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 Minutes 

 Rniwa: We're looking to discuss alternatives to custom built-ins - there are a few possible 
 options in the issue. Should we go over them? 

 (yes) 

 Given the historical objections from WebKit - this session's goal is to come up with an 
 agreement to solve the same use cases but which is acceptable to WebKit. 

 Olli: Is there a link to the objection/summary? 

 Annevk:  https://github.com/WebKit/standards-positions/issues/97  (in particular my and rniwa’s 
 comments) 

 Rniwa: The main issue I think, is the fact that we support underlying use cases, but the 
 proposed solution that we objected to - there are limitations in terms of what the browser can do 
 with regard to the accessibility tree.  The whole reason custom elements are customized are 
 because they don't want just the functionality (or DOM) that exists.. Input is an often cited use 
 case, you cannot even touch the shadow dom there 

 Annevk: More bluntly, it’s a hacky solution that doesn't truly allow for subclassing. 

 Justin: Can we phrase that in a way that the alternatives - we can see why it's clear they don't 
 have the same problem. 

 Annevk: Because they don't actually exactly pretend to be other elements. These alternative 
 solutions allow for composition. E.g., custom global attributes can probably reasonably compose 
 with existing elements. 

 Keith Cirkel: That the customized elements share a surface with autonomous custom elements 
 it is hard to discern when reading a class, if it is running into those issues.  Personally I think 
 there are limited use cases that justify the need specifically for customized built ins vs some 
 other solution like attributes. 

 Justin: It sounds to me like the overall theme is that since they dont behave like regular custom 
 elements it shouldn't have the custom api shape 
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 Keith C: They should have many of those apis because it's too many caveats to internalize, 
 whereas if we had a new, quite separate and limited version - it is much easier to teach, read, 
 retain and conceptualize. As a thought experiment - if you use an autonomous CE you can 
 create & customize the shadow dom, if you customise an <input> you cannot. Who can tell me 
 off-hand which built-ins can have a shadowroot? 

 Rniwa: For customized built-ins you don't have access to elementinternals either. 

 Keith: I haven't internalized a list of which all of those apply to. 

 Justin: I would like to clarify the constraints. I can't recall if we have some canonical list of use 
 cases?  I think progressive enhancement is listed in a few use cases 

 Rniwa: Commonly cited 
 -  Enhancing existing form controls 
 -  Inheriting a11y from existing builtins 
 -  Progressive enhancement from the built in element 
 -  Supporting special HTML parsing rules where you cannot put a custom elements 
 -  polyfills 

 Brian: I’ll add that when Google tried to do Toast, part of that was intended to launch a 
 discussion about how we answer polyfilling legitimate elements - can we improve the story. 
 While not the primary purpose we should see if there’s alignment here. 

 Rniwa: I think the first one form associated custom elements provides a good solution already. 
 There might be certain things that can improved (making it submittable, or just a button not just 
 a submit button). I think those are just improvements we can make to elementinternals 

 Annevk: Those would be fairly straightforward. 

 Justin: I've heard from clients that they don't really want to recreate and specify all of that. 

 Keith: What are the use cases for subclassing a button? 

 Justin: Clients telling me it’s styling, adding new capabilities such as icon buttons or 
 leading/trailing visuals, dropdown visuals. Being able to take an adopted stylesheet and 
 applying it to buttons would be useful. 

 Rniwa: That wouldn't work with buttons, right? Adopted stylesheets wouldn't work 

 Justin: It doesn't work, but  the use case is what I am talking about 



 Annevk: If they wanted to use adopted stylesheets, currently they would have to use JS already, 
 they could use element internals 

 Annevk: If you claim to be a button, I feel like the aria stuff should mostly be there. 

 Justin: Our clients are dealing with a lot of complexity and reimplementing things where they 
 want it to be additive. 

 Annevk:  It reminds me of declarative custom elements. 

 Rniwa: I don't really understand the use case. You want it to be a button, what else? 

