Changing Browsers and the Impact on Payments

Ian Jacobs <jj@w3.org>, November 2022
The World Wide Web Consortium (W3C) is an international community that develops open standards to ensure the long-term growth of the Web.
Today’s Agenda

* **What’s driving our work**
 - Streamlining e-commerce authentication to increase conversions
 - New signals to help with fraud mitigation
 - Returning user recognition
E-commerce trends

* E-commerce
* Mobile
* Fraud
* User journey must be quick, secure
* Custom experiences important
Authentication trends

* Increasing SCA regulation
 * EU, UK, India, …

* User expectations evolving
 * Half (47%) of consumers surveyed say they are more likely to sign up to an app or online service if a company offers Multi-factor Authentication (MFA).”
 — Auth0 Survey (2021)

* FIDO2 ubiquitous
 * On billions of devices
 * Coordinated effort by platform providers to replace passwords with FIDO (“passkeys”)
But friction can lead to failure
See Microsoft report on 3DS performance discussed at W3C’s TPAC 2022 (Sep)

* Authentication success rate “too low”
* Abandonment “too high”
* Challenge rates “too high”
* Challenge success “too low”

“Approval rates improve when challenge succeeds, but purchase conversion is net negative with SCA.”
Privacy trends

* Growing privacy regulation
 * By year-end 2024, Gartner predicts that 75% of the world’s population will have its personal data covered under modern privacy regulations. — Gartner report

* Changing user expectations
 * Half of Americans have decided not to use a product or service because of privacy concerns. — Pew Report

Source: Pew Report on Privacy
Web security and privacy - the origin model

* Browser’s trust model based primarily on the domain (or “origin”)
 * https://merchant.com/ and https://psp.com/ are different origins

* Browsers mediate exchanges across trust boundaries

* But cross-origin content is common on the Web
 * Ads, analytics, media, scripts, embedded content (via iframe).
 * Payment service providers often operate from iframes

* Server-side terminology
 * First party (1p): Origin the user visits
 * Third party (3p): Anyone not the first party or user, thus: “cross-origin iframe” => third party

Source: web.dev
How Browsers Mediate Exchanges is Changing

* Webkit **Intelligent Tracking Prevention (ITP)**: Safari

* Chromium **Privacy Sandbox**: Chrome, Edge, Opera, Brave, Samsung Internet

* Firefox **Enhanced Tracking Protection**: Firefox, Tor
Impact of browser changes on payments

* Inability to recognize returning users could mean more UX friction, and more difficulty creating a custom experience

* Fraud mitigation that relies on current signals will no longer be effective, further raising challenge rates

* The Web has embraced FIDO authentication; key is to raise challenge success rates

Notes:
- These changes affect 3DS Requestor and ACS as well (via methodURL).
- Private browsing further reduces signal availability
“Approval rates improve when challenge succeeds, but purchase conversion is net negative with SCA.”

What can the browser do to help?
A word on how W3C works

* Exploratory discussions (e.g., Workshops, Interest Groups)
* Technology incubation (e.g., in Community Groups) and experimentation (e.g., pilot implementations)
* Best practice integration (accessibility, privacy, security, i18n, architecture)
* Industry coordination and adoption (e.g., **Web Payment Security Interest Group**)
 * Bilateral discussions in parallel (e.g., alignment between Web Authentication and CTAP (FIDO Alliance))
* Standardization (in a Working Group); interoperability (e.g., test suites)
* Maintenance (e.g., versioning); education (e.g., **W3Cx**)

