
 Plausible Reasoning

1

Chapter 6

From Knowledge to Reasoning, a Cognitive

Perspective on Personal Knowledge Graphs

Dave Raggett1

Motivation

Work on personal knowledge graphs would greatly benefit from decades of progress

in the cognitive sciences. Knowledge is about understanding information based upon

past experience, where understanding enables reasoning and decision making.

Today's applications, however, embed limited understanding in application code, as

deductive logic isn't adequate for human-like reasoning. Humans are always learning

and never attain perfect knowledge, and our reasoning out of necessity has to deal with

uncertain, incomplete, imprecise and inconsistent knowledge. This chapter will

introduce a cognitive approach to personal knowledge graphs, including plausible

reasoning, System 1 for intuitive thinking, including effortlessly and rapidly generating

coherent explanations, e.g., for natural language understanding, and System 2 for

effortful slower deliberative thought, and how this can enable human-like memory,

reasoning and decision making.

Introduction

Whilst today’s knowledge graphs claim to capture knowledge

there is little attention to automated reasoning with the exception of

inheritance down class hierarchies. Application logic is instead

embedded in application code, making it hard to understand and costly

to update. Why should we continue to accept this state of affairs?

A starting point is to consider just what we mean by knowledge

and its relationship to information and data. Data is essentially an

unstructured collection of values, such as numbers, text strings and

truth values. Information is structured data2, such as tabular data

labelled with column names. Knowledge is understanding how to

1 W3C/ERCIM
2 Unstructured data is often confusingly used as a term for information that doesn’t follow specific data

models, for example, text documents, where the structure is formed by characters, words, punctuation and

paragraphs.

 Personal Knowledge Graphs

reason with information. Knowledge presumes reasoning and without

it is just information. As such it is high time to focus on automated

reasoning for human-machine cooperative work that boosts

productivity and compensates for skill shortages.

The following figure depicts the evolution of databases from

relational databases to graph databases, where the next stage is likely

to be the emergence of cognitive databases featuring human-like

reasoning. Relational databases are widely used in business, but there

is growing interest in the greater flexibility of graph databases based

on either RDF or Property Graphs.

Evolution of databases for greater flexibility

People have studied the principles of plausible arguments since

the days of Ancient Greece, e.g., Carneades and his guidelines for

effective argumentation. There has been a long line of philosophers

working on this since then, including Locke, Bentham, Wigmore,

Keynes, Wittgenstein, Pollock and many others.

Plausible reasoning is everyday reasoning, and the basis for

legal, ethical and business decisions. Researchers in the 20th century

were sidetracked by the seductive purity of mathematical logic, and

more recently, by the amazing magic of deep learning. Traditional

logic is a sterile dead end, elegant, but ultimately of limited utility! It

is now time to exploit human-like plausible reasoning with imperfect

knowledge for human-machine cooperative work using distributed

knowledge graphs. This will enable computers to analyze, explain,

justify, expand upon and argue in human-like ways.

In the real world, knowledge is distributed, imprecise and

imperfect. We are learning all the time, and revising our beliefs and

understanding as we interact with others. Imperfect is used here in the

 Plausible Reasoning

3

sense of uncertain, incomplete and inconsistent. Imprecise concepts

are those that lack a crisp definition, and needing to be interpreted in

context, e.g., the color red, and a young person.

Conventional logic fails to cope with this challenge, and the

same is true for statistical approaches, e.g., Bayesian inference, due to

difficulties with gathering the required statistics. Evolution has

equipped humans with the means to deal with this, though not

everyone is rational, and some people lack sound judgement.

Moreover, all of us are subject to various kinds of cognitive biases, as

highlighted by Daniel Kahneman.

Plausible Knowledge

Consider the logical implication A ⇒ B. This means if A is true

then B is true. If A is false then B may be true or false. If B is true, we

still can't be sure that A is true, but if B is false then A must be false.

Now consider a more concrete example: if it is raining then it is cloudy.

This can be used in both directions: Rain is more likely if it is cloudy,

likewise, if it is not raining, then it might be sunny, so it is less likely

that it is cloudy, which makes use of our knowledge of weather.

In essence, plausible reasoning draws upon prior knowledge as

well as on the role of analogies, and consideration of examples,

including precedents. Mathematical proof is replaced by reasonable

arguments, both for and against a premise, along with how these

arguments are to be assessed. In court cases, arguments are laid out by

the Prosecution and the Defence, the Judge decides which evidence is

admissible, and the guilt is assessed by the Jury.

During the 1980’s Alan Collins and co-workers developed a

theory of plausible reasoning based upon recordings of how people

reasoned. They discovered that:

• There are several categories of inference rules that people

commonly use to answer questions.

• People weigh the evidence bearing on a question, both for and

against, rather like in court proceedings.

• People are more or less certain depending on the certainty of the

premises, the certainty of the inferences, and whether different

inferences lead to the same or opposite conclusions.

• Facing a question for which there is an absence of directly

applicable knowledge, people search for other knowledge that

could help given potential inferences.

 Personal Knowledge Graphs

The Plausible Knowledge Notation

A convenient way to express such knowledge is the Plausible

Knowledge Notation (PKN). This is at a higher level than RDF, and

combines symbolic statements with qualitative metadata used to

express certainty and conditional likelihood, etc. PKN supports a

variety of statements including properties, relationships,

dependencies, implications and ranges. Metadata can be provided at

the end of statements as a comma separated list of name value pairs

enclosed in round brackets.

Property statements declare the values of named properties, e.g.,

flowers of England includes daffodils, roses, tulips (certainty high)

Following the terminology introduced by Collins, flowers is the

descriptor, i.e., the property name. England is the argument, i.e., the

thing the property applies to. includes is the operator, with excludes as

its antonym. The values are the referents, and either reference things

or are literals such as numbers.

PKN statements optionally end with one or metadata parameters,

e.g., certainty is an example of qualitative metadata, where the value

of the parameter is from an enumerated range, e.g., low, medium and

high.

Some concepts are context dependent, e.g., the meaning of

young depends on whether you are referring to a child or an adult. The

context can be stated with for as in the following examples:

age of young is birth, 12 for child

age of young is birth, 45 for adult

Relationship statements describe relationships between things, e.g.,

robin kind-of songbird
duck similar-to goose for habitat
duck dissimilar-to goose for neck-length
dingy is small for sailing-boat

Where kind-of describes the relationship between classes of things.

similar-to indicates that one class has similar referents for a given

descriptor, as named with for, whilst dissimilar-to has the opposite

meaning. The is relationship is convenient for properties without

descriptors. In this example, small is a term for describing the size of

something relative to some context.

Relationships take the form subject, type, object, so that in the

first example above, the subject is robin, the relationship type is kind-

 Plausible Reasoning

5

of and the object is songbird.

Dependency statements are relationships that describe a coupling

between a pair of properties, e.g.,

climate depends-on latitude
current increases-with voltage
pressure decreases-with altitude

Dependencies can describe a correlation as in the case of increases-

with, or leave that unspecified, as for depends-on. If two locations have

similar latitude, then the first statement above implies that they should

have similar climates. Dependencies are useful for qualitative

reasoning about physical processes.3

Implication statements are a form of if-then rules with locally scoped

variables, for example, ?place, as in:

climate of ?place includes hot and
rainfall of ?place includes heavy
 implies crops of ?place includes rice

Antecedents and consequents can be properties or relations, as in:

?adult is-a adult and age of ?adult less-than 25
 implies age of ?adult is very:young

A simplification is to constrain implications to use conjunctions of

antecedents. Disjunctions can then be expressed using multiple

implications. Negatives can be expressed using antonyms for

relationships, operators and values. Where knowledge is uncertain, an

implication may be held to weakly apply even if not all of its

antecedents can be established against the knowledge base. This might

be justified if there is a lack of information relating to a specific

antecedent so that we don’t know whether or not it applies.

