operation

\040

%06d
Class ID: 56616E00-C154-11CE-8553-00AA00A1F95B
Format ID: 56616E00-C154-11CE-8553-00AA00A1F95B

The operation property set specifies the software to execute the viewing transform. The
single numeric parameter in the name represents the index of the operations in a sparse
array. Upon creation, the index used must be greater than the maximum operation index
property of the Global Info property set. In a

FlashPix

 image view, the array has only
one element, the viewing operation. The index is referenced by the operation number
property in the transform property set.

If this

FlashPix

 image view does not contain a viewing transform, the operation prop-
erty set is unused and may not exist. Table 7.7 lists the possible properties for the opera-
tion property set.

Operation ID property (required)

This property specifies the class ID of the viewing operation. This value is used by
either the

FlashPix

 reader, an OLE server or an OpenDoc part to identify the actual soft-
ware to implement the viewing transform. For a

FlashPix

 image view, the value of this
property must be 56616A00-C154-11CE-8553-00AA00A1F95B. This value specifies
the actual code that executes the viewing transform.

7.1.6 Global Info Property Set (required)

Stream name:

\005

Global

\040

Info
Class ID: 56616F00-C154-11CE-8553-00AA00A1F95B
Format ID: 56616F00-C154-11CE-8553-00AA00A1F95B

TABLE 7.7 Valid properties for the operation property set

Property name ID code Type

Operation ID 0x00010000 VT_CLSID

September 11, 1996 FlashPix Format Specification

90 © 1996 Eastman Kodak Company Version 1.0

This property set provides global information about the image view. Table 7.8 lists the
possible properties for the global info property set.

Locked property list property (optional)

This property specifies a list of properties that are locked for this property set. Each
value in the list is a property ID of a property found in this property set. Editing applica-
tions may not modify the value of properties found in the locked property list. If the
value of a locked property is modified, the results of rendering the

FlashPix

 image view
from another application will be undefined. If this property exists, it may not be deleted.
This property is used to provide guidance to an editing application in situations where
the

FlashPix

 image view is a template to be “filled out” by the user.

Transformed image title property (optional)

This property specifies a title for the viewing transform. If this property exists, an edit-
ing application must keep the value updated.

Last modifier property (optional)

This property specifies the name of the last person (or system if the last modification
was made by an automatic editing system) to modify the contents of this

FlashPix

image view. If this property exists, an editing application must keep the value updated.

Visible outputs property (required)

This property specifies the output of the image view. The value of this property indicates
the image that is to be considered the output of this file. There may be only one value in
this array. If the

FlashPix

 image view contains a viewing transform, this value must be
the index used to name the result image. If a viewing transform is not specified, this
value must be the index used to name the source image.

Maximum image, transform node, and operation index properties (required)

These properties specify the highest index in use for data objects, transforms, and oper-
ations. When an application creates a new entity, it is recommended that it use the value
of the appropriate of these index properties + 1 as the index value for that entity. Then
the appropriate index property must be updated if necessary so that it is the maximum of
the indices in use for the type of entity. The values of these properties are 0 prior to cre-
ating any image, transform, and operation entities.

TABLE 7.8 Valid properties in the global info property set

Property name ID code Type

Locked property list 0x00010002 VT_UI4 | VT_VECTOR

Transformed image title 0x00010003 VT_LPWSTR

Last modifier 0x00010004 VT_LPWSTR

Visible outputs 0x00010100 VT_UI4 | VT_VECTOR

Maximum image index 0x00010101 VT_UI4

Maximum transform index 0x00010102 VT_UI4

Maximum operation index 0x00010103 VT_UI4

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 91

7.1.7 Extension List Property Set (optional)

Stream name:

\005

Image

\040

Contents
Class ID: 56616010-C154-11CE-8553-00AA00A1F95B
Format ID: 56616010-C154-11CE-8553-00AA00A1F95B

This property set identifies extensions present in the

FlashPix

 image view object by
class ID, name, and description as well as the data elements changed or added by each
extension. The property set is optional, however, if the

FlashPix

 image view object con-
tains any extensions, the extension list property set must be present and all extensions,
registered and private, in the

FlashPix

 image view object must be described. The way in
which the data associated with an extension is structured can take one or more of the
following forms:

■

New storage(s) may be added

■

New stream(s) may be added

■

New

FlashPix

 stream(s) may be added

■

New subimage(s) may be added to a

FlashPix

 image object

■

New property set(s) may be added

■

New property(s) may be added to an existing property set section

■

Element(s) may be added to core

FlashPix

 property set vector properties that are
defined as variable length

■

Value of a core

FlashPix

 stream field may be changed

■

Value of a core property set property may be changed

There are five restrictions to structuring the data elements of an extension. First, new
fields may not be added to existing

FlashPix

 streams. Second, due to the inability to
independently ensure property ID code uniqueness, only registered extensions may add
properties to an existing property set section. Third, private extensions may not change
the value of a core

FlashPix

 stream field or a core property set property. Fourth, exten-
sions can only add vector elements that are not already used by core or other extensions
present in the file. Upon removal of an extension, the vector element values associated
with the extension must be replaced with NULL and the vector must not be reordered.
Fifth, only registered extensions can add elements to core property set vector properties.

Although there are a few practical examples where reasonable core reader actions could
be defined for when an extension has changed the value of a core

FlashPix

 stream field
or a core property set property, these core reader actions must be considered in defining
the core

FlashPix

 specification. It is impractical to expect all core reader software to be
updated to incorporate default actions identified in the course of developing new exten-
sions. The definition of extensions must not impact the core definition unless some com-
pelling feature set is identified which the

FlashPix

 format Advisory Council agrees to
include in a revised definition of the core

FlashPix

 format. Therefore, efforts to define
public extensions will avoid impacting core

FlashPix

 stream field and core property set
property values.

If the

FlashPix

 image view object contains an extended

FlashPix

 image object, the
extended

FlashPix

 image object must be listed in the extension list of the

FlashPix

September 11, 1996 FlashPix Format Specification

92 © 1996 Eastman Kodak Company Version 1.0

image view object. The details of how the

FlashPix

 image object is extended are left to
the extension list property set of the

FlashPix

 image object itself. The extension list
entry for the extended

FlashPix

 image object must use the

FlashPix

 image object class
ID as the extension ID and the

FlashPix

 image object storage name as the extension
description.

If an extension is present in the

FlashPix

 image view object which affects the output
image appearance, an intermediate core

FlashPix

 data object must be created as an
intermediate source image object for core reader use. The creator transform of this
source image object may not be a core viewing transform so it is clear to a core reader
that this image object is truly its source and it will not attempt to resolve the creating
transform. The intermediate source image object must be hierarchical, but is not
required to be at the full resolution potential of images from which it is created. The
extended authoring application may choose the resolution to make available. As core
reader software cannot access data of a higher resolution than provided in the intermedi-
ate source image object, it is strongly recommended that data corresponding to at least
200dpi is provided. Further, the intermediate source image object does not have to be an
exact representation of the output that is created from a reader supporting the extension.
That may not be possible. Although the image content of the intermediate source image
is also at the discretion of the authoring application, it is recommended that the closest
feasible representation is provided.

The valid properties of the extension list property set are listed in Table 7.9. The

extensions present in the

FlashPix

 image view object are numbered for the convenience
of grouping the descriptive information about each extension. Property ID codes

TABLE 7.9 Valid properties for the extension property list property set

Property name ID code Type

Used extension numbers 0x10000000 VT_UI2 | VT_VECTOR

Extension name 0xiiii0001 VT_LPWSTR

Extension class ID 0xiiii0002 VT_CLSID

Extension persistence 0xiiii0003 VT_UI2

Extension creation date 0xiiii0004 VT_FILETIME

Extension modification date 0xiiii0005 VT_FILETIME

Creating application 0xiiii0006 VT_LPWSTR

Extension description 0xiiii0007 VT_LPWSTR

Storage / stream pathname 0xiiii1000 VT_LPWSTR | VT_VECTOR

FlashPix stream pathname 0xiiii2000 VT_LPWSTR | VT_VECTOR

FlashPix stream field offset 0xiiii2001 VT_UI4 | VT_VECTOR

Property set pathname 0xiiii3000 VT_LPWSTR | VT_VECTOR

Property set ID codes 0xiiii3jj1 VT_LPWSTR | VT_VECTOR

Property vector elements 0xiiii3jj2 VT_LPWSTR | VT_VECTOR

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 93

0xiiiixxxx describe the extension numbered 0x

iiii

.

Used extension numbers property (required)

This property lists all extension numbers

0xiiii

 used in the extension list property set for
the

FlashPix

 image view object. The property value is an unordered array of

0xiiii

val-
ues.

All applications must update this property each time an extension is added to or
removed from a

FlashPix

 image view object.

Extension name property (required)

This property identifies the name of the extension. If the extension is registered, the
name used must be that which is published in the official

FlashPix

 Extension Specifica-
tion. For private extensions, the name is the whatever short, descriptive label the author-
ing application chooses.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

Extension class ID property (required)

This property identifies a unique class ID for the extension. If the extension is regis-
tered, the class ID must be that which is published in the official

FlashPix

 Extension
Specification. For private extensions, the class ID is assigned by the authoring applica-
tion.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

 Extension persistence property (required)

This property identifies the persistence of the extension with respect to edits to the core
data elements of the

FlashPix

 image view object. The legal values for the extension per-
sistence property are defined in Table 7.10.

It is the responsibility of the reader/writer application upon save or copy functions to
retain the extension data elements by default, or in accordance with the extension persis-
tence property.

All applications must retain this property upon a save or copy function by default, or in
accordance with the extension persistence.

Extension creation date property (optional unless extension persistence property
is 0x2)

This property specifies the time and date the authoring application added the extension
to the

FlashPix

 image view object. If the property exists, all applications must retain it
upon save or copy functions by default, or in accordance with the extension persistence
value.

September 11, 1996 FlashPix Format Specification

94 © 1996 Eastman Kodak Company Version 1.0

Extension modification date property (optional unless extension persistence
property is 0x2)

This property specifies the time and date of the last modification to the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Creating application property (optional)

This property specifies the name of the application that authored the extension in the
file. If the property exists, any application editing the extension must update the value
and all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence value.

Extension description property (optional)

The description property is a short (<80 character) description of the extension. If the
property exists, all applications must retain it upon save or copy functions by default, or
in accordance with the extension persistence value.

