
Report Exselt features of implementation defined features from the spec

Implementation defined feature (appendix F) Support level

1. If the initialization of any global variables or parameter depends on the context item, a dynamic error

can occur if the context item is absent. It is implementation-defined whether this error occurs during

priming of the stylesheet or subsequently when the variable is referenced; and it is implementation-

defined whether the error occurs at all if the variable or parameter is never referenced. (See 2.3.2

Priming a Stylesheet)

Error occurs when variable is referenced and

used, except for some special cases (as when a

param value is provided as an expression)

2. The way in which an XSLT processor is invoked, and the way in which values are supplied for the source

document, starting node, stylesheet parameters, and base output URI, are implementation-defined. (See

2.3.2 Priming a Stylesheet)

Available through API, commandline args and

configuration file

3. The way in which a base output URI is established is implementation-defined (See 2.3.6 Post-processing

the Raw Result)

Through API

4. The mechanisms for creating new extension instructions and extension functions are implementation-

defined. (See 2.8 Extensibility)

Through API

5. It is implementation-defined whether type errors are signaled statically. (See 2.11 Error Handling) Some are raised statically, some not, depending

on whether we can find the static type statically

6. It is implementation-defined how a package is located given its name and version, and which version of

a package is chosen if several are available. (See 3.6.2 Dependencies between Packages)

Through API, and using a package-catalog XML

file

7. Mechanisms to locate the source or executable code of a package are implementation-defined. (See

3.6.2 Dependencies between Packages)

Through API and using a package-catalog XML

file

8. When XQuery functions and variables are used from XSLT, it is implementation-defined how any

differences between XSLT and XQuery semantics are handled; it is implementation-defined whether

XQuery code is evaluated within the same execution scopeFO30 as XSLT code; and it is implementation-

defined whether node identity is preserved across the interface. The effect of calling XQuery functions

that are updateing or nondeterministic is also implementation-defined. (See 3.6.7 Using an XQuery

Library Package)

XQuery is not supported

9. In the absence of an [xsl:]default-collation attribute, the default collation may be set by the calling

application in an implementation-defined way. (See 3.8.1 The default-collation Attribute)

Not yet supported, but will be made available

through API

10. The set of namespaces that are specially recognized by the implementation (for example, for user-

defined data elements, and extension attributes) is implementation-defined. (See 3.8.3 User-defined Data

Elements)

The Exselt extension namespace is

automatically recognized for Exselt extension

functions

11. The effect of user-defined data elements whose name is in a namespace recognized by the

implementation is implementation-defined. (See 3.8.3 User-defined Data Elements)

User defined data elements are not given any

special semantics

12. If the effective version of any element in the stylesheet is not 1.0 or 2.0 but is less than 3.0, the

recommended action is to report a static error; however, processors may recognize such values and

process the element in an implementation-defined way. (See 3.10 Backwards Compatible Processing)

We currently don't treat it as a static error, but

this will likely change for versions like 0.9, 2.1

etc.

13. It is implementation-defined whether an XSLT 3.0 processor supports backwards compatible behavior

for any XSLT version earlier than XSLT 3.0. (See 3.10 Backwards Compatible Processing)

We support 1.0 backwards compatibility

behavior. Also 2.0, but the spec defines no

differences

14. The way in which the URI reference appearing in an xsl:include or xsl:import declaration is used to

locate a representation of a stylesheet module, and the way in which the stylesheet module is

constructed from that representation, are implementation-defined. In particular, it is implementation-

defined which URI schemes are supported, whether fragment identifiers are supported, and what media

types are supported. (See 3.12.1 Locating Stylesheet Modules)

Through API. Fragment identifiers are

supported and media types are recognized.

15. It is implementation-defined what forms of URI reference are acceptable in the href attribute of the

xsl:include and xsl:import elements, for example, the URI schemes that may be used, the forms of

fragment identifier that may be used, and the media types that are supported. (See 3.12.1 Locating

Stylesheet Modules)

Duplicate, see above

16. An implementation may define mechanisms, above and beyond xsl:import-schema that allow schema

components such as type definitions to be made available within a stylesheet. (See 3.15 Built-in Types)

Not supported explicitly, but potentially

available through static type context API.

17. It is implementation-defined which versions and editions of XML and XML Namespaces (1.0 and/or

1.1) are supported. (See 4.1 XML Versions)

We support 1.1 for serialization only,

unsupported for reading, but planned.