Range statements are a form of properties used to describe the

domain of scalar values, for example, temperature, age and guilt, in:

range of temperature includes cold, warm, hot

range of age includes infant, child, adult for person

range of guilt includes innocent, guilty (overlap none)

Fuzzy ranges allow values to overlap as needed, e.g., a temperature

value that is considered intermediate between cold and warm. This

corresponds to Zadeh’s fuzzy sets, e.g. (cold 0.8, warm 0.2, hot 0). By

3 The model may depend on the state, e.g., the effect of applying heat to water

varies according to whether it is in the form of ice, liquid water or steam.

 Personal Knowledge Graphs

specifying overlap none, we declare that innocent and guilty are

disjoint, so that guilt can be either innocent or guilty, but not both.

Ranges enable the value of different terms in a set to be justified

by different lines of argument, for example, using different implication

statements, such as:

temperature of room is cold implies fan-speed is stop
temperature of room is warm implies fan-speed is slow
temperature of room is hot implies fan-speed is fast

An explicit temperature measurement can be mapped to a fuzzy set

with a certainty value for each qualitative term in the range. Likewise,

the inferred fuzzy set for the fan speed can be mapped back to an

explicit (i.e., numeric) fan speed.

The mapping can be specified using metadata that declare the

lower and upper limits for each term, e.g., for fan speed we might want

to map stop, slow and fast to increasing fan speeds. The shape of the

transfer function for each term can be made explicit with additional

parameters if so needed, for instance, when using trapezoidal or

smoothly changing functions.

range of fan-speed is stop, slow, fast

fan-speed of stop is 0

fan-speed of slow is 0, 1200

fan-speed of fast is 1000, 1800

Statement Metadata

Most metadata parameters are qualitative rather than quantitative

to reflect their lack of precision, as in many cases we have only a rough

idea and are not in a position to give detailed and accurate statistics.

These parameters are used to estimate the certainty of each inference.

The following parameters are defined:

• typicality in respect to other group members, e.g., robins are

typical song birds.

• similarity to peers, e.g., having a similar climate.

• strength, inverse – conditional likelihood for forward and

inverse inferences for a given statement, e.g., whether rain

predicts cloudy weather and vice versa.

• frequency – the proportion of children with a given property,

e.g., most species of birds can fly, but not all.

• dominance – the relative importance in a given group, e.g., the

size of a country’s economy.

 Plausible Reasoning

7

• multiplicity – the number of items in a given range, e.g., how

many different kinds of flowers grow in England, remembering

that parameters are qualitative not quantitative.

• certainty – this can be used to indicate the degree of confidence

in a given statement being true.

Plausible Inferences

Inferences provide a means to infer a property or relation that

isn’t explicit in the knowledge base. There are two basic approaches:

1. Using implications where all of the rule’s consequents are

deemed likely if all of the antecedents can be established either

directly or indirectly. An example given above implies that the

weather is cloudy if it can be established that the weather is

rainy.

2. Using relationships to infer that a relationship or property is

likely to hold for the object of the relationship, if it can be

established to hold directly or indirectly for the subject of that

relationship. One example, is where it is known that birds have

wings, so that if you know that ducks are a kind of bird, then

you can reasonably infer that ducks have wings

Implications and relationships can also be used for inverse inferences

with the corresponding likelihood depending on the statement

metadata. For implications, you can infer that all of the antecedents are

likely to hold if one of the consequents holds, for example, it is

somewhat likely to be raining if it is cloudy.

Likewise for relationships, if robins are a typical kind of bird and

you know that robins sing, then it is plausible that all birds sing.

When using a relationship for an inference, the likelihood of an

inferred property or relationship will depend on the type of the

relationship used for the inference. Here are a few examples:

Relationship Type Meaning Reversibility

kind-of subclass of class asymmetric

is-a instance of class asymmetric

similar-to similar concepts symmetric

depends-on coupled concepts asymmetric

antonym-for opposite meaning symmetric

The reasoner can be given a property or relationship as a premise that

we want to find evidence for and against, for instance, here is a premise

expressed as a property:

 Personal Knowledge Graphs

flowers of England includes daffodils

Its inverse would be:

flowers of England excludes daffodils

The reasoner first checks if the premise is a known fact, and if not

looks for other ways to gather evidence. One tactic is to generalize the

property referent, e.g., by replacing it with a variable as in the

following:

flowers of England includes ?flower

The knowledge graph provides a matching property statement:

flowers of England includes temperate-flowers

We then look for ways to relate daffodils to temperate flowers, finding

the following match:

daffodils kind-of temperate-flowers

So, we have inferred that daffodils grow in England. Another tactic is

to generalize the property argument as in the following:

flowers of ?place includes daffodils

We can then look for ways to relate England to similar countries, for

example:

Netherlands similar-to England for flowers

We find then a match, for example:

flowers of Netherlands includes daffodils, tulips, roses

Thus, providing us with a second way to infer that daffodils grow in

England. The certainty depends on the parameters, and the similarity

parameter in respect to the similar-to relation.

The above uses a property as a premise. You can also use

relations as premises, for instance:

Peter is young

The reasoner will then look for relevant knowledge on whether Peter

is, or is not, young, e.g., Peter’s age, and whether that implies he is a

child or an adult, based upon pertinent range statements and associated

definitions for their values.

In a small knowledge graph, it is practical to exhaustively

consider all potentially relevant inferences. This becomes increasingly

costly as the size of the knowledge graph increases. One way to

address this challenge is to prioritize inferences that seem more

certain, and to ignore those that are deemed too weak. A useful

approach to implementing this is to exploit spreading activation.

Further details on this will be given later on in this chapter.

 Plausible Reasoning

9

The JavaScript implementation used in the web-based demo

works as follows: The starting point is when the reasoner is invoked

with a premise, e.g., in the form of a property with the descriptor,

argument, operator, and referent. The operator and referent are

optional, and can be omitted when you want to find the values.

The reasoner adds the premise as an initial goal, and iteratively

looks for direct evidence in the form of property statements or indirect

evidence in the form of relations, dependencies or implications.

Inferences may result in queuing new goals for arguments involving

multiple steps.

A check is made to see if a goal has been previously considered,

in order to avoid indefinite looping behavior. This mimics human

recall, in that people generally realize that they have already worked

on a goal and hence, there is no point in re-doing that work.

Reasoning works backwards from the premise towards the facts.

This is recorded and used in reverse to compute the certainty of

inferences by working forward from the facts. Finally, the record is

used to generate the explanation.

An open question is when to curtail further search, for instance,

immediately after finding direct evidence. A more sophisticated

approach is to curtail search based upon diminishing return on effort,

analogous to people getting bored and giving up. The web-based demo

provides a checkbox that allows users to see the effects of trying harder

as it were. It shows that trying harder may just show permutations on

what was already discovered, with marginal extra value!

Computing Certainty

The estimated certainty of inferences is computed working

forward from the recorded certainty for the facts in the knowledge

base. The papers by Collins et al. do not define the algorithms, so what

follows should be considered as preliminary and meriting work on a

more principled analysis grounded in Bayesian statistics.

The use of qualitative parameters for plausible reasoning is due

to the lack of detailed statistics, and as such represents best guesses. If

certainty is modelled as a number between 0 and 1, we can map

qualitative values to numbers, and use algorithms for estimating the

numeric certainty, which can later be mapped back to qualitative terms

as needed.

One such algorithm is where a goal directly matches multiple

properties with non-exclusive values, which can then be combined as

a set. The more matches, the greater the certainty for establishing the

 Personal Knowledge Graphs

goal.

If c is the average certainty and n is the number of matches, the

combined certainty is 1.0 - (1.0 - c)/n. If c = 0.5 and n = 1 we get 0.5.

If n = 2, we get 0.75. If n = 4, we get 0.85, If n = 256, we get 0.998.

Collins et al. suggest a simplified approach to modelling the

effects of the various metadata parameters in which each parameter

boosts, weakens or has no effect on the estimated certainty, and using

the same algorithm for all such parameters.