Storage/stream pathname property (optional)

This property lists the full storage or non-

FlashPix

 stream name, including the path in
the structured storage file from the

FlashPix

 image view object storage, for each storage
or non-

FlashPix

 stream the extension added to the

FlashPix

 image view object. The
path is specified using the standard Unix file specification tokens: "/" represents a direc-
tory separator and must be the first character of the property value. Wildcard characters
“*” and “?” (where “*” matches any 0 or more characters and “?” matches any 1 charac-
ter) are permitted in the path portion of the property value. If a storage is listed in the
extension list property set, its contents should not also be listed as they are assumed to
also be associated with that extension. If this property is omitted it is assumed that no
storages are added to the

FlashPix

 image view object for the extension. If the property
exists, all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

FlashPix

 stream pathname property (optional)

This property lists the full

FlashPix

 stream name, including the path from the

FlashPix

image view object storage, for each

FlashPix

 stream the extension added to or modified
in the

FlashPix

 image view object. The path is specified using the standard Unix file
specification tokens: "/" represents a directory separator and must be the first character
of the property value. Wildcard characters “*” and “?” (where “*” matches any 0 or
more characters and “?” matches any 1 character) are permitted in the path portion of

TABLE 7.10 Legal values of the existence persistence property

Value Meaning

0x0 Extension is valid independent of core element edits

0x1 Extension is invalid upon core element edits

0x2 Extension is potentially invalid upon core element edits

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 95

the property value. The array of values for the

FlashPix

 stream pathname property and
the

FlashPix

 stream field offset property array of values for extension

iiii

are associated
as described in Table 7.11. If this property is omitted it is assumed that no

FlashPix

streams are added to or modified in the

FlashPix

 image view object for the extension. If
the property exists, all applications must retain it upon save or copy functions by
default, or in accordance with the extension persistence property value.

FlashPix

 stream field offset property (optional)

This property lists the byte offsets (after the header) into the

FlashPix

 stream identified
with the

FlashPix

 stream pathname property array of fields modified by the extension.
The array of values for the

FlashPix

 stream field offset property and the

FlashPix

stream pathname property array of values for extension

0xiiii

 are associated as described
in Table 7.11. This property is required only if the

FlashPix

 stream pathname property
exists. If this property exists, all applications must retain it upon save or copy functions
by default, or in accordance with the extension persistence property value.

 In the Table 7.11 example, there are two

FlashPix

 stream data elements associated with

extension 0x17. The first, at Index = 0, is an added

FlashPix

 stream as there is a

Flash-
Pix

 stream pathname value but the

FlashPix

 stream field offset is

0xFFFFFFFF

. The sec-
ond, at index 0xjj = 1, is a field in a core

FlashPix

 stream who's value is not among
those defined in the core

FlashPix

format. This is indicated by the presence of a non-

0xFFFFFFFF

FlashPix

 stream field offset value in addition to a

FlashPix

 stream path-
name value.

Property set pathname property (optional)

This property is an array that lists the full property set name, including the path from the

FlashPix

 image object storage, for each property set the extension 0xiiii added, added
to, or modified in the

FlashPix

 image object. The path is specified using the standard
Unix file specification tokens: "/" represents a directory separator and must be the first
character of the property value. Wildcard characters "*" and "?" (where "*" matches any
0 or more characters and "?" matches any 1 character) are permitted in the path portion
of the property value. Table 7.12 shows an example of how the property set pathname,
property set ID codes, and property set vector elements for extension 0xiiii are associ-
ated. The array index of the property set pathname property corresponds to 0xjj in the
properties 0xiiii3jj1 and 0xiiii3jj2.

This property set is optional and if omitted it is assumed that no property sets are added,
added to, or modified in the

FlashPix

 image object for the extensions. If the property
exists all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

TABLE 7.11 Example values of FlashPix stream identification

Property Index = 0 Index = 1

0x00172000 stream x pathname stream y pathname

0x00172001 0xFFFFFFFF 64

September 11, 1996 FlashPix Format Specification

96 © 1996 Eastman Kodak Company Version 1.0

Property set ID codes property (optional)

This property lists the ID codes of properties which have been added to a core property
set, or defined with non-core values by an extension to the

FlashPix

 image object. The
value of each array position of the property is a VT_LPWSTR that may be composed of
comma separated values each of which are either an individual property ID code or
hyphen-separated pair of property ID codes. The array of values for the property set ID
codes and the property vector elements for particular property set 0xjj and extension
0xiiii are associated as described in Table 7.12. When a new property set is added by an
extension, the property set ID codes property is not required. This property is required if
an extension adds properties to a core property set or modifies core property set proper-
ties. If the property exists, all applications must retain it upon save or copy functions by
default, or in accordance with the extension persistence property value.

Property vector elements property (optional)

Extensions can add vector elements to core properties that are defined as variable length
vectors. This property lists the vector index for the values added to a particular vector
property. The value of each array position of the property is a VT_LPWSTR that may be
composed of comma separated values each of which are either an individual vector ele-
ment or hyphen-separated pair of vector elements. The array of values for the property
vector elements and the property set ID codes for a particular property set 0xjj and
extension 0xiiii are associated as described in Table 7.12. This property is only required
when an extension adds vector elements to a core property set property. If the vector ele-
ments property is present, and vector elements have not been added to its associated
property set ID code(s), then the value of this property must be NULL. If the property
exists, all applications must retain it upon save or copy functions by default, or in accor-
dance with the extension persistence property value.

In the Table 7.12 example, there are three property sets associated with extension 0x19.
The first index of the property 0x000193000, which corresponds to 0xjj=00, is a new
property set being added by the extension as there is a property set pathname value, but
the property set ID codes and property vector element properties for 0xjj=00 are not
listed. The second index of the property 0x00193000, which corresponds to 0xjj=01, is
a core property set in which property ID Codes 0x00011001-0x00011005 and
0x00001200 are being added by the extension. The third index of the property
0x00193000, which corresponds to 0xjj=02, is a core property set in which property ID
code 0x00033000 is of type VT_VECTOR and the extension has added values in ele-
ments 3,4, and 5 of that vector. Property ID codes $00044001-$00044004 are new ID
codes being added to the property set by the extension as well. In this case since the
property ID codes are new, the value of 0x00193022 for this array position is assigned

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 97

to NULL. This example also shows that the extension has added a value in element 2 of
both the vectors defined by existing property ID codes, 0x00055000 and 0x00066000.

7.2 Viewing Transform Parameters

The viewing transform parameters allow a view other than the raw image data itself.
There are four classes of viewing parameters: selection, filtering, spatial orientation, and
color reproduction. The application must provide a user interface that will help users
work with and preview the viewing parameters.

7.2.1 Selection via Rectangle of Interest
The rectangle of interest property lets applications specify which part of the image to
retain. Only a rectangular region with sides applications specify parallel to the edges of
the image can be specified.

The rectangle of interest is specified in the rectangle of interest property in the transform
property set as a horizontal, rectangular box. Four values are needed to specify the rect-
angle: left edge (x), top edge (y), width (w), and height (h). Each of these values is spec-
ified as a floating point number in the resolution-independent coordinate system
described in Section 2.1.1.

The rectangle of interest is always interpreted in the context of a specific resolution
layer. For example, if the layer has N pixels across (in x), numbered 0 to N-1, the range
of columns is given by:

(7.3)

Note that while pixel locations should be used to identify a pixel neighborhood for spa-
tial operations, the rectangle of interest box should run from the left edge of the unit
square surrounding the first pixel to the right edge of the unit square surrounding the last
pixel. This combination of parameters provides a rectangle of interest which is robust to

TABLE 7.12 Example values of property set identification

Property Index=0 Index=1 Index=2

000193000 PS x pathname
(0xjj=00)

PS y pathname
(0xjj=01)

PS z pathname
(0xjj=02)

000193011 $000011001-$000011005,
$000012000

000193021 $000033000 $000044001-
$000044004

$000055000,
$000066000

000193022 3,4,5 NULL 2

N x 0.5+×

columns N x w+()

0.5+×≤ ≤

September 11, 1996 FlashPix Format Specification

98 © 1996 Eastman Kodak Company Version 1.0

resolution changes. If the user selects a region manually at a specific resolution, the rect-
angle parameters should be calculated as follows, using the left edge as an example: cal-
culate the location of the leftmost pixel in the continuous, resolution-dependent
coordinate system described in Section 2.1.2. Scale this value to the resolution-indepen-
dent system described inSection 2.1.1. This process will provide a stable description of
the region when it is expressed at a higher or lower resolution.

The rectangle of interest does not imply any scaling or shifting into a “standard coordi-
nate space.” The rectangle only specifies that pixels outside the rectangle should be con-
sidered fully transparent. If the user desires that the area inside the rectangle of interest
be displayed as “the whole image,” the spatial orientation matrix (described in
Section 7.2.3) should map the top-left corner of the rectangle to (0,0) and the bottom-
right of the rectangle to (

w/h

,1).

7.2.2 Filtering

The

FlashPix

 format viewing parameter that sharpens or blurs the image is referred to
as image filtering. The degree of filtering is controlled by the filtering property in the
transform property set. Positive values produce a sharper image; negative values pro-
duce a smoother, more blurry image, with less detail. A value of 0 leaves the image
unchanged. Control is scaled so that one unit of filtering makes a just-noticeable change.
Values between -20 and 20 may be expected to produce reasonable results. The default
value of the filtering parameter is zero. It is stored as an IEEE 4-byte floating point num-
ber.

The influence of the filtering control is independent of image resolution. Proper opera-
tion of image filtering is closely tied to the resolution-independent rendering algorithms
of the

FlashPix

 format. When a reader requests actual

FlashPix

 image data, it selects
the best resolution layer to build the data from, and creates a digital filter to apply the
requested degree of sharpening or blurring to that data.

To provide a degree of filtering independent of resolution, a reader also needs informa-
tion about the imaging capabilities of the physical subsystems that generated the digital
image and the subsystem that will be used to print the image. If this information is not
available, a reader will use defaults that will yield good results in non-critical situations.
Peripheral manufacturers could add value to systems that use the

FlashPix

 format by
providing this information with their devices (as part of their device driver or profiles).

7.2.2.1 The Measure

Filtering is defined as the change in the acutance of the complete imaging system. Acu-
tance is a “one number” description of system sharpness. A number of definitions have
been used, but in general acutance is a measure of the degree of blur introduced by all
the elements of an imaging system, including the human eye that views the image. The
only element missing from acutance is the degree of detail in the scene itself. Most mod-
ern measures of acutance are based on some integral of the overall MTF (modulation
transfer function) of the system, including some eye MTF, scaled so that one unit of
acutance change is a just-noticeable difference. Higher acutances are associated with

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 99

sharper imaging systems. A specific definition of acutance has been adopted for the

FlashPix

 format.

The digital image is an intermediate result in the imaging chain that starts with image
capture and ends with physical reproduction. Acutance is a measure of the ability of the
chain to produce a sharp image. The customer can specify an increase or decrease in the
acutance of this system. This will determine the digital filter used to increase or decrease
the sharpness of the image.

7.2.2.2 Subsystem information

To precisely calculate the change in acutance of the system, some information about real
devices is required. In particular, a reader requires an estimate of the capability of the
input and output devices to reproduce fine image details. It also helps to have some esti-
mate of how large the image will appear to the viewer, since the human eye is the final
element in the imaging system.

Information on device sharpness is not generally available on the desktop today, even
though manufacturers have measured it. An estimate of relative image size can often be
made based on how the image is being used in a composition. In any case, the system is
relatively insensitive to these factors, and the internal default values generally give good
results.

Accurate information passed to a reader will improve the predictability and reliability of
filtering as a change in acutance. Knowledge of these parameters also may permit a
reader to work from a lower resolution level of the hierarchy, enabling faster rendering
with no loss in image quality.