Web Payment Security IG Participants

* Aetna
* Airbnb
* Alibaba
* American Express
* ASSA ABLOY AB
* Bank of America
* Banksly
* Brave Software
* Canton Consulting
* Capital One
* The Clearing House
* Conexxus
* Discover Financial Services
* Entersekt
* Federal Reserve Bank of Minn.
* FEITIAN
* FIME
* Gemalto
* Giesecke & Devrient
* Google
* Huawei
* Infineon
* ISO 20022 RA
* JCB
* JP Morgan Chase
* KDDI
* Knowbility
* Lenovo
* LogMeIn
* Mastercard
* Merchant Advisory Group (MAG)
* Microsoft
* Netflix
* mSignia
* Nok Nok Labs
* Onespan
* OpenID Foundation
* PayPal
* Ping Identity
* Ripple
* SSenStone
* Shopify
* SK Telecom
* Stripe
* TTA
* Thales Group
* UnionPay
* Verizon
* VinCSS
* Visa
* WebComm Technology
* Who Are You Holdings
* Worldline
* Worldpay / FIS
* Yahoo
* Yubico
Today’s Agenda

* What’s driving our work

* **Streamlining e-commerce authentication to increase conversions**

* New signals to help with fraud mitigation

* Returning user recognition
Secure Payment Confirmation (SPC)

* FIDO fine-tuned for payments

* User can authenticate in merchant environment (without redirect, bank app, or bank code in page)

* Output: cryptographic evidence of user consent to transaction

See: Adyen Registration & Authentication
Stripe Pilot: SPC versus OTP (within 3DS)

* Conversions: increased 8% with SPC
* Authentication: over 3x faster with SPC
* Fraud: Negligible (for both SPC and OTP)

See Stripe experimental findings
Web Payments WG has stabilized version 1 specification

Browser support

- Deployed in some Chromium browsers (Chrome, Edge) on MacOS and Windows
- Chrome on Android anticipated January 2023. Note: Interest expressed in extending SPC to Android native apps.
- Ongoing discussions with other browser vendors

Pilots

- Stripe currently doing second pilot
- Adyen and Airbnb poised for pilot

Protocol integrations

- Integrated into EMV® 3DS 2.3.1
- Ongoing discussions with other payment and authentication flows (e.g., open banking)
FIDO2 / SPC Comparison

* FIDO and SPC
 * An origin can create credential in first party context (the “relying party”)
 * That origin can use it for authentication either in first party or third party context.
 * That origin can validate the results cryptographically.

* SPC-only — tweaks for payments flows
 * Built-in browser dialog displays transaction data for user consent
 * An origin can create credential in third party context.
 * Any origin can use it (with permission) to initiate authentication ceremony in first party or third party context.
SPC in 3DS: Issuer-initiated

<table>
<thead>
<tr>
<th>Creator of Credential</th>
<th>3DS Flow</th>
<th>Initiated by</th>
<th>Validated by</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer</td>
<td>Challenge</td>
<td>Issuer</td>
<td>Issuer</td>
<td>Described in 3DS 2.3.1</td>
</tr>
</tbody>
</table>

See Modirum ACS demo with SPC
SPC in 3DS: Requestor-initiated

<table>
<thead>
<tr>
<th>Creator of Credential</th>
<th>3DS Flow</th>
<th>Initiated by</th>
<th>Validated by</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer</td>
<td>Challenge</td>
<td>Merchant/PSP</td>
<td>Issuer</td>
<td>Described in 3DS 2.3.1</td>
</tr>
</tbody>
</table>
3DS Flow: Requestor-initiated, issuer-validated

1. Requestor: “Here’s transaction info; I can do SPC”

2. Bank: “Here are known credentials and a challenge”

3. Requestor: “Here are results for your validation”
Benefits of SPC “Decoupling”

* User can stay in current merchant context
* User can stay in current device context
 * No need to retrieve phone for OTP or native bank app, which might fail if phone off or unavailable
* Bank can validate results based on its own challenge
* Promotes scale: **Register once, authenticate everywhere** (merchants)
Bigger Picture of FIDO/SPC Scale Efforts