If the original certainty is zero, the parameters should have no

effect, and likewise, the effect of a parameter should be smaller as the

parameter’s value tends to zero.

Treating the effect of a parameter as a multiplier m on the

certainty, the number should be in the range 0 to 1/c, where c>0. If we

want to boost c by 25% when c = 0.5, m = 1.25, but this should shrink

to 1 when c = 1.

How much should m increase as c tends to 0? One idea is to use

linear interpolation, i.e., 1.5 when c = 0, 1.25 when c = 0.5 and 1 when

c = 1. This multiplier shrinks to 1 as the value of the parameter tends

to 0 and when c tends to 0. Thus m = 1 + p/2 - p*c/2, where m is the

multiplier, p is the parameter value (0 to 1) and c is the certainty (0 to

1).

We also need to deal with multiple lines of argument for and

against the premise in question. If the arguments agree, we can

aggregate their certainties using the first algorithm above. We are then

left with a fuzzy set for the different conclusions, e.g. (true 0.8, false

0.2). Note that arguments may present multiple conclusions rather than

true or false, as depending on the query posed to the reasoner.

Relationship to Fuzzy Logic

Plausible reasoning subsumes fuzzy logic as expounded by Lotfi

Zadeh. Fuzzy logic includes four parts: fuzzification, fuzzy rules,

fuzzy inference and defuzzification.

Fuzzification maps a numerical value, e.g., mapping a

temperature value into a fuzzy set, where a given temperature could be

modelled as 0% cold, 20% warm and 80% hot. This involves transfer

functions for each term, and may use a linear ramp or some kind of

smooth function for the upper and lower part of the term’s range.

Fuzzy rules relate terms from different ranges, e.g., if it is hot,

set the fan speed to fast, if it is warm, set the fan speed to slow. The

rules can be applied to determine the desired fan speed as a fuzzy set,

e.g., 0% stop, 20% slow and 80% fast. Defuzzification maps this back

 Plausible Reasoning

11

to a numeric value.

Fuzzy logic works with fuzzy sets in a way that mimics Boolean

logic in respect to the values associated with the terms in the fuzzy

sets. Logical AND is mapped to selecting the minimum value, logical

OR is mapped to selecting the maximum value, and logical NOT to

one minus the value, assuming values are between zero and one.

Plausible reasoning expands on fuzzy logic to support a much

broader range of inferences, including context dependent concepts,

and the means to express fuzzy quantifiers and modifiers.

Richer Queries and Fuzzy Quantifiers

Here are some examples of richer queries:

all ?x where color of ?x includes red from ?x kind-of rose

few ?x where color of ?x includes yellow from ?x kind-of rose

which ?x where color of ?x includes yellow from ?x kind-of rose

most ?x where age of ?x greater-than 20 from ?x is-a person

any ?x where age of ?x less-than 15 from ?x is-a person

which ?x where ?x is-a person and age of ?x is very:old

which ?x where ?x is-a person and age of ?x slightly:younger-than 25

The first example searches the knowledge base to test if all roses are

red. The where keyword is followed by a filter expressed as a

conjunction of properties or relationships. The filter is applied to the

set obtained by applying the criteria following the optional from

keyword, and expressed as conjunction of properties or relationships.

In other words, we first find the set of things that are roses, and

then test to see that they are all red. If the query omits from, the where

filter applies to the entire knowledge base.

Traditional logic is limited to two quantifiers: for all and there

exists. Plausible reasoning enables a much richer variety: none, few

most, many, all, which and count. The meaning of few, many and most

is interpreted by counting the number of elements obtained from the

filter as compared to the size of the set they are drawn from. which

returns the elements that pass the filter, whilst count returns the

number of those elements.

The last two example queries involve modifiers that correspond

to adverbs or adjectives in natural language. Multiple modifiers can be

applied to a given concept, where each modifier is followed by a colon

as a delimiter, e.g., very:slightly:older-than. This reflects Lotfi

Zadeh’s conception of fuzzy logic as a means to compute with words:

“small can be multiplied by a few and added to large, or colder can be

 Personal Knowledge Graphs

added to warmer to get something in between.”

The meaning of words is often context dependent, e.g., the same

person may be considered old by a child, and young by an adult. To

determine if someone is very old, we could query their age, and see

where this fits in terms used for describing the age of people.

range of age is infant, child, adult for person

age of infant is 0, 4 for person

age of child is 5, 17 for person

age of adult is 18, age-at-death for person

If John is 63 and Pamela is 82, this implies they are both adults. We

can then look at the terms used to describe adults.

range of age is young, middle-age, old, geriatric for adult

age of young is 18, 44 for adult

age of middle-age is 45, 65 for adult

age of old is 66, age-at-death for adult

age of geriatric is 78, age-at-death for adult

This implies that John is middle-aged and Pamela is geriatric. If we

then define very old as synonymous with geriatric, we can finally infer

that Pamela is very old. A complication is to how to compare a

numerical age (in years) with the age at death. Essentially, a person’s

age increases until they die. One way to model that is as follows:

?person is-a person and age of ?person is ?age

 implies ?age less-or-equal age-at-death

We also need to define comparative concepts such as younger than as

equivalent to less than, so we can determine if one person is younger

than another person by comparing their respective ages. Modifiers

such as slightly can be interpreted in respect to comparing the

difference of ages with a person’s age, for example if Mary is 23 and

Jenny is 25, the age difference is 2 years so Mary can be considered as

slightly younger than Jenny given that 2/25 is 8%.

Many such terms are inherently imprecise concepts that depend

on the context and are debatable. Nonetheless, human communication

abounds with imprecision, relying on the speaker and listener having

roughly the same conceptual model.

Reasoning by Analogy

Analogies involve comparisons between things or objects where

similarities in some respects can suggest the likelihood of similarities

 Plausible Reasoning

13

in other respects, for instance, in their respective properties and

relationships, or in ways to solve related problems. Gentner and

Markman proposed a basis for modelling analogies in terms of

establishing a structural alignment based on common relational

structure for two representations, where the stronger the match, the

better the analogy.

In some cases, the objects may have the same properties, in other

cases, there is a systematic mapping between different properties, e.g.,

relating electric current to the flow of a liquid in a pipe, and

correspondingly, voltage to pressure. If you know that flow increases

with pressure, you can infer that current increases with voltage.

Analogical reasoning tests often take the form of A is to B as Y

is to —, where students are asked to supply the missing term. This can

be readily modelled using PKN, for example consider the query:

leaf:tree::petal:? # leaf is to tree as petal is to what?

when applied to the knowledge:

leaf part-of tree

petal part-of flower

The reasoner finds that leaf is related to tree via the part-of

relationship, and can then use that to look for a part-of relationship

involving petal, yielding the result flower. Now consider

like:love::dislike:?

when applied to the knowledge:

love more-than like

hate more-than dislike

This gives the answer hate by matching the object of the relationship

rather than the subject. Here is a more complex example showing the

output from the reasoner:

Premise: mansion:shack::yacht:?
Found: mansion is large for building
Found: shack is small for building
So contrast is large, small
Found: yacht is large for sailing-boat
Found: dingy is small for sailing-boat

Therefore mansion:shack::yacht:dingy

Analogies involve a form of inductive reasoning, and is related to

learning from examples, and being able to apply past experience to a

new situation based upon noticing the similarities and reasoning about

 Personal Knowledge Graphs

the differences. Such reasoning can be simple as in the above examples

or more complicated, for instance, when involving causal modelling.

Inferences vs Model Construction

Philip Johnson-Laird (1980, 1983) argues that the best account

for human reasoning is not in terms of systematic rules or inference

patterns, but rather in terms of the manipulation of mental models.

Alan Collins by contrast talks about plausible reasoning in terms of

inference patterns. How can both approaches be combined?

One solution is to base model construction on rule execution,

where rule actions update working memory with new statements. This

would involve an extension of the PKN rule syntax to represent actions

as consequents. Such actions can also be used as a means to invoke

external behavior, for instance, to direct a robot arm to pick something

up, or to communicate with another agent. A cognitive architecture for

perception, cognition and action, is presented in a later section of this

chapter, along with a framework for chunks and rules. However,

further work is needed to identify a higher level notation for

manipulating mental models and for metacognition.