18. Limits on the value space of primitive datatypes, where not fixed by [XML Schema Part 2], are

implementation-defined. (See 4.7 Limits)

Dates: negative and high positive years

supported (limited by Int32) for most

operations. Precision is in the range of

xs:decimal fractional part. Integer is 64 bit.

Decimal is 128 bits, strings are 2^32 max.

19. The set of statically known documentsXP30 is implementation-defined. (See 5.4.1 Initializing the Static

Context)

Defaults to empty set, or configurable.

20. The set of statically known collectionsXP30 is implementation-defined. (See 5.4.1 Initializing the Static

Context)

Defaults to empty set, or configurable.

21. The statically known default collection typeXP30 is implementation-defined. (See 5.4.1 Initializing the

Static Context)

We do not allow overriding this type, it defaults

to node()*

22. Implementations may provide user options that relax the requirement for the docFO30 and collectionFO30

functions (and therefore, by implication, the document function) to return stable results. The manner in

which such user options are provided, if at all, is implementation-defined. (See 5.4.3 Initializing the

Dynamic Context)

Defaults to stable. We do not allow this to be

configurable (but this may change).

23. The implicit timezone for a transformation is implementation-defined. (See 5.4.3.2 Other Components

of the XPath Dynamic Context)

Through API

24. The default collectionXP30 is implementation-defined. (See 5.4.3.2 Other Components of the XPath

Dynamic Context)

The spec uses the term default node collection.

Defaults to empty set. Can be set through API

25. The availability of dynamic context information within extension functions is implementation-defined.

(See 5.4.4 Additional Dynamic Context Components used by XSLT)

The dynamic context is available when writing

extension functions.

26. The default values for the warning-on-no-match and warning-on-multiple-match attributes of xsl:mode

are implementation-defined. (See 6.6.1 Declaring Modes)

Defaults to "no", cannot be overridden

27. The form of any warnings output when there is no matching template rule, or when there are multiple

matching template rules, is implementation-defined. (See 6.6.1 Declaring Modes)

Can be configured through ErrorListener or with

the result of the transform (from commandline,

to stderr)

28. Streamed processing may be initiated by invoking the transformation with an initial mode declared as

streamable, while supplying the initial match selection (in an implementation-defined way) as a streamed

document. (See 6.6.4 Streamable Templates)

Through API, commandline, or automatically, if

the initial mode is streamable

29. The mechanism by which the caller supplies a value for a stylesheet parameter is implementation-

defined. (See 9.5 Global Variables and Parameters)

Through API, config file, or commandline, can

also be an expression

30. The set of extension functions available in the static context for the target expression of xsl:evaluate is

implementation-defined. (See 10.4.1 Static context for the target expression)

Through API, but not user-configurable yet. By

default, ext functions are allowed

31. If an xml:id attribute that has not been subjected to attribute value normalization is copied from a

source tree to a result tree, it is implementation-defined whether attribute value normalization will be

applied during the copy process. (See 11.9.1 Shallow Copy)

The attribute is normalized, this is not

overridable.

32. The numbering sequences supported by the xsl:number instructions, beyond those defined in this

specification, are implementation-defined. (See 12.4 Number to String Conversion Attributes)

Most unicode number sequences are

supported. Configurable through API

33. There may be implementation-defined upper bounds on the numbers that can be formatted by

xsl:number using any particular numbering sequence. (See 12.4 Number to String Conversion Attributes)

Limited to size of the used datatype. No

override available.

34. The set of languages for which numbering is supported by xsl:number, and the method of choosing a

default language, are implementation-defined. (See 12.4 Number to String Conversion Attributes)

International numbering is supported for some

languages.

35. With xsl:number, it is implementation-defined what combinations of values of the format token, the

language, and the ordinal attribute are supported. (See 12.4 Number to String Conversion Attributes)

Limits can be interdependent, not easy to

summarize.

36. If the data-type attribute of the xsl:sort element has a value other than text or number, the effect is

implementation-defined. (See 13.1.2 Comparing Sort Key Values)

We try to atomize, if that fails, we raise an error

37. The facilities for defining collations and allocating URIs to identify them are largely implementation-

defined. (See 13.1.3 Sorting Using Collations)

Through API. Parameters on the URI can be

used to set up collation.