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>SPC</th>
<th>FIDO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuse login credentials for payment use cases</td>
<td>FIDO Extension (temporary)</td>
<td>“Cross-origin bit” in CTAP</td>
</tr>
<tr>
<td>Reuse credential cross-browser</td>
<td></td>
<td>Discoverable credentials</td>
</tr>
<tr>
<td>Support more user experiences (without redirect)</td>
<td>Decouple authn ceremony from validation in iframe</td>
<td>Get() via iframe</td>
</tr>
<tr>
<td>Reuse phone credential with other devices</td>
<td></td>
<td>Hybrid/caBLE</td>
</tr>
<tr>
<td>Reuse a credential with other devices</td>
<td></td>
<td>Passkeys</td>
</tr>
<tr>
<td>Reuse a credential on different backends</td>
<td>Seeking more integrations in multiple payments protocols (card and others)</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

* What’s driving our work

* Streamlining e-commerce authentication to increase conversions

* New signals to help with fraud mitigation

* Returning user recognition
Chromium view of fraud mitigation

* Replacing Functionality Served by Cross-site Tracking
 * Ad conversion measurement
 * Ads targeting
 * **Federated login**
 * Saas embeds, third party CDNs

* Turning Down Third-Party Cookies
 * **Removing 3p cookies**

* Mitigating workarounds
 * **Fingerprinting** (e.g., removing info from client side language, IP address, user agent string, device state, etc.)
 * Cache inspection
 * **Navigation tracking**
 * Network level tracking

Source: Chromium Privacy Sandbox
How will emerging techs improve payments?

* Privacy protecting federated login (FedCM)
* Privacy protecting device recognition (Private State Tokens)
* Better user experience when FIDO credentials available (Conditional UI)
* Other Proposals in the Antifraud Community Group (e.g., safe list, suspicious location info, device integrity attestation)
* Restore access to first party cookies with user consent (Storage Access)
* Treat multiple origins as same first party (First Party Sets)
* More reliable information about user’s login status
Privacy Friendly Federated Login for User Recognition?

* Web site providers browser a list of identity provider origins

* Browser reaches out without saying what origin user is on
 * Because no cross-origin exchange, IDPs are allowed to access 1p cookies and determine if user is logged in.

* Where user is logged in, IDPs return account names

* Browser displays them (without site awareness) for user selection

* Only after selection do site and selected IDP know each other
Could we do EMV® SRC with these new features?

Upon click, get identity and card data from any SRC system where the user has authenticated. Before user action:

• SRC systems do not yet know which merchant
• Merchant does not know about identities/cards

Note: This does not work today, but could with some implementation changes. See Chrome FedCM demo.
Coming Up

* SPC to “Candidate Recommendation”; pilot results; more browser support
* Develop next SPC use cases (e.g., recurring payments, non-payment applications)
* Solidify SPC/FIDO alignment
* Develop and incubate antifraud proposals
Other trends and relevant W3C work

- Digital Wallets
- Strong Customer Authentication
- Deferred payments / Buy-now-pay-later
- Real-time payments
- Micropayments
- Cross-border payments
- Cryptocurrencies
- Central Bank Digital Currencies
- Peer-to-peer payments
- Contactless payments
- Metaverse
- Miniapps
- AI
- Financial Inclusion
- Sustainability
- ECommerce
- Digital Wallets
- Customer Authentication
- Accessibility, Privacy, Security
- Real-time payments
- Micropayments / Buy-now-pay-later
- Cryptocurrencies
- Central Bank Digital Currencies
- Contactless payments
- Metaverse
- Miniapps
- AI
- Financial Inclusion
- Sustainability
Thank you

* Check out WPSIG’s [How EMVCo, FIDO, and W3C Technologies Relate](#)

 * We expect to publish updated version for 2022 in late November or early December.

 * This version focuses on EMV® 3DS, FIDO, and SPC.

* Get involved

 * Anyone may join a Community Group at no cost

 * FIDO Alliance and W3C Members may join the Web Payment Security Interest Group

* Contact me: ij@w3.org