Metacognition

Metacognition is reasoning about reasoning, including,

reasoning about reasoning strategies, for instance, reasoning about

how to solve a given problem by comparing it to previous problems

and adapting their solutions to match the new context.

Metacognition is applicable to deciding when the current

approach isn’t working well, so that it is time to try a different

approach or to give up on the problem, at least for now, and perhaps

to consider a different problem relating to the same overall goal.

Metacognition is likewise relevant to managing multiple

concurrent goals, when it is necessary to dynamically switch focus

between them, and to resource effort on them according to their

priorities. Such goals can be at many different levels of abstraction.

Non-deductive Reasoning and Imagined Contexts

There are many forms of reasoning other than reasoning

deductively from facts to conclusions. Inductive reasoning considers

similarities and differences across a group of things. Abductive

reasoning considers which explanations best suit a set of known facts.

This may involve reasoning with causal models that can be used

forwards to predict a potential future, or backwards when seeking

 Plausible Reasoning

15

plausible explanations or ways to achieve a desired outcome.

A common requirement is the need to represent things that are

only true in a given context, whether past, present or an imagined

situation. This is also needed to implement a theory of mind in which

a cognitive agent represents and reasons about the likely beliefs of

other agents (human or artificial). Story telling is central to human

culture, and likewise involves the need to model knowledge specific

to a fictional world.

Episodic contexts are those that relate to the passage of time,

describing what was happening at different times, and involving the

means to support temporal reasoning. This is key to continuous

learning and further details are given in a later section.

PKN in relation to RDF and LPG

RDF (the resource description framework) is a suite of standards

from W3C for symbolic graphs, the Semantic Web and Linked Data.

These include SPARQL for querying RDF-based graphs, OWL as an

ontology language and SHACL for expressing constraints on sub-

graphs as a basis for validation.

RDF is based upon triples, i.e., directed labelled graph edges.

RDF has several notations including XML, Turtle, N34 and JSON-LD.

In RDF, graph vertices are URIs, blank nodes or literals, such as text

strings, dates, numbers and truth values. Blank nodes are identifiers

scoped to a serialization of particular graph. URIs are globally unique

identifiers, such as HTTP based universal resource locators (URLs).

Linked Data makes use of HTTP as a basis for linking to further

information about an RDF identifier, along with the means to

download an RDF graph or a text description as appropriate. There is

a rapidly growing number of open datasets and many ontologies.

LPG (labelled property graphs) allow both vertices and edges to

be associated with sets of property-values. This is convenient when

you want to annotate edges. One example is where the edge represents

the relationship between an employer and an employee, where you

want to indicate the employee’s start date, his/her role, department and

so forth.

PKN is at a higher level than RDF in that each PKN statement

corresponds to multiple RDF triples. A PKN relationship corresponds

to a single triple, but the statement metadata complicates matters, by

requiring the relationship to be reified. Here is an example by a way

4 Notation 3 (N3) is a superset of RDF

 Personal Knowledge Graphs

of explanation:

PKN: John knows Mary (certainty high)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix pkn: <http://example.com/pkn/> .

_:x rdf:type rdf:Statement .

_:x rdf:subject <#John> .

_:x rdf:predicate foaf:knows .

_:x rdf:object <#Mary> .

_:x pkn:certainty pkn:high .

Reification replaces an RDF triple by a set of triples for the subject,

predicate and object. This example introduces a blank node (_:x) and

an RDF triple that indicate it represents a reified triple. The example

uses three RDF namespaces, one for the core RDF syntax, one for

FOAF, the friend of a friend vocabulary, and another hypothetical

vocabulary for the PKN core terms. The latter is used to annotate the

relationship with the qualitative measure of certainty.

A similar approach can be used to represent PKN property

statements. The argument is mapped to a subject node, the descriptor

to the RDF predicate, and the referent to an object node. The PKN

operator, e.g., includes, can be declared using another triple with

pkn:operator as its predicate. One complication is that PKN allows

properties to have a comma separated list of referents. These can be

mapped to RDF collections, as in the following example:

PKN: flowers of Netherlands includes daffodils, tulips

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix pkn: <http://example.com/pkn/> .

_:x rdf:type rdf:Statement .

_:x rdf:subject <#Netherlands> .

_:x rdf:predicate <#flowers> .

_:x pkn:operator pkn:includes .

_:x rdf:object _:y .

_:y rdf:type rdf:List

_:y rdf:first <#daffodils> .

_:y rdf:rest _:z .

_:z rdf:first <#tulips> .

_:z rdf:rest rdf:nil .

 Plausible Reasoning

17

In principle, PKN could be easily extended to map referents to RDF

identifiers in given namespaces as a basis for automating mapping

PKN to RDF. One way to do this would be to borrow the context

mechanism from JSON-LD. This would allow the RDF identifiers to

be declared in separate files, linked from the PKN knowledge base.

PKN can be mapped to Labelled Property Graphs by mapping

PKN properties to LPG node properties, and PKN relationships to

LPG relationships. The details depend on the notation for property

graphs which varies from one LPG vendor to the next.

Scaling and Graphs of Overlapping Graphs

Very large knowledge graphs are difficult to deal with. For

instance, when visualizing the graph, it is intimidatingly complex

when zoomed out, and lacks context when zoomed in. The lack of

context is also a challenge for automated reasoning. One technique to

address this is to transform very large graphs into overlapping smaller

graphs that model individual contexts. The transformation can be

applied either statically or dynamically according to criteria of interest.

In a large enterprise, subgraphs can be used for different business

functions, offering different views for different departments, and

dependency tracking for old and new uses given the enduring need to

support a mix of new and old applications.

Contexts are also important for temporal reasoning, for handling

counterfactuals when reasoning about explanations, and for imagined

situations, e.g., when reasoning about plans. Contexts are important

for natural language as a basis for grouping things that commonly

occur in the same context.

This is further related to Roger Shank’s idea of scripts, which

describe a stereotyped sequence of events in a given context, such as

having a meal in a restaurant. Some events/actions have causal

dependencies, whilst others have statistical correlations.

A complementary technique is to associate graph vertices with

activations levels that are boosted when accessed or created, and

otherwise decay over time, so that the activation level is a measure of

how frequently a given vertex is used, mimicking the human forgetting

curve. This can be combined with spreading activation as a way of

priming related concepts. Each time a vertex is accessed, updated or

added, a wave of activation spreads out along the connected graph

edges. The more edges from a given vertex, the weaker the activation

boost through each edge. A further weakening occurs at each vertex,

to ensure that the wave rapidly decays.

 Personal Knowledge Graphs

Activation can be combined with stochastic recall to mimic other

characteristics of human memory. If two edges have the same

activation levels, they will be equally likely to be recalled. A further

refinement is to mimic the spacing effect, which progressively reduces

the boost when the time interval since the last boost is small compared

to a given time window. The effect will be familiar to students in that

the benefit of cramming revision into a short time is short lived

compared to a more structured approach over a longer period of time.

Cognitive Architecture for Artificial Minds

Cognitive architecture provides a functional model at a level

above that of implementation choices. Consider the human brain as a

source of inspiration:

This suggests the following functional architecture where the cortex is

modelled as a collection of specialized graph databases along with

associated algorithms that execute local to the data. The inner part of

the brain is mapped to a set of cognitive circuits, analogous to

blackboard systems, as each circuit has access to multiple cognitive

modules in the cortex. This supports sharing of information along with

invocation of cortical functions, including graph algorithms.

In the human brain, different senses are mapped to different

cortical lobes. As an example, when we see a lemon, we perceive its

shape, size, color, texture and smell. The Anterior Temporal Lobe acts

as a hub for relating semantic multimodal models to unimodal models

in the different lobes. The same hub and spoke model can be applied

to semantic integration across the senses for artificial minds.