Four pieces of information may be utilized by a reader to determine acutance:

■

A number describing the MTF (sharpness capability) of the capture operation
sequence (stored in the sharpness approximation property of the file source group of
the image info property set, Section 6.2)

■

A number describing the MTF (sharpness capability) of the printer

■

A number describing the MTF (blurring) of the prefilter used in building the

Flash-
Pix

 format hierarchy (stored for each resolution in the decimation prefilter width
property of the resolution description groups of the image contents property set,
Section 3.1.5.2).

■

A number describing the relative size of the image as used by the customer

7.2.2.3 User Sharpening Adjustment

One challenge with providing image sharpening on the desktop is the difficulty novice
users have in selecting the correct value. Generally, some sharpening is required to cor-
rect for the input/output devices, and some is added by the user for artistic effect. (A
reader does not automatically add sharpening to correct for input and output devices,
even when it has that information, but an application could do so, for example, by sug-
gesting a filtering parameter setting.)

September 11, 1996 FlashPix Format Specification

100 © 1996 Eastman Kodak Company Version 1.0

Handling sharpening adjustment for artistic effect is more difficult. However, the

Flash-
Pix

 filtering system can enable a very simple means for users to preview the sharpening
effects if the subsystem information listed above is known. Specifically, numbers
describing the MTFs of the printer and the monitor must be available.

7.2.3 Spatial Orientation

The

FlashPix

 format provides spatial orientation parameters to rotate, scale, shear, and
translate an image. These parameters are stated in terms of a 4

×

4 matrix, which maps
image points from the displayed form of the image to the original image. In this form,
the source points for resampling can be directly calculated.

Two-dimensional affine transformations are used to implement the spatial changes
needed for image viewing. The general transform requires interpolation of the image
data. A subset of the operations can be executed much faster because there is no change
in the definition of the pixels (they only move around). It is the responsibility of the
viewing engine to recognize these operations and to execute them efficiently.

The spatial orientation viewing parameters are specified by a 4

×

4 matrix as described by
Equation 7.4:

(7.4)

Each parameter is a floating point number. The 2-D affine transformations that map
from the displayed form of the image to the original image are encoded in the six matrix
elements a

11,

a

12

, a

14

, a

21

, a

22

, a

24

In general, applying the affine transformations to the image will require resampling of
the image. Note that the offset parameters

a

14

 and

a

24

 do matter for rotations and flips.
In particular, rapid execution of these operations depends on certain values of the off-
sets.

The 4x4 matrix is stored, in the spatial orientation property of the Transform Property
Set (Section 7.1.4), as an array of 16 IEEE 4-byte floating point numbers.

7.2.4 Tone and Color Corrections

The

FlashPix

 format provides a colortwist matrix property in the transform property set
to allow users to make small changes to the tone and color of an image. The changes are
not designed to correct specific faults in the imaging chain, but to provide the user a
simple way to specify common color corrections.

x'

y'

1

1

a11 a12 a13 a14

a21 a22 a23 a24

0 0 1 0

0 0 0 1

x

y

1

1

=

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 101

7.2.4.1 Color Images

Tone and color changes are applied in two ways. First, an affine matrix (colortwist
matrix) on the vector (

Luma

,

Chroma

1

,

Chroma

2

, 1) of normalized PhotoYCC values is
used to adjust lightness, saturation, and color balance. Many other kinds of simple
changes can be effected with this matrix. The use of a matrix for this operation makes it
easy to combine color operations done at different levels of an image composite. The
matrix elements may be identified as follows:

 (7.5)

Each element of the matrix is a floating point number. No limitation is placed on the
matrix elements except for the left most three elements on the bottom row, which should
all be zero. The input data to and the output data from the colortwist matrix MUST be
normalized PhotoYCC. Although matrices for conversion into and out of normalized
PhotoYCC may be concatenated with the colortwist matrix for efficiency, the colortwist
matrix stored in the

FlashPix

 image view object must NOT contain the matrix compo-
nent for those conversions.The terms of the vector resulting from the matrix multiplica-
tion should be clipped to the correct limits for the desired output color space.

The values in the matrix are defined in terms of modifications to normalized PhotoYCC.
Note that the tone and color correction matrix maps the source image to the destination
image, which is different than the spatial orientation affine matrix.

7.2.4.2 Monochrome Images

Monochrome images should be treated as NIF RGB images where

R

 =

G

 =

B

 =

X

. This
allows a “tint” to be applied to a monochrome image using the viewing parameters,
without requiring multichannel data to be stored in the

FlashPix

 image.

7.2.5 Contrast adjustments

Contrast adjustments are controlled by the contrast adjustment property in the transform
property set. It specifies a function through which the image data is passed. This opera-
tion may be implemented as a 1D lookup table or an equation applied to the image data
once transformed to the proper color representation. The contrast change must be per-
formed on an RGB representation of the image data which depends on the implementa-
tion method chosen. Additional (fixed) matrix operations (aside from the colortwist
matrix) will be required to convert to and from the RGB values used in the contrast
adjustment.

The first matrix implements the conversion from the input color space to normalized
PhotoYCC where the colortwist matrix is applied. The matrices following the colortwist
converts normalized PhotoYCC data to the proper RGB representation for application

Luma'

Chroma'1
Chroma'2

bYY bYC1
bYC2

bYoff

bC1Y bC1C1
bC1C2

bC1off

bC2Y bC2C1
bC2C2

bC2off

0 0 0 boff

Luma

Chroma1

Chroma2

1

=

September 11, 1996 FlashPix Format Specification

102 © 1996 Eastman Kodak Company Version 1.0

of the contrast parameters. The choice of RGB representations includes normalized
RGB(

rgb

) and a greater than 8 bit integer RGB

m

 representation. Once applied, some
additional matrices are required to return the image data back to its pre-color/tone cor-
rection representation which can then be converted to a different output color space if
desired.

The color and tone corrections can be applied to both NIFRGB and PhotoYCC data.
While the colortwist matrix is applied to a normalized PhotoYCC data representation
and contrast is applied in one of two RGB data representations, the matrices provided to
do these conversions alone are not sufficient to convert from the NIFRGB color space to
the PhotoYCC space or visa versa. They are sufficient to do the metric conversions
required for the tone and color corrections, but are not for color space transformations.
Therefore when the tone and color corrections are applied, the modified image data
should be in the same color space as the original input color space at which point addi-
tional processing can be performed to convert the color space if needed. It may be pos-
sible, however, to concatenate some of the additional color space transformation
processing with the color and tone correction matrices and LUTs to simplify the pro-
cessing.

The desired contrast is specified by a single floating point number. A value of 1.0 indi-
cates no contrast change; values greater than 1 provide higher contrast.

The contrast adjustment is stored as an IEEE 4-byte floating point number. Its default
value is 1.0.

If the contrast parameter is other than 1.0 and the equation method for contrast is used,
the procedure for implementing tone and color viewing parameters is as follows:

1.

Combine a normalized PhotoYCC

→

normalized RGB conversion matrix with the
given colortwist matrix and the input

→

normalized PhotoYCC matrix, producing a
new matrix

M

'

.

2.

Pass the image data through

M

'

3.

Apply the contrast modification through equation (7.6) to the image data resulting
from

M

'.

4.

Pass the contrast modified data through a series of matrices to convert the contrast
modified normalized RGB back to the original color space which can then be con-
verted to a different output space if needed.

If the contrast parameter is other than 1.0 and the LUT method for contrast is used, the
procedure for implementing tone and color viewing parameters is as follows:

1.

Combine a normalized PhotoYCC

→

normalized RGB conversion matrix and a nor-
malized RGB

→

RGB

m

with the given colortwist matrix and the input

→

normalized
PhotoYCC matrix, producing a new matrix

M

'.

2.

Pass the image data through

M

' limiting the RGB

m

 values to the range 0<=X<2M.

3.

Create the LUT,

K

LUT

, using equation (7.7). The output of

K

LUT

 is normalized RGB.
If the RGB

m

 representation is preferred, cascade equation (7.8) with equation (7.7)
to create

K

'

LUT

.

4.

Apply the contrast modification through either

K

LUT

 or

K

'

LUT

.

Section 7: FlashPix Image View Object

Version 1.0 © 1996 Eastman Kodak Company 103

5.

Pass the contrast modified data through a series of matrices to convert the contrast
modified normalized RGB or RGB

m

 data back to the original color space which can
then be converted to a different output space if needed.

For example, to increase the contrast by 20%,

K

 = 1.2, where

K

 is the contrast parame-
ter. The following equations specify the contrast modification function,

f

K

, to be applied
to

rgb

 data:

(7.6)

If the contrast modification is to be applied as a LUT, the input data must be converted
to

RGB

m

 space. The following equation can then be used to generate the LUT,

K

LUT

,
where

j

' is the input pixel value in

RGB

m

 space, where

M

 = 2

k

-1

:

(7.7)

The output of

K

LUT

 is

rgb

 space. If

RGB

m

 space is desired, the following equation can
be cascaded with the equation for

K

LUT

, creating

K

'

LUT

:

(7.8)

Note that if the “nine LUT method” is used for executing matrix multiplications, the 1D
LUT and the final matrix can be combined into a single step.

7.3 Sequence of Viewing Parameters

The viewing parameters are not commutative. They must be applied in the following
order: selection, filtering, spatial orientation, specification of result aspect ratio. The
tone and color operation can be applied at any stage after the filtering step.

p 0.43=

f K K j,()

j 0< p–
j–

p
----- 

  K

×

j 0= 0

0 j< p
j
p
--- 

  K

×










=

KLUT j'[] f K K
j' M

2
-----–

M
--------------,

 
 
 
 

=

K'LUT j'[] KLUT j'[] M
M
2
-----+×=

September 11, 1996 FlashPix Format Specification

104 © 1996 Eastman Kodak Company Version 1.0

An application must carefully record edits to the image once it has been loaded. If the
application wishes to modify the viewing parameters of the original image to reflect the
edits, it must determine how to express the changes in terms of the allowed parameters.

7.3.1 Coordinate System

Both the selection and spatial orientation operations require clear specification of a
coordinate system for the image. A

FlashPix

 image can have any size, but the viewing
parameters have no knowledge of the number of pixels in the image. The image is stored
with an implicit orientation. The upper-left hand corner of the image has the coordinates
(0, 0). The height of the image is 1.0, so that the lower-left corner has the coordinates (0,
1.0). The lower-right corner has the coordinates (

R

, 1.0), where

R

 is the aspect ratio of
the image.

The pixel locations are specified exactly for spatial operations: in a layer with

N

 pixels
in the x direction, the first pixel is centered at 0.5/

N

, the second is centered at 1.5/

N

, etc.

The affine spatial transform may rotate and shift the image data. Still, the coordinates
implied by the specification of the result aspect ratio refer to the original coordinate sys-
tem of the image.

For each pixel in the result rectangle (specified by the result aspect ratio), apply the
affine transform to identify the corresponding location in the original image.

IF this point falls within the rectangle of interest,

THEN: This point will probably not fall in the middle of an original pixel. Use an inter-
polation scheme to calculate the values for the new pixel. Map these values through the
tone and color transform to get the final image values.

ELSE: The point is outside of the defined image area. In the context of a viewer, nothing
should be displayed—the viewer must define its background level. In the context of
compositing, this pixel has 100% transparency.

7.3.2 Image Size and Limits

The

FlashPix

 format is a resolution-independent format. There is no implicit scale to the
image. The image should be displayed fully at whatever size and resolution suits the
viewing device.

