
Sheet1

Page 1

BUG 27273 – Review of Accumulators

Comment Response

1 18.2 n 18.2, for "An accumulator defines a value that is computed Done.

progressively ..." perhaps read "An accumulator defines a series of
values that is computed progressively".

2 We did not find any rule that actively makes it impossible to apply an
accumulator to a tree rooted in an attribute or namespace node; MSM
wondered whether the language might not be simpler to describe if we
didn't forbid it. MK eventually said there probably isn't any explicit
rule.

ABr did find a place saying that attribute and namespace nodes are not
visited in the tree traversal for accumulators.

MSM suggested that "Accumulators can apply to trees rooted at any kind Done.

of node, other than attribute and namespace nodes." be revised to say
simply "Accumulators can apply to trees rooted at any kind of node."
It would leave the point of the note untouched, and avoid raising the
question we spent time on.

4 18.2.2 - what is "tree-walking order" (18.2.2)

Possible solution: replace "traversing a tree in tree-walking order" Done.

with "traversing a tree, as follows."

5 18.2.1 For

MSM proposes

MK was a little unhappy with the awkwardness of the new phrasing, but Rephrased the para to talk of guaranteed streamability.

agreed to consider a change here.

6 In 18.2.1, the following paragraph raises the same issue:

MSM thought we might want to define "When streaming" as shorthand for
something involving "guaranteed streamability", to avoid having to
rephrase all of the passages that use "when streaming" in this way.

7 18.2.2 In para 3 ("On each node visit") it's worth mentioning applies-to. Done.

8 - does accumulator-after('x') succeed if 'x' has no phase="end"? Added a note to say yes, it does succeed.

Stated that accumulators can apply to trees rooted at any kind of node, but in
the case of attribute and namespace nodes, there is no way to obtain the
accumulator value.

The place is 18.2.3. 18.2.3 "The traversal of a tree contains two traversal
events for each node in the tree, other than attribute and namespace nodes"

 The accumulator-after function, however, is restricted by virtue
 of the streamability rules to appear after any instruction that
 reads the descendants of the node in question.

 The accumulator-after function, however, is not guaranteed
 streamable if it appears after any instruction that reads the
 descendants of the node in question.

 When streaming, the applies-to pattern must be motionless. Note
Rephrased: "For an accumulator to be <termref def="dt-guaranteed-
streamable"/>, …"

 that a pattern of the form document-node(element(fpml)) is
 classified as motionless even though it involves a small amount of
 look-ahead.

Sheet1

Page 2

We discussed this and concluded that the answer entailed by the

references to an accumulator having "two values" for a node; if the
value doesn't change, some readers will think that only one value is
involved, not two values which are the same.)

Note that the text says that if there is no matching rule (no
phase="end"), the value does not change; this does not mean that the
post-descent value is necessarily the same as the pre-descent value,
because the accumulator's value may have changed while visiting the
descendants.

9 18.2.3 In step 2a, applies-to should be mentioned. Done.

10 In step 4 of the last list, we discussed briefly whether the focus for No change.

the evaluation of the initial value should be the global context item;
the wording here aligns with that of 18.2.1 ("The initial value of the
accumulator"), so we concluded that the text does reflect the decision
we made when we discussed this question.

11 - the argument for accumulator-before does not need to be motionless (it No change.

does not make sense, it returns a property
of the current node, consider a consuming variable in the same scope, such
limits only apply to accumulator-after)

12 - accumulator-before could be given an extra argument that points to a node No change.

(as with fn:node-name, fn:nilled etc)

Allowing a node argument would indeed make the function more
convenient in non-streaming contexts, but would be just tricky enough
that the WG did not want to undertake it now.

13 18.2.8 the first example uses a non-streamable pattern (positional predicate) Fixed.

>
14 third example uses function fn:accumulator Fixed.

>

15 19.8.8.1 >- I don't get the necessity of item 4 in 19.8.8.1, wouldn't it then also No change.

>apply to non-streaming cases as an error scenario?

There is no problem - no action.