Courtesy of Clipart Library

Anterior temporal lobe as hub for integration across senses

 Plausible Reasoning

19

Cognitive Architecture

The architectural components have the following functions:

Cortex supports memory and parallel computation. Recall is

stochastic, reflecting which memories have been found to be useful in

past experience. Spreading activation and activation decay mimics

human memory with semantic priming, the forgetting curve and

spacing effect.

Perception interprets sensory data and places the resulting models into

the cortex. Cognitive rules can set the context for perception, and direct

attention as needed. Events are signaled by queuing chunks to

cognitive buffers to trigger rules describing the appropriate behavior.

A prioritized first-in first-out queue is used to avoid missing closely

spaced events.

System 1 covers intuitive/emotional thought, cognitive control and

prioritizing what’s important. The limbic system provides rapid

assessment of past, present and imagined situations. Emotions are

perceived as positive or negative, and associated with passive or active

responses, involving actual and perceived threats, goal-directed drives

and soothing/nurturing behaviors.

System 2 is slower and more deliberate thought, involving sequential

execution of rules to carry out particular tasks, including the means to

invoke graph algorithms in the cortex, and to invoke operations

involving other cognitive systems. Thought can be expressed at many

different levels of abstraction, and is subject to control through

metacognition, emotional drives, internal and external threats.

Action is about carrying out actions initiated under conscious control,

leaving the mind free to work on other things. An example is playing

 Personal Knowledge Graphs

a musical instrument where muscle memory is needed to control your

finger placements as thinking explicitly about each finger would be far

too slow. The cerebellum provides real-time coordination of muscle

activation guided by perception. Of note is the fact that the human

cerebellum has over three times the number of neurons compared to

the cortex, packed into a much smaller space.

System 1 and 2

The idea of System 1 and 2 were popularized by Daniel

Kahneman in his book “Thinking Fast and Slow”. System 1 is fast,

intuitive and apparently effortless, yet opaque as we aren’t aware how

we came to a conclusion. System 1 is subject to many cognitive biases

and sometimes wrong.

Natural language understanding is largely handled via System 1,

as we understand in real-time what people are saying by constructing

a coherent explanation that hides the ambiguity of language. This

involves semantic priming together with everyday knowledge that fills

in the gaps in what we heard.

System 1 and 2 work in cooperation, with System 2’s analysis

overriding System 1’s intuition as needed. System 2 is accessible to

introspection and much slower. It also feels effortful, making thinking

hard work and quite exhausting!

Modelling the Cortico-Basal Ganglia Circuit

The following diagram illustrates a functional model of the

cortico-basal ganglia circuit as an asynchronous sequential rule

engine, inspired by John Anderson’s work on ACT-R:

Model of cortico-basal ganglia cortical circuit

 Plausible Reasoning

21

The rule engine is connected to different cortical modules via

buffers that each hold a single chunk – a collection of name/value

pairs. These buffers correspond to a bundle of nerve fibers whose

concurrent activation levels can be interpreted as a vector in a noisy

high dimension space. Chris Eliasmith uses the term semantic pointers,

and has shown how chunks can be encoded and decoded using circular

convolution.

Perception dynamically updates the chunks to reflect the model

of the current state of the world. Events update the chunk buffers to

trigger the appropriate behavioral responses.

Procedural knowledge is encoded as collections of rules. The

rule engine determines which rules match the current state of the

buffers, and stochastically selects a matching rule to execute. Each rule

has one or more antecedents and one or more consequents. A

consequent may directly update a buffer, or do so indirectly via

invoking a cortical operation on a module. These operations are

asynchronous and can be loosely compared to the Web’s hypertext

transfer protocol (HTTP), with methods to retrieve (GET) and update

data (PUT), as well as to invoke server-side operations (POST).

Chunks and Rules

The W3C Cognitive AI Community Group has devised a simple

notation for chunks and rules, along with a variety of built-in

operations, and an open-source implementation with a variety of web-

based demos. Each chunk is associated with a chunk identifier, a chunk

type and a set of name/value pairs for its properties. The chunk type is

convenient way of grouping chunks, rather than having a predefined

meaning.

The chunk notation minimises the need for punctuation, and you

can choose between using a line break or a semicolon as a property

separator. Here are examples with both conventions:

dog d25 {name molly; breed terrier; gender female; age 6}

dog d26 {

 name butch

 breed bulldog

 gender male

 age 3

}

Property values are chunk identifiers, string literals, URLs, ISO8601

 Personal Knowledge Graphs

dates, numbers, Booleans and comma separated sequences thereof.

Note that using @ as a prefix is reserved for system identifiers. The

chunk identifier (e.g., d25 in the above example) is optional and will

be automatically assigned if missing.

Chunk Rules

Chunk rules are composed from chunks and have one or more

conditions, and one or more actions. Conditions and actions are

associated with the module they apply to, defaulting to the goal

module.

count {state start; from ?num1; to ?num2}
 => count {state counting},
 increment {@module facts; @do get; number ?num1}

This example has one condition and two actions. The condition is

matched to the goal module buffer. The first action updates that buffer

changing the start property from start to counting. The second action

applies to the facts module and initiates a get operation for the given

number. Rule variables are prefixed with a question mark and scoped

to the rule.

Module operations are invoked with @do. The above example

invokes get to asynchronously retrieve a chunk that matches the

properties given in the action, excluding the ones prefixed with @. The

recalled chunk is put into the named buffer, triggering a fresh round of

rule selection.

Both conditions and actions can use @id to bind to a chunk

identifier and @type to bind to the chunk type. The following actions

are built-in, with update as the default action:

• @do update to directly update the module’s buffer

• @do queue to push a chunk to the queue for the module

• @do clear to clear the module’s buffer and pop the queue

• @do get to recall a chunk with matching type and properties

• @do put to save the buffer as a new chunk in the module’s graph

• @do patch to use the buffer to patch chunk in the module’s graph

• @do delete to forget chunks with matching type and properties

• @do next to load the next matching chunk in an implementation

dependent order

• @do properties to iterate over the set of properties in a buffer

• @for to iterate over the items in a comma separated list

Applications may define additional operations, e.g., for controlling a

robot arm. Apart from clear, update and queue, all actions are

asynchronous, and when complete set the buffer status to reflect their

 Plausible Reasoning

23

outcome. Rules can query the status using @status. The value can

be pending, okay, forbidden, nomatch and failed.

This is loosely analogous to the hypertext transfer protocol

(HTTP) and allows rule engines to work with remote cognitive

databases. To relate particular request and response pairs, use @tag in

the action to pass an identifier to the subsequent asynchronous

response where it can be accessed via @tag in a rule condition.

You can define rules that match a buffer when a module

operation hasn’t succeeded. To do this place an exclamation mark

before the chunk type of the condition.

Actions can be used in combination with @id to specify the

chunk identifier, for instance, to recall a chunk with a given identifier.

Additional operations are supported for operations over property

values that are comma separated lists of items, see below. The default

action is @do update, which just updates the properties given in the

action, leaving another properties in the buffer unchanged. You can

use @do clear to clear all properties in the buffer.

Whilst @do update allows you to switch to a new goal,

sometimes you want rules to propose multiple sub-goals. You can set

a sub-goal using @do queue which pushes the chunk specified by an

action to the queue for the module's buffer.

You can use @priority to specify the priority as an integer in the

range 1 to 10 with 10 the highest priority. The default priority is 5. The

buffer is automatically cleared (@do clear) when none of the buffers

matched in a rule have been updated by that rule. This pops the queue

if it is not already empty.

Actions that directly update the buffer do so in the order that the

action appears in the rule. In other words, if multiple actions update

the same property, the property will have the value set by the last such

action.

The @do get action copies the chunk into the buffer. Changing

the values of properties in the buffer won't alter the graph until you

use @do put or @do patch to save the buffer to the graph. Put creates

a new chunk, or completely overwrites an existing one with the same

identifier as set with @id. Patch, by contrast will just overwrite the

properties designated in the action.