38. The algorithm used by xsl:sort to locate a collation, given the values of the lang and case-order

attributes, is implementation-defined. (See 13.1.3 Sorting Using Collations)

The relevant collation is found by a lookup

mechanism

39. If none of the collation, lang, or case-order attributes is present (on xsl:sort), the collation is chosen in

an implementation-defined way. (See 13.1.3 Sorting Using Collations)

The default is the Unicode collation. It will use

the default-collation attribute. This is also

configurable by the API

40. When using the family of URIs that invoke the Unicode Collation Algorithm, the effect of supplying a

query keyword or value not defined in this specification is implementation-defined. The defaults for query

keywords are also implementation-defined unless otherwise stated. (See 13.4 The Unicode Collation

Algorithm)

The collations in this section are not yet fully

supported, so we don't know the defaults yet

either

41. The posture and sweep of an extension instruction are implementation-defined. (See 19.8.4.2

Streamability of extension instructions)

We plan to allow extension instructions to be

streamable, but this is not yet implemented

42. The posture and sweep of a call to an extension function are implementation-defined. (See 19.8.7.13

Streamability of Function Calls)

We plan to allow extension functions to be

streamable by the new categories, but this is

not yet implemented

43. The posture and sweep of a NamedFunctionRef referring to an extension function are implementation-

defined. (See 19.8.7.14 Streamability of Named Function References)

Depends on resolution of previous point

44. The set of media types recognized by the processor, for the purpose of interpreting fragment

identifiers in URI references passed to the document function, is implementation-defined. (See 20.1

fn:document)

By default this is limited by built-in .NET

functionality of the UriResolver used by

XmlReader, this resolver can be overridden.

45. The values returned by the system-property function, and the names of the additional properties that

are recognized, are implementation-defined. (See 20.3.4 fn:system-property)

We do not yet have other properties, but this

will likely change.

46. The destination and formatting of messages written using the xsl:message instruction are

implementation-defined. (See 22.1 Messages)

Are treated as events, which can be rerouted by

MessageEventContainer (API)

47. The detail of any external mechanism allowing a processor to disable checking of assertions is

implementation-defined. (See 22.2 Assertions)

We allow assertions to be switched on/off from

settings or commandline or config file

48. This specification does not define any mechanism for creating or binding implementations of

extension instructions or extension functions, and it is not required that implementations support any

such mechanism. Such mechanisms, if they exist, are implementation-defined. (See 23 Extensibility and

Fallback)

Unknown at this point

49. The effect of an extension function returning a string containing characters that are not permitted in

XML is implementation-defined. (See 23.1.2 Calling Extension Functions)

(currently) non-XML characters are not allowed

50. The way in which external objects are represented in the type system is implementation-defined. (See

23.1.3 External Objects)

(currently) unsupported types to be returned is

not allowed

51. The way in which the results of the transformation are delivered to an application is implementation-

defined. (See 24 Transformation Results)

Several ways are available through API,

commandline and config file, including

streaming output (in development).

52. There may be implementation-defined restrictions on the form of absolute URI that may be used in

the href attribute of the xsl:result-document instruction. (See 24.1 Creating Secondary Results)

It is limited to the UriResolver and this can be

overridden by the user.

53. Implementations may provide additional mechanisms allowing users to define the way in which final

result trees are processed. (See 24.1 Creating Secondary Results)

Similar to item 51

54. If serialization is supported, then the location to which a final result tree is serialized is

implementation-defined, subject to the constraint that relative URI references used to reference one tree

from another remain valid. (See 25 Serialization)

Similar to item 51

55. The default value of the encoding attribute of the xsl:output element is implementation-defined. (See

25 Serialization)

Defaults to UTF-8

56. It is implementation-defined which versions of XML, HTML, and XHTML are supported in the version

attribute of the xsl:output declaration. (See 25 Serialization)

XML 1.0/1.1, HTML 4.0 and 5.0, XHTML 1.0 and

1.1 (but xhtml 1.1 is limited)

57. The default value of the byte-order-mark serialization parameter is implementation-defined in the

case of UTF-8 encoding. (See 25 Serialization)

Defaults to YES

58. It is implementation-defined whether, and under what circumstances, disabling output escaping is

supported. (See 25.2 Disabling Output Escaping)

Not supported, and no plans to support it

59. It is implementation-defined whether (and if so how) an XSLT 3.0 processor is able to work with

versions of XPath later than XPath 3.0. (See 26 Conformance)

Some functions are supported, but not yet

implemented

60. It is implementation-defined whether (and if so how) an XSLT 3.0 processor is able to work with

versions of [XSLT and XQuery Serialization] later than 3.0. (See 26.3 Serialization Feature)

Not supported yet.