16 >- Also about that point: two rules match "foo", one phase="end", one No change.

>phase="start": always free-ranging?

There is no problem - no action.

17 >- Item 6 in that list, would it apply to xsl:param/@select (part of
>declaration)?

MSMQ: I think we do need a change of wording here.
Otherwise "contained in" is being used in a way that excludes some

parent/child relations in XML.

current text is "yes". (There may be a little confusion caused by the

Note also that literal result elements are not technically instructions, although we
include them in section 19.8.4 as if they were...

1. change rule 6 "If the function call is not contained in an
instruction," to "If no enclosing node of the function call is part of a
sequence constructor". Define "enclosing node" as a
generalization of "enclosing element" which is defined in 5.4.1.

2. In note 6, explain that the parts of a sequence constructor are defined in 5.8.
This therefore includes attributes of instructions and LREs, and text value
templates. Also explain that it does NOT include xsl:param or xsl:sort elements.

Sheet1

Page 3

Examples:
<xsl:template expand-text="yes">{accumulator-after('test')}</xsl:template>

<xsl:variable select="accumulator-after('tes')" />
--> as instruction, currently allowed (?)

<xsl:sort select="accumulator-after('bla')" />

Maybe we should say "contained in a sequence constructor" instead,
but that does not cover xsl:sequence in xsl:fork...

ACTION-2014-11-06-002: Mike Kay to look at 19.8.8.1 item 6 in view of Abel's
comments and examples identified at telcon 2014-11-06.

18 The last sentence is a bit "opaque" in the view of some reviewers... Deleted the phrase "irrespective of the nesting of sections".

Perhaps for "irrespecive of the nesting of sections" read "in the
order in which sections are encountered in a depth-first traversal
of the tree" (or something shorter and clearer)

19

"Rules" section lacks the "green" from 18.2.4. Fixed.

19a Add a note saying that it is not necessary to have an accumulator Done.

rule for the "after" in order to use fn:accumulator-after

20

In the first paragraph: stylesheet -> package. Done.

21

"motionless" - add a link to the classification section? Done.

22 MSMQ: pecifying streamable="yes" on an xsl:accumulator element
declares an intent that the accumulator should be guaranteed

streamable according to these criteria.
I think that's not quite right.
I think it declares an intent that the accumulator should be usable
in a streaming context.
If I'm using Saxon 42, which has solved all sorts of additional problems,
I may have a streamable accumulator that is not guaranteed streamable.
I think my concern would be addressed (and the paragraph would still work)
if for "guaranteed streamable according to these criteria" we say "streamable"
It might be possible to delete the sentence entirely -- the next sentence
does the real work here.

It is a valid comment and Mike Kay will review.

23 Abel: @initial-value is marked required, but the text does not reflect Done.

this (18.2.1), also, I don't think its semantics requires it to be required.

Decided to leave @initial-value mandatory.

3. In rule 8, change "If no containing instruction has a preceding
sibling instruction whose sweep is consuming" to "If no enclosing
node N of the function call has a preceding-sibling node P such
that N and P are part of the same sequence constructor and the
sweep of P is consuming, ...

> 18.2.4 fn:accumulator-before - last telcon ended here

> 18.2.5 fn:accumulator-after

> 18.2.6 Visibility and Overriding of Accumulators

> 18.2.7 Streamability of Accumulators

Changed "declares an intent that it should be guaranteed strreamable" to
"declares an intent that it should be streamable, either because it is guaranteed
streamable, or because it takes advantage of streamability extensions offered
by a particular processor".

Made this change not just for accumulators but for the other "declared
streamable" constructs where the same form of words appears.

> 18.2.8 Examples of Accumulators

Sheet1

Page 4

24 First example: match attribute has a positional predicate, which is not Done (duplicate)

allowed for streaming.

Easiest fix is to drop the "[1]" (thus being the last title)

25 Example 3 (Output Hierarchic Section Numbers)

Has fn:accumulator (not -before or -after). Done (duplicate)

26 Example 4:

Suggested to enhance the example to show how the accumulator Done.

is actually used.

	Sheet1