Applications can define additional operations when initialising a

module. This is used in the example demos, e.g., to allow rules to

command a robot to move its arm, by passing it the desired position

and direction of the robot's hand. Operations can be defined to allow

messages to be spoken aloud or to support complex graph algorithms,

e.g., for data analytics and machine learning. Applications cannot

 Personal Knowledge Graphs

replace the built-in actions listed above.

Note if you add to, or remove matching chunks during an

iteration, then you are not guaranteed to visit all matching chunks. A

further consideration is that chunks are associated with statistical

weights reflecting their expected utility based upon past experience.

Chunks that are very rarely used may become inaccessible.

Iteration over properties

You can iterate over each of the properties in a buffer by

using @do properties in an action for that buffer. The following

example first sets the facts buffer to foo {a 1; c 2} and then initiates an

iteration over all of the buffer's properties that don't begin with '@':

run {} =>

 foo {@module facts; a 1; c 2}, # set facts buffer to foo {a 1; c 2}

 bar {@module facts; @do properties; step 8; @to goal} # launch
iteration

this rule is invoked with the name and value for each property

note that 'step 8' is copied over from the initiating chunk

bar {step 8; name ?name; value ?value} =>

 console {@do log; message ?name, is, ?value},

 bar {@do next} # to load the next instance from the iteration

Each property is mapped to a new chunk with the same type as the

action (in this case bar). The action's properties are copied over (in this

example step 8), and name and value properties are used to pass the

property name and value respectively. The @more property is given

the value true unless this is the final chunk in the iteration, in which

case @more is given the value false.

By default, the iteration is written to the same module's buffer as

designated by the action that initiated it. However, you can designate

a different module with the @to property. In the example, this is used

to direct the iteration to the goal buffer. By setting additional properties

in the initiating action, you can ensure that the rules used to process

the property name and value are distinct from other such iterations.

Operations on comma separated lists

You can iterate over the values in a comma separated list with

the @for. This has the effect of loading the module's buffer with the

first item in the list. You can optionally specify the index range

with @from and @to, where the first item in the list has index 0, just

 Plausible Reasoning

25

like JavaScript.

a chunk in the facts module

person {name Wendy; friends Michael, Suzy, Janet, John}

after having recalled the person chunk, the

following rule iterates over the friends

person {@module facts; friends ?friends}

 => item {@module goal; @for ?friends; @from 1; @to 2}

which will iterate over Suzy and Janet, updating the module buffer by

setting properties for the item's value and its index, e.g.

item {value Suzy; @index 1; @more true}

The action's properties are copied over apart from those starting with

an '@'. The item index in the list is copied into the chunk as @index.

You can then use @do next in an action to load the next item into the

buffer. The @more property is set to true in the buffer if there is more

to come, and false for the last property in the iteration. Action chunks

should use either @do or @for, but not both. Neither implies @do

update.

You can append a value to a property using @push with the

value, and @to with the name of the property, e.g.

person {name Wendy} => person {@push Emma; @to friends}

which will push Emma to the end of the list of friends in the goal

buffer.

person {name Wendy} => person {@pop friends; @to ?friend}

will pop the last item in the list of friends to the variable ?friend.

Similarly, you can prepend a value to a property using @unshift with

the value, and @to with the name of the property, e.g.

person {name Wendy} => person {@unshift Emma; @to friends}

will push Emma to the start of the list of friends in the goal buffer.

person {name Wendy} => person {@shift friends; @to ?friend}

will pop the first item in the list of friends to the variable ?friend.

Named Contexts

It is sometimes necessary to represent knowledge that is only

true in a specific context, for example, when modelling another agent’s

knowledge, or when reasoning about counterfactuals during abductive

reasoning. This is supported using @context. In its absence, the

default context applies. Here is an example adapted from John Sowa.

 Personal Knowledge Graphs

Tom believes that Mary wants to marry a sailor

believes s1 {@subject Tom; proposition s2}

wants s3 {@context s2; person Mary; situation s4}

married-to s5 {@context s4; @subject Mary; @object s6}

a s6 {@context s4; isa person; profession sailor}

More complex queries

Modules may provide support for more complex queries that are

specified as chunks in the module's graph, and either apply an

operation to matching chunks, or generate a result set of chunks in the

graph and pass this to the module buffer for rules to iterate over. In this

manner, chunk rules can have access to complex queries capable of set

operations over many chunks, analogous to RDF's SPARQL query

language. The specification of such a chunk query language is left to

future work, and could build upon existing work on representing

SPARQL queries directly in RDF.

A further opportunity would be to explore queries and rules

where the conditions are expressed in terms of augmented transition

networks (ATNs), which loosely speaking are analogous to RDF's

SHACL graph constraint language. ATNs were developed in the

1970's for use with natural language and lend themselves to simple

graphical representations. This has potential for rules that apply

transformations to sets of sub-graphs rather than individual chunks.

Natural Language

Natural language will be key to enabling flexible dialogs

between cognitive agents and humans, including commands, handling

questions, providing answers, understanding and learning from text-

based resources. The field of computational linguistics focuses on text

processing, but not on representing and reasoning with the meaning of

language. Traditional logic is inadequate when it comes to the

flexibility of natural language, including uncertainty, imprecision and

context sensitivity. This suggests that different approaches are needed

that support plausible reasoning.

Large Language Models

Large language models such as GPT-3 and BLOOM are based

upon neural network models trained to predict masked words using a

vast corpus of text documents. BLOOM’s language model has 176

billion parameters covering 46 human languages. The model maps the

 Plausible Reasoning

27

user supplied text to an opaque internal model of the meaning, referred

to as the latent semantics. This can then be used stochastically to

generate text continuations consistent with those semantics.

Large language models are surprisingly good at this, and can

effectively mimic a wide range of topics and styles of text, e.g.,

BLOOM generated the italicized text below following the user

supplied prompt shown in regular text:

John picked up his umbrella before stepping out of the door as

he had heard the weather forecast on the radio in the living room that

said that heavy rain was forecasted and that there was a high chance

of thunderstorms throughout the afternoon. The rain had become a

little less torrential as he made his way to his sister’s house, so that he

didn’t feel too drenched when he arrived.

Large language models show that machine learning can be

successfully applied to learning to generate latent representations of

the meaning of everyday language, and that these representations can

be used in reverse to generate plausible text continuations.

Unfortunately, we have yet to discover how to mimic human-

like reasoning in terms of operations applied directly to the latent

semantics embodied in large language models. Similarly, we can’t yet

map the latent semantics to symbolic graphs as another way to

implement reasoning. Both challenges are exciting opportunities for

research studies.

Natural Language and Common Sense

Another approach to natural language understanding is to

combine conventional parsing with symbolic representations of

meaning such as the plausible knowledge notation (PKN). Parsing

isn’t particularly difficult, provided that dealing with the ambiguity of

natural language is largely delegated to semantic processing.

This involves tasks such as selecting the most appropriate sense

of each word according to the context in which it appears, figuring out

how to correctly attach prepositional phrases, creating semantic

models and resolving references.

Finding a semantically coherent model of a given text utterance

is challenging, despite being apparently effortless for humans. A

promising approach is to combine spreading activation with models of

everyday knowledge, as a basis for understanding what’s implicit in

the utterance.

As an example, consider the sentence “John opened the bottle

and poured the wine.” Human readers know that John is a male adult,

and that the occasion is likely to be social event such as a dinner or a

 Personal Knowledge Graphs

party. The wine is a liquid for the guests to drink from their glasses.

The bottle needs to be opened before it can be poured into the glasses.

Pouring transfers liquid from one container to another, conserving the

volume of liquid as it does so.

Human readers are aware of all of this, and don’t need to spend

effort consciously reasoning it out unless that becomes necessary,

nonetheless, the background knowledge is key to efficiently finding a

coherent model of the utterance.

Further work is now needed to look at how this can be mimicked

by cognitive agents. This can start from a small set of examples where

the background knowledge and typical inferences can be developed

with a modest level of effort.