After a spatial orientation change leaves the image tilted or sheared, the resulting image
is defined to be the area in the rectangle (0,0) to (

R

result

,1), even though there may be
legitimate image data outside this region. If the application wants the image to be
rotated and displayed in its entirety, the affine matrix must also perform a scale to shrink
the image such that it fits entirely inside the output rectangle.

September 11, 1996

Version 1.0 © 1992-1996 Microsoft Corporation

105

A

 A P P E N D I X

A

A

Structured Storage

Note: This document is meant to accompany the Microsoft OLE Structured Storage
Reference Implementation, hereafter referred to as the ‘Software’. If this document
and functionality of the Software conflict, the actual functionality of the Software rep-
resents the correct functionality. Microst assumes no responsibility for any damages
that might occur either directly or indirectly from these discrepancies or inaccuracies.
Microsoft may have trademarks, copyrights, patents or pending patent applications,
or other intellectual property rights covering subject matter in this document and in the
Software. The furnishing of this document does not give you a license to these trade-
marks, copyrights, patents, or other intellectual property rights and any license rights
granted are limited to those set forth in the End User License Agreement accompa-
nying this document.

September 11, 1996 FlashPix Format Specification

106 © 1992-1996 Microsoft Corporation Version 1.0

A.1 Compound File Binary Format

A.1.0 Overview

A Compound File is made up of a number of

virtual streams

. These are collections of data that behave
as a linear stream, although their on-disk format may be fragmented. Virtual streams can be user data,
or they can be control structures used to maintain the file. Note that the file itself can also be considered
a virtual stream.

All allocations of space within a Compound File are done in units called

sectors

. The size of a sector is
definable at creation time of a Compound File, but for the purposes of this document will be 512 bytes.
A virtual stream is made up of a sequence of sectors.

The Compound File uses several different types of sector:

Fat

,

Directory

,

Minifat

,

DIF

, and

Storage

. A
separate type of 'sector' is a

Header

, the primary difference being that a Header is always 512 bytes long
(regardless of the sector size of the rest of the file) and is always located at offset zero (0). With the ex-
ception of the header, sectors of any type can be placed anywhere within the file. The function of the
various sector types is discussed below.

In the discussion below, the term

SECT

 is used to describe the location of a sector within a virtual stream
(in most cases this virtual stream is the file itself). Internally, a

SECT

 is represented as a

ULONG

.

A.1.1 Sector Types

[4 bytes] typedef unsigned long ULONG;
[2 bytes] typedef unsigned short USHORT;
[2 bytes] typedef short

OFFSET

;
[4 bytes] typedef ULONG

SECT

;
[4 bytes] typedef ULONG

FSINDEX

;
[2 bytes] typedef USHORT

FSOFFSET

;
[4 bytes] typedef ULONG

DFSIGNATURE

;
[1 byte] typedef unsigned char BYTE;
[2 bytes] typedef unsigned short WORD;
[4 bytes] typedef unsigned long DWORD;
[2 bytes] typedef WORD

DFPROPTYPE

;
[4 bytes] typedef ULONG

SID

;
[16 bytes] typedef CLSID GUID;

[8 bytes] typedef struct tagFILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
 } FILETIME, TIME_T;

[4 bytes] const SECT

DIFSECT

= 0xFFFFFFFC;
[4 bytes] const SECT

FATSECT

= 0xFFFFFFFD;
[4 bytes] const SECT

ENDOFCHAIN

= 0xFFFFFFFE;
[4 bytes] const SECT

FREESECT

= 0xFFFFFFFF;

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 107

A.1.1.1 Header

struct StructuredStorageHeader{

// [offset from start in bytes, length
// in bytes]

BYTE _abSig[8];

// [000H,08] {0xd0, 0xcf, 0x11, 0xe0,
// 0xa1, 0xb1, 0x1a, 0xe1} for current
// version, was {0x0e, 0x11, 0xfc,
// 0x0d, 0xd0, 0xcf, 0x11, 0xe0} on old,
// beta 2 files (late ’92) which are also
// supported by the reference
// implementation

CLSID _clid;

// [008H,16] class id (set with
// WriteClassStg, retrieved with
// GetClassFile/ReadClassStg)

USHORT _uMinorVersion;

// [018H,02] minor version of the
// format: 33 is written by reference
// implementation

USHORT _uDllVersion;

// [01AH,02] major version of the dll/
// format: 3 is written by reference
// implementation

USHORT _uByteOrder;

// [01CH,02] 0xFFFE: indicates Intel
// byte-ordering

USHORT _uSectorShift;

// [01EH,02] size of sectors in power-
// of-two (typically 9, indicating 512-
// byte sectors)

USHORT _uMiniSectorShift;

// [020H,02] size of mini-sectors
// in power-of-two (typically 6,
// indicating 64-byte mini-sectors)

USHORT _usReserved;

// [022H,02] reserved, must be zero

ULONG _ulReserved1;

// [024H,04] reserved, must be zero

ULONG _ulReserved2;

// [028H,04] reserved, must be zero

FSINDEX _csectFat;

// [02CH,04] number of SECTs in the FAT
// chain

SECT _sectDirStart;

// [030H,04] first SECT in the FAT
// Directory chain

DFSIGNATURE_signature;

// [034H,04] signature used for transac
// tioning must be zero. The reference
// implementation does not support
// transactioning

ULONG _ulMiniSectorCutoff;

// [038H,04] maximum size for
// mini-streams: typically 4096 bytes

SECT _sectMiniFatStart;

// [03CH,04] first SECT in the
// mini-FAT chain

FSINDEX _csectMiniFat;

// [040H,04] number of SECTs in the
// mini-FAT chain

SECT _sectDifStart;

// [044H,04] first SECT in the DIF
// chain

FSINDEX _csectDif;

// [048H,04] number of SECTs in the DIF
// chain

SECT _sectFat[109];

// [04CH,436] the SECTs of the first
// 109 FAT sectors

};

The

Header

 contains vital information for the instantiation of a Compound File. Its total length is 512
bytes. There is exactly one

Header

in any Compound File, and it is always located beginning at offset
zero in the file.

September 11, 1996 FlashPix Format Specification

108 © 1992-1996 Microsoft Corporation Version 1.0

A.1.1.2 Fat Sectors

The

Fat

 is the main allocator for space within a Compound File. Every sector in the file is represented
within the Fat in some fashion, including those sectors that are unallocated (free). The Fat is a virtual
stream made up of one or more Fat Sectors.

Fat sectors are arrays of

SECT

s that represent the allocation of space within the file. Each stream is rep-
resented in the Fat by a

chain

, in much the same fashion as a

DOS

 file-allocation-table (FAT). To elab-
orate, the set of Fat Sectors can be considered together to be a single array -- each cell in that array
contains the

SECT

 of the next sector in the chain, and this SECT can be used as an index into the Fat array
to continue along the chain. Special values are reserved for chain terminators (

ENDOFCHAIN =
0xFFFFFFFE

), free sectors (

FREESECT = 0xFFFFFFFF

), and sectors that contain storage for Fat Sectors
(

FATSECT = 0xFFFFFFFD

) or DIF Sectors (

DIFSECT = 0xFFFFFFC

), which are not chained in the same way
as the others.

The locations of Fat Sectors are read from the DIF (Double-indirect Fat), which is described below. The
Fat is represented in itself, but not by a chain – a special reserved

SECT

 value (

FATSECT = 0xFFFFFFFD

)
is used to mark sectors allocated to the Fat.

A

SECT

 can be converted into a byte offset into the file by using the following formula:

SECT << sshead-
er._uSectorShift + sizeof(ssheader)

. This implies that sector 0 of the file begins at byte offset 512, not at 0.

A.1.1.3 MiniFat Sectors

Since space for streams is always allocated in sector-sized blocks, there can be considerable waste when
storing objects much smaller than sectors (typically 512 bytes). As a solution to this problem, we intro-
duced the concept of the

MiniFat

. The MiniFat is structurally equivalent to the Fat, but is used in a dif-
ferent way. The virtual sector size for objects represented in the Minifat is

1 << ssheader._uMiniSectorShift

(typically 64 bytes) instead of

1 << ssheader._uSectorShift

 (typically 512 bytes). The storage for these ob-
jects comes from a virtual stream within the Multistream (called the

Ministream

).

The locations for MiniFat sectors are stored in a standard chain in the Fat, with the beginning of the chain
stored in the header.

A Minifat sector number can be converted into a byte offset into the ministream by using the following
formula:

SECT << ssheader._uMiniSectorShift

. (This formula is different from the formula used to convert
a SECT into a byte offset in the file, since no header is stored in the Ministream)

The Ministream is chained within the Fat in exactly the same fashion as any normal stream. It is refer-
enced by the first Directory Entry (

SID

 0).

3 5 E 1

Chaining

Pointer in from
directory

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 109

A.1.1.4 DIF Sectors

The

Double-Indirect Fat

 is used to represent storage of the Fat. The DIF is also represented by an array
of

SECT

s, and is chained by the terminating cell in each sector array (see the diagram above). As an op-
timization, the first 109 Fat Sectors are represented within the header itself, so no DIF sectors will be
found in a small (< 7 MB) Compound File.

The DIF represents the Fat in a different manner than the Fat represents a chain. A given index into the
DIF will contain the

SECT

of the Fat Sector found at that offset in the Fat virtual stream. For instance,
index 3 in the DIF would contain the

SECT

for Sector #3 of the Fat.

The storage for DIF Sectors is reserved in the Fat, but is not chained there (space for it is reserved by a
special

SECT

 value ,

DIFSECT=0xFFFFFFFC

). The location of the first DIF sector is stored in the header.

A value of

ENDOFCHAIN=0xFFFFFFFE

 is stored in the pointer to the next DIF sector of the last DIF sector.

A.1.1.5 Directory Sectors

typedef enum tagSTGTY {
STGTY_INVALID= 0,
STGTY_STORAGE= 1,
STGTY_STREAM= 2,
STGTY_LOCKBYTES= 3,
STGTY_PROPERTY= 4,
STGTY_ROOT= 5,

} STGTY;

typedef enum tagDECOLOR {
DE_RED= 0,
DE_BLACK= 1,

} DECOLOR;

struct StructuredStorageDirectoryEntry {

// [offset from start in bytes,
// length in bytes]

BYTE _ab[32*sizeof(WCHAR)];

//

[000H,64]

64 bytes. The

// Element name in Unicode,
// padded with zeros to fill
// this byte array

WORD _cb;

// [040H,02] Length of the
// Element name in characters,
// not bytes

BYTE _mse;

// [042H,01] Type of object:

DIF Sector

Pointers to FAT sectors

Pointer to next DIF sector

September 11, 1996 FlashPix Format Specification

110 © 1992-1996 Microsoft Corporation Version 1.0

// value taken from the STGTY
// enumeration

BYTE _bflags;

// [043H,01] Value taken from
// DECOLOR enumeration.