 Justin: It maybe adds some affordance for an icon, brings it's own styles, whatever from their 
 design system 

 Annevk: It sounds like it is not a good case for customized builtins either since it can't do those 
 things either, right? 

 Justin:  Our customers think it solves 

 Annevk: How? 

 (some confusion in the room about customized builtins feedback vs related feedback) 

 Rniwa: This is like the second case I was talking about - inheriting from existing elements. Let's 
 talk about solutions 

 1.  Element Behaviors: instead of is="" you can do has="" and we do 
 customElementBehaviors.define(...) or something and you get a lifecycle and callbacks 
 similar to custom elements - but it doesn't pretend to subclass the element. Another 
 benefit is that you can have multiple “has” values. You can have the markup or different 
 elements.  That's one advantage of this approach.  You can easily create a global that 
 can add to any element. 

 Brian: I'm glad we are finally having the 'mixins' conversation 

 2.  Custom Enhancements - merging a custom property with a custom attribute.. 
 3.  Custom Attributes - like the other two but instead of having a single attribute, you can 

 specify something as a custom attribute like "bg-color" so that it can have N attributes. 

 Rniwa:  All of these are quite similar in that they create a separation between the element they 
 are enhancing and the element itself, and you can have N of them. 



 Justin: The one thing I don't see in these 3 is they talk about adding .. With the mixin idea you 
 could take the JavaScript mixin pattern and apply it to the prototype of the instance and swizzle 
 the prototype. Another way to do it would be to take a bag of properties and patch it onto the 
 instance. There are important things to clarify - how collisions are handled. In all of these when 
 they talk about adding - they have to think about the drawbacks 

 Rniwa: One drawback is that if you are really trying to add something for one _specific_ 
 element, then this is kind of the wrong answer. The use cases that come up seem to be a better 
 fit generally with these types of ideas though. 

 Bruce Anderson: ??? 

 Lea: Why not element types? 

 Bruce Anderson: What do you mean? 

 Lea: I am talking about class names not tag names, tag names can be ambiguous 

 Bruce Anderson: I guess in a scoped registry… 

 Lea: Yes, scoped registries, also namespaces, you don't want to deal with that… 

 Keith: Class names are also ambiguous, HTMLElement encompasses many tags. What about 
 autonomous elements that have not yet been registered too? HTMLUnknownElement. There’s 
 timing issues there. 

 Anne: I think we are having a lot of topics at the same time 

 (some discussion about ?scoped registries?) 

 Anne: My assumption was that those would be global 

 Ollie: 

 Bruce: I agree you should be able to target a specific element. 

 Justin: What do we mean by class 

 Anne: Class would be HTMLInputElement, name is input, namespace is HTML namespace. For 
 anything in this space you want to do targeting by name and namespace – headings for 
 example are not specific enough… If you have a name and a namespace you can get the class 

 Lea: That is a good point but are there use cases where you want to support them in both ways 



 Annevk: Or targeting multiple elements 

 Lea: it is not uncommon today for people to not do the define in their libraries and consumers 
 define. 

 Keith: In a connectedCallback for a customElement you could add a whenDefined callback. 
 Would you ever want to have a custom attribute for an HTMLUnknownElement. Any of these 
 needs to have some kind of feature that scopes when the definition is applied based on the tag 

 Annevk: the has attribute is very clear - you don't need this 

 Keith: if you take a form and I want to add ajax, I only want my lifecycle callbacks to only run on 
 forms – I can look and see if it is a form and not do it.  You just don't attach listeners 

 Annevk: so the form has a has atr with has="ajax" 

 Keith: Lets say I also had the same ajax attribute for buttons and they do something different. 
 It's not great to name them the same thing, but… 

 Lea: they can come from entirely different libraries and just have a common name 

 Keith: more than any of the reasons of that - if the API doesn't allow you to subset based on the 
 tag, then you need to do that check in every lifecycle callback or something 

 Justin: You probably do anyway - if this goes down the road of scoping, they are in charge of 
 registration - they probably have to add that logic anyway to be defensive.  It seems like annevk 
 was thinking that each element would leave it to the person using it? 