Natural language generation involves an understanding of aims

of the communication, the knowledge that the listener or reader is

likely to already have, and how to minimize what needs to be said.

Grice’s maxims describe the principles of cooperative dialogue in

terms of quantity, quality, relation and manner.

• Try to be informative and give as much information as needed,

but no more.

• Try to be truthful and avoid giving information that is false or

not supported by the evidence.

• Try to be relevant and say things pertinent to the discussion.

• Try to be clear and orderly, avoiding obscurity and ambiguity.

How can cognitive agents be designed to implement these maxims? It

is likely that cognitive agents can be trained to be effective by using

machine learning techniques that pit a generator against an adversary

that seeks to distinguish machine generated from human generated

utterances in respect to a large training corpus of short dialogs.

Metaphors in Everyday Language

Lackoff and Johnson in their book “Metaphors we live by”

(1980) showed just how much humans rely on metaphor in everyday

thought and language. People will likewise expect cognitive agents to

understand and to use metaphors in human-agent dialogs.

 One such metaphor is ideas as food, e.g., raw facts, and half-

baked ideas. People use many different metaphors, and much of this is

culture dependent, i.e., learned from what we read and listen to. In

principle, cognitive agents should be able to do likewise,

understanding previously unheard metaphors in terms of reasoning

about analogies. This is an example of continuous learning.

 Plausible Reasoning

29

Continuous Learning

Many AI systems are trained up front, and have difficulties in

coping when the statistics of the run-time data diverge from that of the

training data. Continuous learning is a way to adapt as the data

changes, and will be essential for resilient operation of cognitive

agents.

There are different ways to learn. Syntagmatic learning deals

with patterns in co-occurrence statistics. Paradigmatic learning deals

with taxonomic abstractions. Skill compilation is the process of

speeding reasoning by exploiting experience with previous solutions

as a short cut, including the use of analogies. Meta-learning is the

process of learning how to learn, including reasoning about strategies

and tactics for how to reason.

Learning can be from direct experience by interacting with the

world, and exploiting a sense of curiosity about how things work.

However, there are issues of safety and cost for applying this in

practice, e.g., with allowing robots to roam around freely. A work

around is to use virtual worlds, but it is challenging to make those a

sufficiently faithful representation of the real world.

Another approach is learning from observations and asking

questions. Children are incredibly good at this. There is a huge

opportunity to learn from large corpora of text documents, images and

videos.

Finally, learning can be arranged in the form of lessons and

assessments, i.e., courses designed specifically for AI agents. Enabling

AI agents to devise their own knowledge representations as part of

machine learning is likely to more scalable than direct hand authoring

of knowledge, see the later section on scalable knowledge engineering.

Hive Minds, Knowledge Caching and Swarm Intelligence

Cognitive agents can be designed using shared access to remote

cognitive databases, analogous to the lobes in the cerebral cortex. By

duplicating agents in this way, as each agent learns, the updated

knowledge and skills are immediately available to all of the agents,

contributing to accelerated communal learning, in what can be thought

of as a form of hive mind. Existing knowledge often helps when it

comes to learning new knowledge, so it is likely that the speed up will

be greater than linear in respect to the number of agents involved.

Resilience in the face of disrupted connectivity to remote

cognitive databases can be achieved via mechanisms for selectively

duplicating frequently used knowledge to local storage, as a form of

 Personal Knowledge Graphs

knowledge caching. This would come with the need for synching local

updates to the cache with the remote cognitive databases when

connectivity resumes.

In the face of the unexpected, a diversity of personalities,

opinions, knowledge and skills can be invaluable. Rather than

designing a hive of agents with identical clone minds, it makes much

more sense to design the hive mind as a collective with shared

knowledge and awareness, forming a collective consciousness, whilst

allowing a diversity of different skills and perspectives to be deployed

as appropriate to the challenges at hand. This would also allow human

users to select the personality of the agents they interact with. The

collective mind would be engineered to enforce confidentiality in

respect to personal privacy.

This can be contrasted with swarm intelligence featuring the

collective behavior of decentralized, self-organized agents. Swarm

intelligence typically involves identical agents applying relatively

simple rules, e.g., to prevent a collection of airborne drones from

crashing into each other, and enabling them to fly around obstacles. In

principle, the two approaches can be used together, where swarm

intelligence is a comparatively low-level solution under the control of

the higher-level collective mind.

Complementary Role of Artificial Neural Networks

Deep learning over large corpora has produced very impressive

results. Text to image generators such as Stable Diffusion and DALL-

E are trained against many millions of images associated with short

text descriptions. The following example shows that this approach has

captured knowledge about marble, the effects of light and shadow, the

human form, and the styles of famous sculptors.

 Plausible Reasoning

31

Marble sculpture of a young woman generated using Stable Diffusion

The breadth of the training data is reflected by the ability to generate

images in a very wide range of styles. However, there are some

obvious limitations.

Painting of a woman generated with Stable Diffusion

The woman’s hand has too many fingers! This reflects weaker

knowledge about hands and fingers compared to that of the human

face.

Another example is when the prompt is “one blue ball and two

red cubes on a green floor”. Stable Diffusion clearly lacks an

understanding of how to count instances of things, as can be seen in

the two examples below generated using that prompt.

 Personal Knowledge Graphs

The same applies to the BLOOM large language model as can

be seen with the following prompt where BLOOM’s text is in italics.

There is one blue ball, two green balls and five red balls. How

many balls are there in total? The first possible answer is '7' because

there is one blue ball and six other balls. The second possible answer

is '4', because the first ball is blue, two of the other six balls are green

and the remaining four balls are red.

Together, this suggests a huge potential for combining deep

learning with techniques that support human-like reasoning and

learning. Richer semantic knowledge would allow the software to

understand text documents and images in the training set at a much

deeper level, enabling faster learning from smaller data sets.

It would also enable artists to work collaboratively with AI’s to

iteratively improve a composition through suggestions on changes to

particular aspects. One opportunity would be for generating richer

experiences in the virtual reality Metaverse by exploiting learning

from a vast corpora of text documents, images and videos.

More generally, AI’s should be able to learn everyday

knowledge and reasoning from understanding such corpora, just as

young children do as they observe the world around them, applying

their prior knowledge to reason about possible explanations, and by

asking questions.

Scalable Knowledge Engineering

Hand crafted knowledge doesn’t scale and is brittle when it

comes to the unexpected, i.e., things that the developers haven’t

anticipated and designed for. Deep learning scales very effectively, but

is similarly brittle, and requires vast datasets for training.

Humans are much better at generalizing from a few examples by

 Plausible Reasoning

33

seeking causal explanations based upon prior knowledge. Humans are

also good at reasoning using mental models and chains of plausible

inferences, supported by metacognition.

We need research focused on extending artificial neural

networks to support human-like learning and reasoning. At the same

time, we should explore scalability of machine learning for symbolic

representations of knowledge as a complementary technology,

moreover, hand authoring for small scale experiments can help

illustrate what’s needed from more scalable approaches.

An open question is how to apply artificial neural networks to

human-like reasoning and learning. It is likely that vector-space

representations will prove to be very effective in respect to handling

imprecise and context dependent concepts.

Application to Privacy centered personal assistants

Today’s consumer Web is dominated by advertising-based

business models that have a strong focus on gathering personal

information for metrics and for targeting advertising through live

auctions for space on Web pages. Consumers are habituated to clicking

away annoying permission requests for enabling tracking.

It is time to make privacy a central part of ecosystems of

services. One way to realize this is with personal assistants that act on

their user’s behalf in respect to providing services using ecosystems of

third-party providers. This would support a privacy centered evolution

away from dominance by Web search engines.

Personal assistants acting in this role can be thought of as digital

guardian angels, and designed to apply and safeguard their user’s

values as learned from observing their behavior via privacy-protecting

federated machine learning. Personal assistants select services

matching their user’s requests by using service metadata plus

independent trust attestations and live auctions.

