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Chapter 6 

From Knowledge to Reasoning, a Cognitive 

Perspective on Personal Knowledge Graphs 

Dave Raggett1 

Motivation 

Work on personal knowledge graphs would greatly benefit from decades of progress 

in the cognitive sciences. Knowledge is about understanding information based upon 

past experience, where understanding enables reasoning and decision making. 

Today's applications, however, embed limited understanding in application code, as 

deductive logic isn't adequate for human-like reasoning. Humans are always learning 

and never attain perfect knowledge, and our reasoning out of necessity has to deal with 

uncertain, incomplete, imprecise and inconsistent knowledge. This chapter will 

introduce a cognitive approach to personal knowledge graphs, including plausible 

reasoning, System 1 for intuitive thinking, including effortlessly and rapidly generating 

coherent explanations, e.g., for natural language understanding, and System 2 for 

effortful slower deliberative thought, and how this can enable human-like memory, 

reasoning and decision making.  

 

Introduction 

Whilst today’s knowledge graphs claim to capture knowledge 

there is little attention to automated reasoning with the exception of 

inheritance down class hierarchies.  Application logic is instead 

embedded in application code, making it hard to understand and costly 

to update. Why should we continue to accept this state of affairs? 

A starting point is to consider just what we mean by knowledge 

and its relationship to information and data. Data is essentially an 

unstructured collection of values, such as numbers, text strings and 

truth values. Information is structured data2, such as tabular data 

labelled with column names. Knowledge is understanding how to 

 
1 W3C/ERCIM 
2 Unstructured data is often confusingly used as a term for information that doesn’t follow specific data 

models, for example, text documents, where the structure is formed by characters, words, punctuation and 

paragraphs.  
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reason with information. Knowledge presumes reasoning and without 

it is just information. As such it is high time to focus on automated 

reasoning for human-machine cooperative work that boosts 

productivity and compensates for skill shortages. 

The following figure depicts the evolution of databases from 

relational databases to graph databases, where the next stage is likely 

to be the emergence of cognitive databases featuring human-like 

reasoning. Relational databases are widely used in business, but there 

is growing interest in the greater flexibility of graph databases based 

on either RDF or Property Graphs. 

 

Evolution of databases for greater flexibility 

People have studied the principles of plausible arguments since 

the days of Ancient Greece, e.g., Carneades and his guidelines for 

effective argumentation. There has been a long line of philosophers 

working on this since then, including Locke, Bentham, Wigmore, 

Keynes, Wittgenstein, Pollock and many others. 

Plausible reasoning is everyday reasoning, and the basis for 

legal, ethical and business decisions. Researchers in the 20th century 

were sidetracked by the seductive purity of mathematical logic, and 

more recently, by the amazing magic of deep learning. Traditional 

logic is a sterile dead end, elegant, but ultimately of limited utility! It 

is now time to exploit human-like plausible reasoning with imperfect 

knowledge for human-machine cooperative work using distributed 

knowledge graphs. This will enable computers to analyze, explain, 

justify, expand upon and argue in human-like ways. 

In the real world, knowledge is distributed, imprecise and 

imperfect. We are learning all the time, and revising our beliefs and 

understanding as we interact with others. Imperfect is used here in the 
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sense of uncertain, incomplete and inconsistent. Imprecise concepts 

are those that lack a crisp definition, and needing to be interpreted in 

context, e.g., the color red, and a young person. 

Conventional logic fails to cope with this challenge, and the 

same is true for statistical approaches, e.g., Bayesian inference, due to 

difficulties with gathering the required statistics. Evolution has 

equipped humans with the means to deal with this, though not 

everyone is rational, and some people lack sound judgement. 

Moreover, all of us are subject to various kinds of cognitive biases, as 

highlighted by Daniel Kahneman. 

Plausible Knowledge 

Consider the logical implication A ⇒ B. This means if A is true 

then B is true. If A is false then B may be true or false. If B is true, we 

still can't be sure that A is true, but if B is false then A must be false. 

Now consider a more concrete example: if it is raining then it is cloudy. 

This can be used in both directions: Rain is more likely if it is cloudy, 

likewise, if it is not raining, then it might be sunny, so it is less likely 

that it is cloudy, which makes use of our knowledge of weather. 

In essence, plausible reasoning draws upon prior knowledge as 

well as on the role of analogies, and consideration of examples, 

including precedents. Mathematical proof is replaced by reasonable 

arguments, both for and against a premise, along with how these 

arguments are to be assessed. In court cases, arguments are laid out by 

the Prosecution and the Defence, the Judge decides which evidence is 

admissible, and the guilt is assessed by the Jury. 