SID _sidLeftSib;

// [044H,04] SID of the left-
// sibling of this entry in the
// directory tree

SID _sidRightSib;

// [048H,04] SID of the right-
// sibling of this entry in the
// directory tree

SID _sidChild;

// [04CH,04] SID of the first
// child acting as the root of
// all the children of this el-
// ement(if_mse=STGTY_STORAGE)

GUID _clsId;

// [050H,16]CLSID of this stor-
// age (if_mse=STGTY_STORAGE)

DWORD _dwUserFlags;

// [060H,04] User flags of this
// storage
// (if_mse=STGTY_STORAGE)

TIME _T_time[2];

// [064H,16] Create/Modify
// time-stamps
// (if_mse=STGTY_STORAGE)

SECT _sectStart;

// [074H,04] starting SECT of
// the stream
// (if_mse=STGTY_STREAM)

ULONG _ulSize;

// [078H,04] size of stream in
// bytes (if_mse=STGTY_STREAM)

DFPROPTYPE _dptPropType;

// [07CH,02] Reserved for fu
// ture use. Must be zero.

};

The

Directory

 is a structure used to contain per-stream information about the streams in a Compound
File, as well as to maintain a tree-styled containment structure. It is a virtual stream made up of one or
more Directory Sectors. The Directory is represented as a standard chain of sectors within the Fat. The
first sector of the Directory chain (the Root Directory Entry)

Each level of the containment hierarchy (i.e. each set of siblings) is represented as a red-black tree. The
parent of this set of sibilings will have a pointer to the top of this tree. This red-black tree must maintain
the following conditions in order for it to be valid:

1. The root node must always be black.

2. No two consecutive nodes may both be red.

3. The left child must always be less than the right child. This relationship is defined as:

■

A node with a shorter name is less than a node with a longer name (i.e. compare the length of
the name)

■

For nodes with the same length names, compare the two names.

The simplest implementation of the above invariants would be to mark every node as black, in which
case the tree is simply a binary tree.

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 111

A Directory Sector is an array of Directory Entries, a structure represented in the diagram below. Each
user stream within a Compound File is represented by a single Directory Entry. The Directory is con-
sidered as a large array of Directory Entries. It is useful to note that the Directory Entry for a stream
remains at the same index in the Directory array for the life of the stream – thus, this index (called an

SID

) can be used to readily identify a given stream.

The directory entry is then padded out with zeros to make a total size of 128 bytes.

Directory entries are grouped into blocks of four to form Directory Sectors.

A.1.1.5.1 Root Directory Entry

The first sector of the Directory chain (also referred to as the first element of the Directory array, or

SID

0) is known as the

Root Directory Entry

 and is reserved for two purposes: First, it provides a root parent
for all objects stationed at the root of the multi-stream. Second, its function is overloaded to store the
size and starting sector for the Mini-stream.

The Root Directory Entry behaves as both a stream and a storage. All of the fields in the Directory Entry
are valid for the root. The Root Directory Entry’s Name field typically contains the string “RootEntry”
in Unicode, although some versions of structured storage (particularly the preliminary reference imple-
mentation and the Macintosh version) store only the first letter of this string, “R” in the name. This string
is always ignored, since the Root Directory Entry is known by its position at

SID

 0 rather than by its name,
and its name is not otherwise used. New implementations should write “RootEntry” properly in the Root
Directory Entry for consistency and support manipulating files created with only the “R” name.

A.1.1.5.2 Other Directory Entries

Non-root directory entries are marked as either stream (

STGTY_STREAM

) or storage (

STGTY_STORAGE

)
elements. Storage elements have a

_clsid

,

_time[]

, and

_sidChild

 values; stream elements may not. Stream
elements have valid

_sectStart

 and

_ulSize

 members, whereas these fields are set to zero for storage ele-
ments (except as noted above for the Root Directory Entry).

To determine the physical file location of actual stream data from a stream directory entry, it is necessary
to determine which FAT (normal or mini) the stream exists within. Streams whose

_ulSize

 member is less
than the

_ulMiniSectorCutoff

 value for the file exist in the ministream, and so the

_startSect

 is used as an
index into the MiniFat (which starts at

_sectMiniFatStart

) to track the chain of mini-sectors through the
mini-stream (which is, as noted earlier, the standard (non-mini) stream referred to by the Root Directory
Entry’s

_sectStart

 value). Streams whose

_ulSize

 member is greater than the

_ulMiniSectorCutoff

 value for
the file exist as standard streams – their

_sectStart

 value is used as an index into the standard FAT which
describes the chain of full sectors containing their data).

A.1.1.6 Storage Sectors

Storage sectors are simply collections of arbitrary bytes. They are the building blocks of user streams,
and no restrictions are imposed on their contents. Storage sectors are represented as chains in the Fat,
and each storage chain (stream) will have a single Directory Entry associated with it.

September 11, 1996 FlashPix Format Specification

112 © 1992-1996 Microsoft Corporation Version 1.0

A.1.2 Examples

This section contains a hexadecimal dump of an example structured storage file to clarify the binary file
format.

A.1.2.1 Sector 0: Header

_abSig = DOCF 11E0 A1B1 1AE1
_clid = 0000 0000 0000 0000 0000 0000 0000 0000
_uMinorVersion= 003B
_uDllVersion= 3
_uByteOrder= FFFE (Intel byte order)
_uSectorShift= 9 (512 bytes)
_uMiniSectorShift= 6 (64 bytes)
_usReserved= 0000
_ulReserved1= 00000000
_ulReserved2= 00000000
_csectFat = 00000001
_sectDirStart= 00000001
_signature = 00000000
_ulMiniSectorCutoff= 00001000 (4096 bytes)
_sectMiniFatStart= 00000002
_csectMiniFat= 00000001
_sectDifStart= FFFFFFFE (no DIF, file is < 7Mb)
_csectDIF = 00000000
_sectFat[] = 00000000 FFFFFFFF...(continues with FFFFFFFF)

000000: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000
000010: 0000 0000 0000 0000 3B00 0300 FEFF 0900
000020: 0600 0000 0000 0000 0000 0000 0100 0000
000030: 0100 0000 0000 0000 0010 0000 0200 0000
000040: 0100 0000 FEFF FFFF 0000 0000 0000 0000
000050: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0001F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

A.1.2.2 SECT 0: First (Only) FAT Sector

SECT 0: FFFFFFFD = FATSECT: marks this sector as a FAT sector.
Referred to in header by _sectFat[0]

SECT 1: FFFFFFFE = ENDOFCHAIN: marks the end of the directory chain,
referred to in header by _sectDirStart

SECT 2: FFFFFFFE = ENDOFCHAIN: marks the end of the mini-fat, re
ferred to in header by _sectMiniFatStart

SECT 3: 00000004 = pointer to the next sector in the “Stream 1” data.
This sector is the first sector of “Stream 1”, it is re
ferred to by the Directory Entry

SECT 4: ENDOFCHAIN (0xFFFFFFFE): marks the end of the “Stream 1”
stream data. Further Entries are empty (FREESECT =
0xFFFFFFFF)

000200: FDFF FFFF FEFF FFFF FEFF FFFF 0400 0000
000210: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0003F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 113

A.1.2.3 SECT 1: First (Only) Directory Sector

SID 0: Root SID: Root Name = "R"
SID 1: Element 1 SID: Name = "Storage 1"
SID 2: Element 2 SID: Name = "Stream 1"
SID 3: Unused

A.1.2.3.1 SID 0: Root Directory Entry

_ab = ("R")(this should be “Root Entry”)
_cb = 00042(42 bytes,does not include double-null termi
nator)
_mse = 05 (STGTY_ROOT)
_bflags = 00 (DE_RED)
_sidLeftSib= FFFFFFFF (none)
_sidRightSib= FFFFFFFF (none)
_sidChild = 00000001 (SID 1: “Storage 1”)
_clsid = 0067 6156 54C1 CE11 8553 00AA 00A1 F95B
_dwUserFlags= 00000000 (n/a for STGTY_ROOT)
_time[0] = CreateTime = 0000 0000 0000 0000 (none set)
_time[1] = ModifyTime = 801E 9213 4BB4 BA01 (??)
_sectStart = 00000003 (starting sector of MiniStream)
_ulSize = 00000240 (length of MiniStream in bytes)
_dptPropType= 0000 (n/a)

000400: 0052 0000 0000 0000 0000 0000 0000 0000 .R..............
000410: 0000 0000 0000 0000 0000 0000 0000 0000
000420: 0000 0000 0000 0000 0000 0000 0000 0000
000430: 0000 0000 0000 0000 0000 0000 0000 0000
000440: 04200 0500 FFFF FFFF FFFF FFFF 0100 0000
000450: 0067 6156 54C1 CE11 8553 00AA 00A1 F95B .gaVT....S.....[
000460: 0000 0000 0000 0000 0000 0000 801E 9213
000470: 4BB4 BA01 0300 0000 4002 0000 0000 0000 K.......@.......

A.1.2.3.2 SID 1: “Storage 1”

_ab = ("Storage 1")
_cb = 0014 (20 bytes, including double-null terminator)
_mse = 01 (STGTY_STORAGE)
_bflags = 01 (DE_BLACK)
_sidLeftSib= FFFFFFFF (none)
_sidRightSib= FFFFFFFF (none)
_sidChild = 00000002 (SID 2: “Stream 1”)
_clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (none set)
_dwUserFlags= 00000000 (none set)
_time[0] = CreateTime = 00000000 00000000 (none set)
_time[1] = ModifyTime = 00000000 00000000 (none set)
_sectStart = 00000000 (n/a)
_ulSize = 00000000 (n/a)
_dptPropType= 0000 (n/a)

000480: 5300 7400 6F00 7200 6100 6700 6500 2000 S.t.o.r.a.g.e. .
000490: 3100 0000 0000 0000 0000 0000 0000 0000 1...............
0004A0: 0000 0000 0000 0000 0000 0000 0000 0000
0004B0: 0000 0000 0000 0000 0000 0000 0000 0000
0004C0: 1400 0101 FFFF FFFF FFFF FFFF 0200 0000
0004D0: 0061 6156 54C1 CE11 8553 00AA 00A1 F95B .aaVT....S.....[
0004E0: 0000 0000 0088 F912 4BB4 BA01 801E 9213 K.......
0004F0: 4BB4 BA01 0000 0000 0000 0000 0000 0000 K...............