For this to work, the business models need to align costs and

benefits for implementing and operating personal assistants, as well as

for attestations based upon aggregating feedback from both users and

personal assistants.

Personal assistants share pertinent personal information with the

selected services, e.g., their user’s travel plans and preferences, when

seeking proposals for flights, hotels, local travel, restaurants,

museums, etc. Some services are immediate, whilst others may take

significant time to fulfill, and rely on smart notifications to alert users

when ready.

 Personal Knowledge Graphs

Personal information is shared subject to contractual terms and

conditions. In principle, this can include the role of personal assistants

in downstream checks and permissions. This gets more complicated as

data is progressively transformed and merged with other sources of

information.

Practical personal assistants will be reliant on advances in

human-like reasoning with everyday knowledge, as well as advances

in natural language understanding and generation.

Summary

Plausible reasoning is a major paradigm shift for knowledge

graphs, in that it embraces the uncertainty, imprecision, context

sensitivity and inconsistencies in everyday knowledge and use of

natural language. This addresses a key challenge for human-agent

collaborative work in enabling the use of natural language dialogs.

This chapter has presented two contrasting approaches, one

focusing on plausible inferences inspired by Allan Collins, and the

other on a procedural approach inspired by John Anderson. Further

work is needed on how metacognition can be used to combine

reasoning with mental models as per Philip Johnson-Laird, and logical

reasoning based upon plausible inferences.

Recent successes with large language models and image

generation are very impressive, and demonstrate the practicality for

applying machine learning to latent semantics, in essence, automating

knowledge engineering. This is dramatically more scalable than hand

authoring of knowledge graphs.

Open AI’s ChatGPT is a large language model that supports

follow-up questions, and can challenge incorrect premises and reject

inappropriate requests. Nonetheless, it lacks continuous learning, and

is limited to what was in its training dataset.

Google’s Minerva is a large language model that was further

trained on technical datasets. It correctly answers around a third of

undergraduate level problems involving quantitative reasoning.

However, it lacks a means to verify the correctness of the proposed

solutions, as it is limited to intuitive reasoning.

New work is needed that operates directly on latent semantics to

support plausible reasoning and model building, combining intuitive

reasoning with deliberative analytic reasoning. In principle, this will

enable cognitive agents to learn more efficiently by understanding

training examples at a deeper level. A related challenge is to enable

general purpose agents rather than agents limited to a single domain of

 Plausible Reasoning

35

competence.

Work is also needed on symbolic graphs as a complementary

approach to neural networks when it comes to scalable knowledge

engineering, based upon advances in machine learning to circumvent

the bottleneck of handcrafted knowledge. It is conceivable that this

may offer benefits in respect to avoiding the huge energy costs

involved in applying deep learning to vast corpora.

These advances will pave the way for developing digital

guardian angels that are better at identifying inappropriate content,

including fake news and social media posts that violate the terms of

use. Guardian angels have plenty of other applications including

enabling privacy-centric ecosystems of services, managing auctions

for service providers and consumers, and orchestrating resources

across the computing continuum from the far-edge to the cloud.

More generally, the emergence of cognitive agents that mimic

human-reasoning and learning will help to boost productivity and

counter the shrinking work force associated with ageing human

populations across many countries.

The next generation of AI will probably seem like science

fiction, and will grow to embrace intellectual and artistic skills better

than most humans, based upon learning from vast corpora of text,

images and videos, plus foundational courses designed for AIs and

interaction with billions of people.

This should enable economies to break free of constraints on

growth associated with a limited work force, but at the same time will

necessitate attention to distributing benefits fairly across society and

countering the risk of monopolistic control of AI technology and its

exploitation.

Further Reading

Here are some suggestions if you want to read more.

Argument and Argumentation, Stanford Encyclopedia of Philosophy

Core theory of plausible reasoning, Allan Collins and Ryszard

Michalski, Cognitive Science Volume 13, Issue 1, 1989

“Thinking Fast and Slow”, Daniel Kahneman, 2011, see excerpt “Of

2 Minds: How Fast and Slow Thinking Shape Perception and

Choice”, Scientific American, June 15, 2012.

Lotfi Zadeh and the birth of Fuzzy Logic, IEEE Spectrum, June 1995

John R. Anderson – Biography, American Psychologist, April 1995,

https://plato.stanford.edu/entries/argument/index.html
http://www.mli.gmu.edu/papers/86-90/89-23.pdf
https://www.scientificamerican.com/article/kahneman-excerpt-thinking-fast-and-slow/
https://www.scientificamerican.com/article/kahneman-excerpt-thinking-fast-and-slow/
https://www.scientificamerican.com/article/kahneman-excerpt-thinking-fast-and-slow/
https://spectrum.ieee.org/lotfi-zadeh
http://act-r.psy.cmu.edu/peoplepages/ja/ja_bio.html

 Personal Knowledge Graphs

see also the ACT-R Website, hosted by CMU

“Metaphors we live by”, George Lackoff and Mark Johnson,

University of Chicago Press, 1980, pp 276

Structure Mapping in Analogy and Similarity, Dedre Gentner and

Arthur Markman, 1997, American Psychologist, 52 (1), 45–56

“Mental models or formal rules”, Philipp Johnson-Laird and Ruth

Byrne, 1993, Behavioral and Brain Sciences 16 (2), 368-380

“How to build a brain: A neural architecture for biological

cognition”, Chris Eliasmith, 2013, Oxford University Press

What we learn by doing, Roger Shank, 1995, Institute for the

Learning Sciences Northwestern University

W3C Cognitive AI Community Group, which developed the Chunks

& Rules specification, along with a suite of web-based demos.

Web-based demo for plausible reasoning and argumentation, Dave

Raggett, 2022

Stable Diffusion web-based demo by Hugging Face

BLOOM (BigScience Large Open-science Open-access Multilingual

Language Model) hosted by Hugging Face

Minerva, a large language model pretrained on general natural

language data and further trained on technical content, by Google

Research

ChatGPT, a conversational agent by Open AI

DALL·E 2, image generator by Open AI

The Semantic Web & Linked Data, Ruben Verborgh, Ghent

University

Metadata and Discovery, University of Pittsburgh

http://act-r.psy.cmu.edu/
https://groups.psych.northwestern.edu/gentner/papers/GentnerMarkman97.pdf
https://www.rogerschank.com/What-We-Learn-When-We-Learn-by-Doing
https://github.com/w3c/cogai/blob/master/README.md
https://w3c.github.io/cogai/
https://w3c.github.io/cogai/
https://www.w3.org/Data/demos/chunks/reasoning/
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://arxiv.org/pdf/2206.14858.pdf
https://arxiv.org/pdf/2206.14858.pdf
https://openai.com/blog/chatgpt/
https://openai.com/dall-e-2/
https://rubenverborgh.github.io/WebFundamentals/semantic-web/
https://pitt.libguides.com/metadatadiscovery/linked-data

	Motivation
	Introduction
	Plausible Knowledge
	The Plausible Knowledge Notation
	Statement Metadata
	Plausible Inferences
	Computing Certainty
	Relationship to Fuzzy Logic
	Richer Queries and Fuzzy Quantifiers
	Reasoning by Analogy
	Inferences vs Model Construction
	Metacognition
	Non-deductive Reasoning and Imagined Contexts
	PKN in relation to RDF and LPG
	Scaling and Graphs of Overlapping Graphs
	Cognitive Architecture for Artificial Minds
	System 1 and 2
	Modelling the Cortico-Basal Ganglia Circuit
	Chunks and Rules
	Chunk Rules
	Iteration over properties
	Operations on comma separated lists
	Named Contexts
	More complex queries
	Natural Language
	Large Language Models
	Natural Language and Common Sense
	Metaphors in Everyday Language
	Continuous Learning
	Hive Minds, Knowledge Caching and Swarm Intelligence
	Complementary Role of Artificial Neural Networks
	Scalable Knowledge Engineering
	Application to Privacy centered personal assistants
	Summary
	Further Reading