During the 1980’s Alan Collins and co-workers developed a 

theory of plausible reasoning based upon recordings of how people 

reasoned. They discovered that: 

• There are several categories of inference rules that people 

commonly use to answer questions. 

• People weigh the evidence bearing on a question, both for and 

against, rather like in court proceedings. 

• People are more or less certain depending on the certainty of the 

premises, the certainty of the inferences, and whether different 

inferences lead to the same or opposite conclusions. 

• Facing a question for which there is an absence of directly 

applicable knowledge, people search for other knowledge that 

could help given potential inferences. 
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The Plausible Knowledge Notation 

A convenient way to express such knowledge is the Plausible 

Knowledge Notation (PKN). This is at a higher level than RDF, and 

combines symbolic statements with qualitative metadata used to 

express certainty and conditional likelihood, etc. PKN supports a 

variety of statements including properties, relationships, 

dependencies, implications and ranges. Metadata can be provided at 

the end of statements as a comma separated list of name value pairs 

enclosed in round brackets.  

Property statements declare the values of named properties, e.g., 

flowers of England includes daffodils, roses, tulips (certainty high) 

Following the terminology introduced by Collins, flowers is the 

descriptor, i.e., the property name. England is the argument, i.e., the 

thing the property applies to. includes is the operator, with excludes as 

its antonym. The values are the referents, and either reference things 

or are literals such as numbers. 

PKN statements optionally end with one or metadata parameters, 

e.g., certainty is an example of qualitative metadata, where the value 

of the parameter is from an enumerated range, e.g., low, medium and 

high. 

Some concepts are context dependent, e.g., the meaning of 

young depends on whether you are referring to a child or an adult. The 

context can be stated with for as in the following examples: 

age of young is birth, 12 for child 

age of young is birth, 45 for adult 

 

Relationship statements describe relationships between things, e.g., 

robin kind-of songbird 
duck similar-to goose for habitat 
duck dissimilar-to goose for neck-length 
dingy is small for sailing-boat 

Where kind-of describes the relationship between classes of things. 

similar-to indicates that one class has similar referents for a given 

descriptor, as named with for, whilst dissimilar-to has the opposite 

meaning. The is relationship is convenient for properties without 

descriptors. In this example, small is a term for describing the size of 

something relative to some context. 

Relationships take the form subject, type, object, so that in the 

first example above, the subject is robin, the relationship type is kind-
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of and the object is songbird. 

Dependency statements are relationships that describe a coupling 

between a pair of properties, e.g., 

climate depends-on latitude 
current increases-with voltage 
pressure decreases-with altitude 

Dependencies can describe a correlation as in the case of increases-

with, or leave that unspecified, as for depends-on. If two locations have 

similar latitude, then the first statement above implies that they should 

have similar climates. Dependencies are useful for qualitative 

reasoning about physical processes.3 

 

Implication statements are a form of if-then rules with locally scoped 

variables, for example, ?place, as in: 

climate of ?place includes hot and 
rainfall of ?place includes heavy 
     implies crops of ?place includes rice 

Antecedents and consequents can be properties or relations, as in: 

?adult is-a adult and age of ?adult less-than 25 
     implies age of ?adult is very:young 

A simplification is to constrain implications to use conjunctions of 

antecedents. Disjunctions can then be expressed using multiple 

implications. Negatives can be expressed using antonyms for 

relationships, operators and values.  Where knowledge is uncertain, an 

implication may be held to weakly apply even if not all of its 

antecedents can be established against the knowledge base. This might 

be justified if there is a lack of information relating to a specific 

antecedent so that we don’t know whether or not it applies. 

 

Range statements are a form of properties used to describe the 

domain of scalar values, for example, temperature, age and guilt, in: 

range of temperature includes cold, warm, hot 

range of age includes infant, child, adult for person 

range of guilt includes innocent, guilty (overlap none) 

Fuzzy ranges allow values to overlap as needed, e.g., a temperature 

value that is considered intermediate between cold and warm. This 

corresponds to Zadeh’s fuzzy sets, e.g. (cold 0.8, warm 0.2, hot 0). By 

 
3 The model may depend on the state, e.g., the effect of applying heat to water 

varies according to whether it is in the form of ice, liquid water or steam. 



 Personal Knowledge Graphs 

 

 

specifying overlap none, we declare that innocent and guilty are 

disjoint, so that guilt can be either innocent or guilty, but not both.  