September 11, 1996 FlashPix Format Specification

114 © 1992-1996 Microsoft Corporation Version 1.0

A.1.2.3.3SID 2: “Stream 1”

_ab = ("Stream 1")
_cb = 0012 (18 bytes, including double-null terminator)
_mse = 02 (STGTY_STREAM)
_bflags = 01 (DE_BLACK)
_sidLeftSib= FFFFFFFF (none)
_sidRightSib= FFFFFFFF (none)
_sidChild = FFFFFFFF (n/a for STGTY_STREAM)
_clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (n/a)
_dwUserFlags= 00000000 (n/a)
_time[0] = CreateTime = 00000000 00000000 (n/a)
_time[1] = ModifyTime = 00000000 00000000 (n/a)
_startSect = 00000000 (SECT in mini-fat, since _ulSize is
smaller than _ulMiniSectorCutoff)
_ulSize = 00000220 (< ssheader._ulMiniSectorCutoff, so
_sectStart is in Mini)
_dptPropType= 0000 (n/a)

000500: 5300 7400 7200 6500 6100 6D00 2000 3100 S.t.r.e.a.m. .1.
000510: 0000 0000 0000 0000 0000 0000 0000 0000
000520: 0000 0000 0000 0000 0000 0000 0000 0000
000530: 0000 0000 0000 0000 0000 0000 0000 0000
000540: 1200 0201 FFFF FFFF FFFF FFFF FFFF FFFF
000550: 0000 0000 0000 0000 0000 0000 0000 0000
000560: 0000 0000 0000 0000 0000 0000 0000 0000
000570: 0000 0000 0000 0000 2002 0000 0000 0000
000580: 0000 0000 0000 0000 0000 0000 0000 0000

A.1.2.3.4 SID 3: Unused

000590: 0000 0000 0000 0000 0000 0000 0000 0000
0005A0: 0000 0000 0000 0000 0000 0000 0000 0000
0005B0: 0000 0000 0000 0000 0000 0000 0000 0000
0005C0: 0000 0000 FFFF FFFF FFFF FFFF FFFF FFFF
0005D0: 0000 0000 0000 0000 0000 0000 0000 0000
0005E0: 0000 0000 0000 0000 0000 0000 0000 0000
0005F0: 0000 0000 0000 0000 0000 0000 0000 0000

A.1.2.4 SECT 3: MiniFat Sector

SECT 0: 00000001: pointer to the second sector in the “Stream 1”
data. This sector is the first sector of “Stream 1”,
it is referred to by _sectStart of SID 2
SECT 1: 00000002: pointer to the third sector in the “Stream 1”
data. This sector is the second sector of “Stream 1”,
it is referred to in MiniFat SECT 0, above.

...
SECT 8: FFFFFFFE = ENDOFCHAIN: marks the end of the “Stream 1”
data.

Further Entries are empty (FREESECT = 0xFFFFFFFF)

000600: 0100 0000 0200 0000 0300 0000 0400 0000
000610: 0500 0000 0600 0000 0700 0000 0800 0000
000620: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0007F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 115

A.1.2.5 SECT 4: MiniStream (Data of “Stream 1”)

// referred to by SECTs in MiniFat of SECT 3, above

000800: 4461 7461 2066 6F72 2073 7472 6561 6D20 Data for stream
000810: 3144 6174 6120 666F 7220 7374 7265 616D 1Data for stream
000820: 2031 4461 7461 2066 6F72 2073 7472 6561 1Data for strea
...
000A00: 7461 2066 6F72 2073 7472 6561 6D20 3144 ta for stream 1D
000A10: 6174 6120 666F 7220 7374 7265 616D 2031 ata for stream 1

// data ends at 000A1F, MiniSector is filled to the end with known data
// (a copy of the header or FFFFFFF to prevent random disk or memory
// contents from contaminating the file on-disk.

000A20: 0000 0000 0000 0000 3B00 03FF FE00 0900 ;.......
000A30: 0600 0000 0000 0000 0000 0000 0000 0100
000A40: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000
000A50: 0000 0000 0000 0000 003B 0003 FFFE 0009 ;......
000A60: 0006 0000 0000 0000 0000 0000 0000 0001
000A70: 0000 0001 0000 0000 0000 1000 0000 0002
000A80: 0000 0001 FFFF FFFE 0000 0000 0000 0000
000A90: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
000BF0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

September 11, 1996 FlashPix Format Specification

116 © 1992-1996 Microsoft Corporation Version 1.0

A.2 OLE Property Set Binary Format

A.2.0 Document Properties in Storage

In an

IStorage

, a serialized property set is stored in either a single stream or in a nested

IStorage

instance.
In the latter case, the contained stream named “Contents” is the primary stream containing property val-
ues. The format of the primary stream, the same in either case, is described in the next section below.
None of the property types

VT_STREAM

,

VT_STORAGE

,

VT_STREAMED_OBJECT

, or

VT_STORED_OBJECT

may be used in a stream-based property set; these types may only be used in storage-based sets. It is the
person who invents / defines a new property set who gets to choose whether the set is always stream-
based, is always storage-based, or at times can be either.

Names in an

IStorage

that begin with the value

'\0x05'

 are reserved exclusively for the storage of property
sets. Streams or storages that begin with

'\0x05'

 must therefore be in the format described below; storages

so named must contain a

“Contents”

 stream in the format.

1

 One of the things that a person who invents a
new standard property set does is specify the standard string name under which instances of that type are
stored. For example, the summary information property set defined by OLE2 is always found under the
name

“\005SummaryInformation".

 OLE2 provided no conventions for choosing this name; however, a con-
vention for choosing such names is now strongly recommended below.

*Offset in bytes from the start of the stream to the start of the section
**Offset in bytes from the start of the section to the start of the type/value pair

Figure 1. Stream containing a serialized property set

1. Properties may of course be stored in streams or storages that do not begin with '\0x05', but such properties are completely private to the application

manipulating the storage; there is little reason to do this.

Byte Order Indicator
(WORD)

Format Version
(WORD)

Originating OS Version
(DWORD)

Class Identifier
(CLSID)

Reserved
(DWORD)

Property Set Header

FMTID/Offset Pair

FMTID (16 bytes) Offset* (DWORD)

Section

Section Header

Size of Section (DWORD) Count of Properties, m (DWORD)

Property ID/Offset Pairs

Property ID for Property 1 (DWORD) Offset** (DWORD)
Property ID for Property 2 (DWORD) Offset** (DWORD)

Property ID for Property m (DWORD) Offset** (DWORD)

Properties (Type/Value Pairs)

Type Indicator 1 (DWORD) Property Value 1 (Variable Length)
Type Indicator 2 (DWORD) Property Value 2 (Variable Length)

Type Indicator m (DWORD) Property Value m (Variable Length)

Primary stream of a serialized property set

m entries

m entries

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 117

A.2.1 Format of the primary property set stream

The overall structure of a stream containing a serialized property set is as illustrated in Figure 2. The for-
mat consists of a property set header, a sequence of size exactly one of format id / offset pair, and a cor-

responding sequence of sections containing the actual property values.

1

Absolutely all the fields of a serialized property set specified here are

always

 stored in storage in little-

endian (Intel) byte order.

2

The overall length of this property set stream is limited to 256k bytes.

A.2.1.1 Property Set Header

At the beginning of the property set stream is a header. The following structure illustrates the header:

 typedef struct PROPERTYSETHEADER {
WORD wByteOrder;// Always 0xFFFE
WORD wFormat;// Should be 0
DWORD dwOSVer;// System version
CLSID clsid; // Application CLSID
DWORD reserved;// Should be 1

}

PROPERTYSETHEADER

;

The definition of the members of this structure as as follows.

Member Meaning

wByteOrder

The byte-order indicator is a

WORD

 and should always hold the value

0xFFFE

. This
is the same as the Unicode© byte-order indicator. When written in little-endian
(Intel) byte order, as is always done, this appears in the stream as

0xFE

,

0xFF

.

wFormat

The format version is a

WORD

 and indicates the format version of this stream.
Property set writers should write zero for this value. Property set readers should
check this value; if it is non-zero, then they should refuse to read the set, for it is
in a format that they don’t in fact understand.

dwOSVer

The OS version number is encoded as OS kind in the high order word (0 for Win-
dows on DOS, 1 for Macintosh, 2 for Windows 32-bit, 3 for UNIX) and the OS-
supplied version number in the low order word. For Windows on DOS and Win-
dows 32-bit, the latter is the low order word of the result of

GetVersion()

.

clsid

The class identifier is the

CLSID

of a class that can display and/or provide program-
matic access to the property values. If there is no such class, it is recommended
that the Format ID be used (see below), though a value of all zeros is also accept-
able; the former simply allows for greater future extensibility.

reserved

Reserved for future use. A writer of a property set should write the value one here;
a reader of a property set should only however check that the value is at least one.

1. The original OLE2 format allowed for more than one section, but use of that functionality is discourarged and no longer supported.

2. Notwithstanding the fact that there is a byte-order tag of 0xFFFE at the start of the format. This tag was intended to allow for future extensibility that

has been subsequently determined to be very unlikely to be done.

September 11, 1996 FlashPix Format Specification

118 © 1992-1996 Microsoft Corporation Version 1.0

A.2.1.2 Format ID / Offset Pairs

This part of the serialized property set indicates two things: the

FMTID

that scopes the property values
contained in the set, and the location within the stream at which those values are stored.

typedef struct FORMATIDOFFSET {
FMTID fmtid; // semantic name of a section
DWORD dwOffset;// offset from start of whole

//property set stream to the
//section

}

FORMATIDOFFSET

;

The offset is the distance of bytes from the start of the whole stream to where the section begins. The
format id (

FMTID

) is the semantic name of its corresponding section, telling how to interpret the property
values therein.

A.2.1.3 Sections

Each section is made of up a property section header followed by an array that locates each property val-
ue within the section. It is specifically

not

 the case that the properties in this array are sorted in any par-
ticular order Offsets within this array are the distance from the start of the section to the start of the
property (type, value) pair. This allows entire sections to be copied as an array of bytes without any trans-
lation of internal structure.

typedef struct

PROPERTYSECTIONHEADER

{
DWORD cbSection;// size of section in

//bytes, which is

//inclusive

 of the byte
//count itself

DWORD cProperties;// count of properties
//in section

PROPERTYIDOFFSETrgprop[];// array of
//property
//locations

}

PROPERTYSECTIONHEADER

;

typedef struct PROPERTYIDOFFSET {
DWORD propid;// name of a property
DWORD dwOffset;// offset from the start

//of the section to that
//property

}

PROPERTYIDOFFSET

;

Each property value contains a type tag followed by the bytes of the actual property value (at last!). All
type/value pairs begin on a 32-bit boundary. Thus values may be followed with null bytes to align the
subsequent pair on a 32-bit boundary (note though that there is no guarantee that property values are in
fact as tightly packed in a section as this restriction permits; that is, there may be additional gratuitous
padding).

typedef struct SERIALIZEDPROPERTYVALUE {
DWORD dwType;// type tag
BYTE rgb[]; // the actual property

//value
}

SERIALIZEDPROPERTYVALUE

;

A consequence of these rules is that the smallest legal section, one containing zero properties, contains
the following eight bytes:

08 00 00 00 00 00 00 00

.

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 119

A.2.2 Special property ids

A couple of property ids have special significance in all property sets.

A.2.2.1 Property Id zero: Dictionary of property names

To enable users of property sets to attach meaning to properties beyond those provided by the type indi-
cator, property id zero is reserved in all property sets for an optional dictionary giving human readable
names for the properties in the set and for the property set itself. The value will be an array of (property
id, string) pairs.

The value of property id zero is an array of propid / string pairs. Entries in the array are the ids and cor-
responding names of the properties; these are not in any particular order with respect to their property
ids. Not all of the names of the properties in the set need appear in the dictionary: the dictionary may omit
entries for properties that are assumed to be universally known by clients that manipulate the property
set. Typically names for the base property sets for widely accepted standards will be omitted.

Property names that begin with the binary Unicode characters

0x0001

 through

0x001F

 are reserved for fu-
ture use.

The name indicated as corresponding to property id zero is to be interpreted as the human readable name
of the property set itself; like all property names, this may or may not be present.