 Lea: At least for custom attributes there are two designs: it could be defined either on the class 
 or on the registration point, as an option in CustomAttributeRegistry#define(). It sounds like the 
 latter might solve those use cases better? 

 Keith: Like - there's a way to declare in a custom element definition - a static getter that declares 
 which options can be used to define…prevent shadow roots. 

 Rniwa: There are multiple things being discussed here – the attribute name, and other is some 
 kind of filter based on the element type… we probably need to support both. 

 Annevk: there was also name conflicts 

 Rniwa: It is just like custom elements. In that case the solution is scoping.  It's not a problem this 
 needs to address 

 Keith: It's more around the sorts of conditions you'd want and that you'd want them 



 Lea: It's probably not great if it is an arbitrary function because then UAs won't be able to 
 optimize, it needs to be a static list 

 Keith: I think it should be on the class rather than the define call. Static 

 Rniwa: I think we want to do just like custom elements, not dynamically update 

 Lea: What if it is both? You can set it and the define can override it 

 Keith: The author of the customization should win, not the person applying it in their markup. Or 
 the latter should only be able to scope *further*. 

 Lea: I agree 

 Justin: There are multiple questions here, I agree. the initial question, how do we associate a 
 behavior with an element? how do we filter what behaviors go on what elements? how do we 
 patch those elements? In addition to all of the things we said, are their timing questions?  What 
 happens when you define a behavior that matches existing DOM, what happens if you upgrade 
 a custom element that has a behavior attached?… creating a list of those for each would help 
 us decide. 

 Rniwa: We are about out of time, but I agree that coming up with a list of issues we want to ask 
 is good. 

 Olli: So we probably do need scoped versions of this like custom elements 

 Rniwa: It's an interesting question about whether this is a new registry or is it something we can 
 build into the existing registry.  If you are scoping one, you seem to need to scope the other. I 
 am initially inclined to think that the custom element registry might be the place to do this. 

 Keith: The timing issues can be handwaved away for now. The sticking point is how they are 
 instantiated- the author 

 Justin: I think how javascript is applied is the bigger question, are you patching the prototype 
 like how does it 'mix in'? 

 Keith: I would imagine custom attributes (which I prefer) are basically custom elements but for 
 attribute nodes - so you would actually have custom attribute nodes. 

 Annevk: I'm not sure that works, if you add them on the prototype we'd have to add them on 
 each instance. I feel like these proposals are like "that's a js problem and you can solve it in 
 user land" and what justin is saying is that that's not really adequate. I'm not sure where 
 decorators are 



 Justin: I know where they are but I don't think they apply - they are executed during definition 
 and cannot be applied post-hoc. 

 Bruce: In our proposals, the elements can be attached directly without having to pass through 
 attributes. 

 Lea: It sounds like there are 2 orthogonal issues here - one is if it is one new attribute (e.g. 
 has="") with multiple values vs arbitrary hyphenated names.  The other is whether custom 
 attributes are sufficient or whether we also need the ability to add methods, decorators etc. 
 What if we did  both  ? A custom attribute registry,  AND enhancements that can *include* custom 
 attributes, as well as other things. If your enhancement *only* involves custom attributes, then 
 you just register custom attributes, if it's something more complex, you define an enhancement 
 plus custom attributes. 

 … Personally I prefer custom attributes (and proposed them in  2017  ) than a single attribute with 
 identifiers. WC are all about making elements that feel first-class, and custom attributes are 
 more on par with that. Also, custom attributes are more on par with paving the cowpaths, since 
 developers have already been defining hyphenated attributes with a common prefix (e.g. VueJS, 
 older Angular, AlpineJS, htmx etc). 

 … Also, custom attributes have so much potential beyond augmenting built-ins: e.g. if they 
 automate attribute-property reflection (which is currently really hard), they could even be useful 
 in defining a WCs *own* attributes. 
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