Ranges enable the value of different terms in a set to be justified 

by different lines of argument, for example, using different implication 

statements, such as: 

temperature of room is cold implies fan-speed is stop 
temperature of room is warm implies fan-speed is slow 
temperature of room is hot implies fan-speed is fast 

An explicit temperature measurement can be mapped to a fuzzy set 

with a certainty value for each qualitative term in the range. Likewise, 

the inferred fuzzy set for the fan speed can be mapped back to an 

explicit (i.e., numeric) fan speed. 

The mapping can be specified using metadata that declare the 

lower and upper limits for each term, e.g., for fan speed we might want 

to map stop, slow and fast to increasing fan speeds. The shape of the 

transfer function for each term can be made explicit with additional 

parameters if so needed, for instance, when using trapezoidal or 

smoothly changing functions. 

range of fan-speed is stop, slow, fast 

fan-speed of stop is 0 

fan-speed of slow is 0, 1200 

fan-speed of fast is 1000, 1800 

Statement Metadata 

Most metadata parameters are qualitative rather than quantitative 

to reflect their lack of precision, as in many cases we have only a rough 

idea and are not in a position to give detailed and accurate statistics. 

These parameters are used to estimate the certainty of each inference. 

The following parameters are defined: 

• typicality in respect to other group members, e.g., robins are 

typical song birds. 

• similarity to peers, e.g., having a similar climate. 

• strength, inverse – conditional likelihood for forward and 

inverse inferences for a given statement, e.g., whether rain 

predicts cloudy weather and vice versa. 

• frequency – the proportion of children with a given property, 

e.g., most species of birds can fly, but not all. 

• dominance – the relative importance in a given group, e.g., the 

size of a country’s economy. 
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• multiplicity – the number of items in a given range, e.g., how 

many different kinds of flowers grow in England, remembering 

that parameters are qualitative not quantitative.  

• certainty – this can be used to indicate the degree of confidence 

in a given statement being true. 

Plausible Inferences 

Inferences provide a means to infer a property or relation that 

isn’t explicit in the knowledge base. There are two basic approaches: 

1. Using implications where all of the rule’s consequents are 

deemed likely if all of the antecedents can be established either 

directly or indirectly. An example given above implies that the 

weather is cloudy if it can be established that the weather is 

rainy. 

2. Using relationships to infer that a relationship or property is 

likely to hold for the object of the relationship, if it can be 

established to hold directly or indirectly for the subject of that 

relationship. One example, is where it is known that birds have 

wings, so that if you know that ducks are a kind of bird, then 

you can reasonably infer that ducks have wings 

Implications and relationships can also be used for inverse inferences 

with the corresponding likelihood depending on the statement 

metadata. For implications, you can infer that all of the antecedents are 

likely to hold if one of the consequents holds, for example, it is 

somewhat likely to be raining if it is cloudy.  

Likewise for relationships, if robins are a typical kind of bird and 

you know that robins sing, then it is plausible that all birds sing. 

When using a relationship for an inference, the likelihood of an 

inferred property or relationship will depend on the type of the 

relationship used for the inference. Here are a few examples: 

Relationship Type Meaning Reversibility 

kind-of subclass of class asymmetric 

is-a instance of class asymmetric 

similar-to similar concepts symmetric 

depends-on coupled concepts asymmetric 

antonym-for opposite meaning symmetric 

The reasoner can be given a property or relationship as a premise that 

we want to find evidence for and against, for instance, here is a premise 

expressed as a property: 
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flowers of England includes daffodils 

Its inverse would be: 

flowers of England excludes daffodils 

The reasoner first checks if the premise is a known fact, and if not 

looks for other ways to gather evidence. One tactic is to generalize the 

property referent, e.g., by replacing it with a variable as in the 

following: 

flowers of England includes ?flower 

The knowledge graph provides a matching property statement: 

flowers of England includes temperate-flowers 

We then look for ways to relate daffodils to temperate flowers, finding 

the following match: 

daffodils kind-of temperate-flowers 

So, we have inferred that daffodils grow in England. Another tactic is 

to generalize the property argument as in the following: 

flowers of ?place includes daffodils 

We can then look for ways to relate England to similar countries, for 

example: 

Netherlands similar-to England for flowers 

We find then a match, for example: 

flowers of Netherlands includes daffodils, tulips, roses 

Thus, providing us with a second way to infer that daffodils grow in 

England. The certainty depends on the parameters, and the similarity 

parameter in respect to the similar-to relation. 

The above uses a property as a premise. You can also use 

relations as premises, for instance: 

Peter is young 

The reasoner will then look for relevant knowledge on whether Peter 

is, or is not, young, e.g., Peter’s age, and whether that implies he is a 

child or an adult, based upon pertinent range statements and associated 

definitions for their values. 