The dictionary is stored as a list of Property ID/string pairs; the code page for the strings involved is as
indicated in property id one. This can be illustrated using the following pseudo-structure definition for a
dictionary entry (it's a pseudo-structure because the

sz[]

 member is variable size).

 typedef struct tagENTRY {
DWORD propid; // Property ID
DWORD cb; // Count of bytes in the string,

//including the null at the end
tchar tsz[cb]; // Zero-terminated string. Code

//page as indicated by property id
//one.

}

ENTRY

;

typedef struct tagDICTIONARY {
DWORD cEntries; // Count of entries in the list
ENTRY rgEntry[cEntries];

}

DICTIONARY

;

September 11, 1996 FlashPix Format Specification

120 © 1992-1996 Microsoft Corporation Version 1.0

Note the following:

■

Property ID zero does not have a type indicator. The

DWORD

 that indicates the count of entries
sits in the usual type indicator position.

■

The count of bytes in the string (

cb

) includes the zero character that terminates the string.

■

If the code page indicator is not

1200

 (Unicode), there is no padding between entries to achieve
reasonable alignment (sigh). However, if the code page indicator is Unicode, then each entry
should be aligned on a

DWORD

 boundary.

■

If the code page indicator is not

1200

 (Unicode), property names are stored dbcs strings. If the
code page indicator does indicate Unicode, property name strings are stored as Unicode.

■

Property name strings are restricted in length to

 128

 characters including the

NULL

 terminating
character.

A.2.2.2 Property Id One: Code Page Indicator

Property id one (1) is reserved as an indicator of which code page or script any not-always-Unicode
strings in the property set originated from (code pages are used in Windows and scripts are from the Mac-
intosh world). All such string values in the entire property set, such as

VT_LPSTRs

,

VT_BSTRs

, and the
names in the property name dictionary found in code page zero use characters from this one code page.
If the code page indicator is not present, the prevailing code page on the reader's machine must be as-
sumed. If an application cannot understand the indicated code page, it should not try to modify strings
stored in the property set.

When an application that is not the author of a property set changes a property of type string in the set,
it should examine the code page indicator and take one of the following courses of action:

1. Write the new value using the code page found in the code page indicator.

2. Rewrite all string values in the property set using the new code page (including the new value), and
modify the code page indicator to reflect the new code page.

Possible values for the code page indicator are given in the Win32 API reference (see the NLSAPI func-
tions, and specifically the

GetACP

 function) and Inside Macintosh Volume VI, §14-111. For example, the
code page US ANSI is represented by 0x04e4 (or 1252 in decimal); the code page for Unicode is 1200.
Whether a Windows code page or a Macintosh script is found in property id one is determinted by the
“originating OS version” (

PROPERTYSETHEADER::dwOSVer

) of the property set as a whole. Note that
there exist Windows code page equivalents for the Macintosh scripts numbers (Windows code page
10000, for example, is the Macintosh Roman script).

By far, if it is at all possible, it is recommended that the Unicode code page (1200) be used. This is the
only practical way to in fact achieve worldwide interoperable property sets. In code page 1200, note es-
pecially that the count at the start of a

VT_LPSTR

or

VT_BSTR

is to be interpreted as a

byte

 count, not a
character count. The byte count includes the two zero bytes at the end of the string.

Property id one is of type

VT_I2

, and therefore consists of a

DWORD

 containing

VT_I2

 followed by a

USH-
ORT

 indicating the code page. For example, the type/value pair for property ID one representing the US
ANSI code page is the following six bytes:

 02 00 00 00 e4 04

plus any necessary padding.

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 121

A.2.2.3 Property Id 0x80000000: Locale Indicator

Property Id 0x80000000 (PID_LOCALE) is reserved as an indication of which locale the property set
was written in. The default locale for a property set, in the event that PID_LOCALE does not exist in
the property set will be the system’s default locale (LOCALE_SYSTEM_DEFAULT).

Applications can choose to support locale or just get the default behaviour. Applications that allow users
to specify a working locale should write that locale identifier to this property. Applications that use the
user’s default locale (LOCALE_USER_DEFAULT) should write the user’s default locale identifier.

Applications should be concerned with the possibility of getting information from a property set which
is of a different locale than the app's locale or the user's or the system's (i.e. a foreign object).

There is no provision in the OLE Property Set interfaces defined above to specifically read and write
PID_LOCALE; in other words this property can be treated just like any property. Likewise the system
will not attempt to automatically add or modify this property.

Property Id PID_LOCALE is of type VT_U4, and therefore consists of a DWORD containing VT_U4
followed by a DWORD containing the Locale Identifier (LCID) as defined by Appendix C of the Win32
SDK.

A.2.2.4 Reserved property ids

Property ids with the high bit set (that is, which are negative) are reserved for future definition by Mi-
crosoft.

A.2.3 Property Type Representations

A property (type, value) pair is a

DWORD

 type indicator, followed by a value whose representation de-
pends on the type. The serialized representations of each of the different types of values are as follows:

Type indicator Value Representation

VT_EMPTY no bytes

VT_NULL no bytes

VT_I2 2 byte signed integer

VT_I4 4 byte signed integer

VT_R4 32bit IEEE Floating point value

VT_R8 64bit IEEE Floating point value

VT_CY 8 byte two's complement integer (scaled by 10,000)

VT_DATE A 64bit floating point number representing the number of days (not sec-
onds) since December 31, 1899 (thus, January 1, 1900 is 2.0, January 2,
1900 is 3.0, and so on). This is stored in the same representation as

VT_R8.

September 11, 1996 FlashPix Format Specification

122 © 1992-1996 Microsoft Corporation Version 1.0

VT_BSTR Counted, null terminated binary string; represented as a

DWORD

 byte
count of the number of bytes in the string (including the terminating null)
followed by the bytes of the string. Character set is as indicated by the
code page indicator.

VT_ERROR A

DWORD

 containing a status code.

VT_BOOL Boolean value, a

WORD

 containing 0 (false) or -1 (true).

VT_VARIANT A type indicator (a

DWORD

) followed by the corresponding value.

VT_VARIANT

 is only used in conjunction with

VT_VECTOR

: see below.

VT_UI1 1 byte unsigned integer

VT_UI2 2 byte unsigned integer

VT_UI4 4 byte unsigned integer

VT_I8 8 byte signed integer

VT_UI8 8 byte unsigned integer

VT_LPSTR This is the representation of many strings. Stored in the same representa-
tion as

VT_BSTR

. Note therefore that the serialized representation of

VT_LPSTR

in fact has a preceding byte count, whereas the in-memory
representation does not. Character set is as indicated by the code page in-
dicator.

VT_LPWSTR A counted and null terminated Unicode string; a

DWORD

 character count
(where the count includes the terminating null) followed by that many
Unicode (16bit) characters. Note that the count is a character count, not
a byte count.

VT_FILETIME 64bit FILETIME structure as defined by Win32

VT_BLOB A

DWORD

count of bytes, followed by that many bytes of data; the byte
count does not include the four bytes for the length of the count itself: an
empty blob would have a count of zero, followed by zero bytes. Thus, the
serialized representation of a

VT_BLOB

 is similar to that of a

VT_BSTR

but
does not guarantee a null byte at the end of the data.

VT_STREAM Indicates the value is stored in a stream which is sibling to the “Contents”
stream. Following this type indicator is data in the format of a serialized

VT_LPSTR

which names the stream containing the data.

VT_STORAGE Indicates the value is stored in an IStorage which is sibling to the “Con-
tents” stream. Following this type indicator is data in the format of a se-
rialized

VT_LPSTR

which names the

IStorage

 containing the data.

VT_STREAMED_OBJECT As in

VT_STREAM

but indicates that the stream contains a serialized ob-
ject, which is a class id followed by initialization data for the class.

VT_STORED_OBJECT As in

VT_STORAGE

but indicates that the designated

IStorage

contains a
loadable object.

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 123

VT_BLOB_OBJECT A

BLOB

 containing a serialized object in the same representation as
would appear in a

VT_STREAMED_OBJECT

. That is, following the

VT_BLOB_OBJECT

 tag is a DWORD byte count of the remaining data
(where the byte count does not include the size of itself) which is in the
format of a class id followed by initialization data for that class.

The only significant difference between

VT_BLOB_OBJECT

and

VT_STREAMED_OBJECT

is that the former does not have the system-level
storage overhead that the latter would have, and is therefore more suit-
able for scenarios involving numbers of small objects.

VT_CF A

BLOB

 containing a clipboard format identifier followed by the data in
that format. That is, following the

VT_CF

 tag is data in the format of a

VT_BLOB

: a

DWORD

 count of bytes, followed by that many bytes of data
in the format of a packed

VTCFREP

described just below, followed imme-
diately by an array of bytes as appropriate for data in the clipboard format
format (text, metafile, or whatever).

VT_CLSID A class ID (or other GUID).

VT_VECTOR If the type indicator is one of the above values with this bit on in addition,
then the value is a

DWORD

count of elements, followed by that many rep-
etitions of the value.

As an example, a type indicator of

VT_LPSTR|VT_VECTOR

has a

DWORD

element count, a

DWORD

byte count, the first string data, a

DWORD

byte
count, the second string data, and so on.

Clipboard format identifiers, stored with the tag

VT_CF

, use one of five different representations:

typedef struct VTCFREP {
LONG lTag;
BYTE rgb[];
}

VTCFREP

;

September 11, 1996 FlashPix Format Specification

124 © 1992-1996 Microsoft Corporation Version 1.0

The values for

rgb

are determined by the different values for

lTag

:

lTag Value rgb value

-1L a

DWORD

containing a built-in Windows clipboard format value.

-2L a

DWORD

containing a Macintosh clipboard format value.

-3L a

GUID

containging a format identifier (this is in little usage).

any positive value a null-terminated string containing a Windows clipboard format name, one suit-
able for passing to

RegisterClipboardFormat

. The code page used for characters in
the string is per the code page indicator. The “positive value” here is the length of
the string, including the null byte at the end.

0L no data (very rare usage)

As was mentioned above, all type/value pairs begin on a 32-bit boundary. It follows that in turn, the type
indicators and values of a type value pair are so aligned. This means that values may be necessarily fol-
lowed by null bytes to align a subsequent type/value pair.

However,

within

a vector of values, each repetition of a value is to be aligned with its

natural

alignment
rather than with 32-bit alignment. In practice, this is only significant for types

VT_I2

 and

VT_BOOL

 (which
have 2-byte natural alignment); all other types have 4-byte natural alignment. Therefore, a value with
type tag

VT_I2 | VT_VECTOR

 would be

■

a

DWORD

 element count, followed by

■

an sequence of packed 2-byte integers with

no

 padding between them, whereas a value of with
type tag

VT_LPSTR | VT_VECTOR

 would be a DWORD element count, followed by

■

a sequence of (

DWORD cch

,

char rgch[]

) strings, each of which may be followed by null padding to
round to a 32-bit boundary.

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 125

A.3 ‘CompObj’ Stream Binary Format

A.3.0 Overview

The ‘CompObj’ stream in a storage object provides generic information regarding the native data con-
tained in this storage object. This generic information is manipulated through the OLE API functions
WriteFmtUserTypeStg and ReadFmtUserTypeStg and includes:

■

User Type: a user readable string that indicates the type of the object.

■

Clipboard Format: implies the names and structure of streams and sub-storages.

