
The same origin concern
Secure realms towards safer composability driven web applications

https://docs.google.com/document/d/1cYVUfDhTFCi43qqZnOg8YgcA7xxa2rBIFuqN6ksielc/edit?usp=sharing


Background

● Embracing composability
● Security concerns
○ Build time
■ e.g. packages, dependencies, etc

○ Runtime
■ e.g. ads, 3rd party scripts, etc



Motivation

● Focusing on runtime
● Runtime security tools
○ Include in web app
○ e.g. observe, block, limit, etc

● An important security layer



Manifestation

● Protecting a realm (ideally)



Problem (Introduction)

● The “Same Origin Concern”
○ Great protection against cross origin 

realms
○ Needed protection for same origin realms
○ Composability isn’t compatible with this

● Undermines runtime security tools



Problem (Demonstration)

● Protecting a realm (reality)



Problem (conclusion)

● Example easily extends
● Makes the “Same Origin Concern” matter



Solution (Present)

● JS shim
○ Snow JS ❄️
○ Far from adequate
■ Security
■ Performance

https://github.com/lavamoat/snow


Solution (Future)

● We’re not sure
○ Provide security against same origin realms



Solution (Proposal)

● Leverage already existing APIs
● CSP - a great candidate
○ Good at enforcing rules on realms and 

delegating those recursively
○ adequate mechanism for enforcing security 

policies



Solution (Proposal)

● New directive
● Path to remote JS file
○ Same origin only (like Service Workers)
○ Forbidden by <meta> tag



Solution (Proposal)



Sum Up


	Diapositive 1 The same origin concern
	Diapositive 2 Background
	Diapositive 3 Motivation
	Diapositive 4 Manifestation
	Diapositive 5 Problem (Introduction)
	Diapositive 6 Problem (Demonstration)
	Diapositive 7 Problem (conclusion)
	Diapositive 8 Solution (Present)
	Diapositive 9 Solution (Future)
	Diapositive 10 Solution (Proposal)
	Diapositive 11 Solution (Proposal)
	Diapositive 12 Solution (Proposal)
	Diapositive 13 Sum Up