This document exposes the binary format of the data written by WriteFmtUserTypeStg and interpreted
by ReadFmtUserTypeStg.

A.3.1 Format

The format consists of three basic parts, that represent versions of the stream written by different versions
of the OLE2 libraries:

■

Header, User Type (ANSI), Clipboard format (ANSI)

■

ProgID (ANSI): optional, if not present, not Unicode information may follow

■

Unicode versions of User Type, Clipboard format and ProgID: optional, if any Unicode informa-
tion is present all three items have to be valid. Presence of the Unicode information is indicated
by a “magic DWORD” value following the ANSI ProgID.

The following is a detailed description of the format using a pseudo C++ syntax where applicable.

A.3.1.1 Mandatory part

A.3.1.1.1 Stream name

 // Stream name: L”\1CompObj”

September 11, 1996 FlashPix Format Specification

126 © 1992-1996 Microsoft Corporation Version 1.0

A.3.1.1.2 Header

struct CompObjHdr// The leading data in the CompObj stream
{
DWORDdwVersionAndByteOrder;// First DWORD: LOWORD Ver

sion=0x0001, HIWORD=FFFE (ignored by
reader!)

DWORDdwFormat = 0x00000a03; // OS Version: always Win 3.1
DWORDunused=-1L; // Always a -1L in the stream

CLSIDclsidClass; // Class ID of this object, identical
to the CLSID in the parent storage of
the stream

};

A.3.1.1.3 User Type

struct ANSIUserType
{
DWORDdwLenBytes;// length of User Type string in bytes

including terminating 0
charszUserType[dwLenBytes];// User Type string (ANSI) terminated

with ‘\0’
}

A.3.1.1.4 Clipboard Format (ANSI)

LONGdwCFLen;// Length of clipboard format name
// special values:
// 0 no clipboard format
// -1 DWORD with standard Windows CF
//follows:
//DWORD cfStdWin;
// -2 DWORD with standard Apple Mac
//intosh CF follows:
//DWORD cfStdMac;
// >0 Length in bytes of clipboard
//format name including terminating 0

char szCFName[dwCFLen]; // Clipboard Format Name (ANSI) te
 // minated with ‘\0’

A.3.1.2 Optional: ProgID (ANSI)

The stream may end at this point. Versions of OLE before 2.01 provided only the data described in sec-
tion 2.1.

If more data follows it is to be interpreted as follows:

struct ANSIProgID
{
DWORDdwLenBytes;// length of ProgID stream in bytes.

 // dwLenBytes<=40
charszProgID[dwLenBytes];// ProgID string (ANSI) terminated with ‘\0’
}

A.3.1.3 Optional: Unicode versions

Only if a ANSI ProgID was provided (possibly with ANSIProgID::dwLenBytes=0), the following data
may follow:

Section A: Structured Storage

Version 1.0 © 1992-1996 Microsoft Corporation 127

A.3.1.3.1 Magic Number

DWORD dwMagicNumber =0x71B239F4; // indicates Unicode UserType, CF
// and ProgID follow (all three!)

A.3.1.3.2 User Type (Unicode)

struct UNICODEUserType
{
DWORD dwLenBytes;// Size of Unicode User

Type in bytes (not cha
acters!) including te
minating 0.

WCHARwszUserType[dwLenBytes/sizeof(WCHAR)];// Unicode User Type
//string,terminated with
// ‘\0’.

};

A.3.1.3.3 Clipboard Format (Unicode)

LONGdwUnicodeCFLen;// Length of Unicode clipboard format
name in bytes
// special values:
// 0 no clipboard format
// -1 DWORD with standard Windows CF
//follows:
//DWORD cfStdWin;
// -2 DWORD with standard Apple Mac
//intosh CF follows:
//DWORD cfStdMac;
// >0 Length in bytes of clipboard
//format name including terminating 0

WCHARszCFName[dwUnicodeCFLen/sizeof(WCHAR)]; // Clipboard Format
//Name (Unicode) terminated with ‘\0’

A.3.1.3.4 ProgID (Unicode)

struct UNICODEProgID
{
DWORD dwLenBytes;// Size of Unicode ProgID in bytes (not characters!) including

// terminating ‘\’0.
WCHARwszProgID[dwLenBytes/sizeof(WCHAR)];// Unicode ProgID string, terminated

// with ‘\’0.
};

September 11, 1996 FlashPix Format Specification

128 © 1992-1996 Microsoft Corporation Version 1.0

Version 1.0 © 1996 Eastman Kodak Company 129

References

1. CCIR Recommendation 709, Basic Parameter Values for the HDTV Standard for the
Studio and for International Programme Exchange

2. Hunt, R.W.G. “Measuring Color”, Ellis Harwood Limited, Chichester, England,
1987

3. CIE Publication 15.2 “Colorimetry” second edition, CIE, Vienna, 1986

4. CCIR Recommendation 601–1, Encoding Parameters of Digital Television for Stu-
dios

5. ISO/TC 130/WG2 N438, International Color Profile format, March 26, 1995

6. OLE 2 Programmers Reference, Volume One Microsoft Press (1994)

7. Brockschmidt, Kraig. Inside OLE2, Microsoft Press (1994)

8. ICC Profile Format Specification version 3.2, International Color Consortium (1995)

9. ISO/IEC 10918-1 / ITU-T Recommendation T.81 “Information technology - Digital
compression and coding of continuous-tone still images - Requirements and guide-
lines

10.Computer graphics: principles and practice, James D. Foley et al., 2nd ed. 1992,
Addison-Wesley Systems programming series

11.PostScript language reference manual, Adobe Systems, Inc., 2nd ed., 1990, Addi-
son-Wesley Publishing Company, Inc.

12.Programmer’s Guide to the IVUE toolkit, FITS Imaging, Copyright © 1993-1994,
FITS Imaging

13.The Unicode Standard, The Unicode Consortium, 1991, Addison-Wesley.

14.Porter, T., and T. Duff. Compositing digital images, ACM Computer Graphics (SIG-
GRAPH), 1984, 18(3), 253-259, SIGGRAPH '84 Conference Proceedings.

15.Thompson, Kelvin. Alpha Blending, Graphic Gems. (1990) Academic Press, Inc.
210-211

16.Goldman, R. “Decomposing projective transformations,” Graphics Gems 3, 1992,
Academic Press, pp 98-107.

17.Miller, Steven. DEC/HP, Network Computing Architecture, Remote Procedure Call
Run Time Extensions Specification, Version OSF TX1.0.11, July 23, 1992, Appendix
A “Universal Unique Indentifiers,” http://www.osf.org/dce.

18.Blinn, James F. Jim Blinn’s Corner: Compositing Part 1: Theory, IEEE Computer
Graphics & Applications, September 1994, pp. 83-87. Compositing Part 2: Practice,
IEEE Computer Graphics & Applications, November 1994, pp. 78-82.

19.“Storage naming conventions,” OLE 2 Programmer’s reference. Volume 1,
Microsoft Press, 1995, pp. 596-596.

20.Kano, Nadine and A. Freytag. “The international character set conundrum: ANSI
Unicode, and Microsoft Windows,” Microsoft Systems Journal, 1994 Volum 9,
November 1994.

21.Photography - Electronic still picture cameras - determination of ISO speed (Work-
ing draft #6).

22. ISO 14524, Photography - Electronic still picture cameras - Methods for measuring
the opto-electronic conversion functions (Working draft 4.0).

September 10, 1996 FlashPix Format Specification

130 © 1996 Eastman Kodak Company Version 1.0

23.

Programming Windows, Charles Petzold, 1990, Microsoft Press.

24.

Inside Macintosh: Files, Addison-Wesley Publishing Co. (1992)

	1.1 Purpose
	1.2 Specification Organization
	1.3 Conventions
	1.4 Structured Storage
	1.4.1 Property Sets
	1.4.2 Summary Information Property Set
	1.4.3 File identification
	1.4.4 OS-level file treatment in Windows or with O...
	1.4.5 FlashPix Streams
	1.4.6 String and Character Representation
	1.4.6.1 Storage and Stream Names
	1.4.6.2 Property Set Code Page and Strings

	1.5 Format Compliance
	1.6 FlashPix File Overview
	1.6.1 Extension management

	2.1 Coordinate systems
	2.1.1 Resolution-Independent Coordinates
	2.1.2 Resolution-Dependent Coordinates

	2.2 Multiple resolutions
	2.2.1 Resolution sizes
	2.2.2 Non-Hierarchical FlashPix Images

	2.3 Tiling
	2.3.1 Breaking an Image into Tiles

	3.1 FlashPix Image Object 3.1 Structure
	3.1.1 Resolution Storages
	3.1.2 Summary Info Property Set (required)
	3.1.3 CompObj Stream (required)
	3.1.4 Image Info Property Set (optional)
	3.1.5 Image Contents Property Set (required)
	3.1.5.1 Primary description group
	3.1.5.2 Resolution Description Groups
	3.1.5.3 Compression Description Group

	3.1.6 ICC Profile (optional)
	3.1.7 Extension List Property Set (optional)

	4.1 The Subimage Header Stream
	4.1.1 Subimage Header Stream Data
	4.1.2 Tile header table

	4.2 The Subimage Data Stream
	4.2.1 Channel Ordering
	4.2.2 Tile Data Format
	4.2.2.1 Uncompressed
	4.2.2.2 Single Color Compressed
	4.2.2.3 JPEG Compressed

	5.1 Introduction
	5.2 PhotoYCC and NIF RGB Reference 5.2 Viewing Env...
	5.2.1 PhotoYCC Reference Viewing Environment
	5.2.2 NIF RGB Reference Viewing Environment

	5.3 Colorimetric Definitions and Digital 5.3 Encod...
	5.3.1 PhotoYCC Colorimetric Definition and Digital...
	5.3.2 NIFRGB Colorimetric Definition and Digital E...

	5.4 Monochrome Encoding Definition
	6.1 Informational Groups
	6.2 File Source Group
	6.3 Intellectual Property Group
	6.4 Content Description Group
	6.5 Camera Information Group
	6.6 Per Picture Camera Settings Group
	6.7 Digital Camera Characterization 6.7 Group
	6.8 Film Description Group
	6.9 Original Document Scan 6.9 Description Group
	6.10 Scan Device Property Group
	7.1 FlashPix Image View Object
	7.1.1 CompObj Stream (required)
	7.1.2 Source and Result FlashPix Image Objects
	7.1.3 Source and Result Description Property Sets
	7.1.4 Transform Property Set (optional)
	7.1.5 Operation Property Set (optional)
	7.1.6 Global Info Property Set (required)
	7.1.7 Extension List Property Set (optional)

	7.2 Viewing Transform Parameters
	7.2.1 Selection via Rectangle of Interest
	7.2.2 Filtering
	7.2.2.1 The Measure
	7.2.2.2 Subsystem information
	7.2.2.3 User Sharpening Adjustment

	7.2.3 Spatial Orientation
	7.2.4 Tone and Color Corrections
	7.2.4.1 Color Images
	7.2.4.2 Monochrome Images

	7.2.5 Contrast adjustments

	7.3 Sequence of Viewing Parameters
	7.3.1 Coordinate System
	7.3.2 Image Size and Limits

	Structured Storage