In a small knowledge graph, it is practical to exhaustively 

consider all potentially relevant inferences. This becomes increasingly 

costly as the size of the knowledge graph increases. One way to 

address this challenge is to prioritize inferences that seem more 

certain, and to ignore those that are deemed too weak. A useful 

approach to implementing this is to exploit spreading activation. 

Further details on this will be given later on in this chapter. 
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The JavaScript implementation used in the web-based demo 

works as follows: The starting point is when the reasoner is invoked 

with a premise, e.g., in the form of a property with the descriptor, 

argument, operator, and referent. The operator and referent are 

optional, and can be omitted when you want to find the values. 

The reasoner adds the premise as an initial goal, and iteratively 

looks for direct evidence in the form of property statements or indirect 

evidence in the form of relations, dependencies or implications. 

Inferences may result in queuing new goals for arguments involving 

multiple steps. 

A check is made to see if a goal has been previously considered, 

in order to avoid indefinite looping behavior. This mimics human 

recall, in that people generally realize that they have already worked 

on a goal and hence, there is no point in re-doing that work. 

Reasoning works backwards from the premise towards the facts. 

This is recorded and used in reverse to compute the certainty of 

inferences by working forward from the facts. Finally, the record is 

used to generate the explanation. 

An open question is when to curtail further search, for instance, 

immediately after finding direct evidence.  A more sophisticated 

approach is to curtail search based upon diminishing return on effort, 

analogous to people getting bored and giving up. The web-based demo 

provides a checkbox that allows users to see the effects of trying harder 

as it were. It shows that trying harder may just show permutations on 

what was already discovered, with marginal extra value! 

Computing Certainty 

The estimated certainty of inferences is computed working 

forward from the recorded certainty for the facts in the knowledge 

base. The papers by Collins et al. do not define the algorithms, so what 

follows should be considered as preliminary and meriting work on a 

more principled analysis grounded in Bayesian statistics. 

The use of qualitative parameters for plausible reasoning is due 

to the lack of detailed statistics, and as such represents best guesses. If 

certainty is modelled as a number between 0 and 1, we can map 

qualitative values to numbers, and use algorithms for estimating the 

numeric certainty, which can later be mapped back to qualitative terms 

as needed. 

One such algorithm is where a goal directly matches multiple 

properties with non-exclusive values, which can then be combined as 

a set. The more matches, the greater the certainty for establishing the 
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goal.  

If c is the average certainty and n is the number of matches, the 

combined certainty is 1.0 - (1.0 - c)/n. If c = 0.5 and n = 1 we get 0.5. 

If n = 2, we get 0.75. If n = 4, we get 0.85, If n = 256, we get 0.998. 

Collins et al. suggest a simplified approach to modelling the 

effects of the various metadata parameters in which each parameter 

boosts, weakens or has no effect on the estimated certainty, and using 

the same algorithm for all such parameters. 

If the original certainty is zero, the parameters should have no 

effect, and likewise, the effect of a parameter should be smaller as the 

parameter’s value tends to zero. 

Treating the effect of a parameter as a multiplier m on the 

certainty, the number should be in the range 0 to 1/c, where c>0. If we 

want to boost c by 25% when c = 0.5, m = 1.25, but this should shrink 

to 1 when c = 1. 

How much should m increase as c tends to 0? One idea is to use 

linear interpolation, i.e., 1.5 when c = 0, 1.25 when c = 0.5 and 1 when 

c = 1. This multiplier shrinks to 1 as the value of the parameter tends 

to 0 and when c tends to 0. Thus m = 1 + p/2 - p*c/2, where m is the 

multiplier, p is the parameter value (0 to 1) and c is the certainty (0 to 

1). 

We also need to deal with multiple lines of argument for and 

against the premise in question.  If the arguments agree, we can 

aggregate their certainties using the first algorithm above. We are then 

left with a fuzzy set for the different conclusions, e.g. (true 0.8, false 

0.2). Note that arguments may present multiple conclusions rather than 

true or false, as depending on the query posed to the reasoner. 

Relationship to Fuzzy Logic 

Plausible reasoning subsumes fuzzy logic as expounded by Lotfi 

Zadeh.  Fuzzy logic includes four parts: fuzzification, fuzzy rules, 

fuzzy inference and defuzzification. 

Fuzzification maps a numerical value, e.g., mapping a 

temperature value into a fuzzy set, where a given temperature could be 

modelled as 0% cold, 20% warm and 80% hot. This involves transfer 

functions for each term, and may use a linear ramp or some kind of 

smooth function for the upper and lower part of the term’s range. 

Fuzzy rules relate terms from different ranges, e.g., if it is hot, 

set the fan speed to fast, if it is warm, set the fan speed to slow. The 

rules can be applied to determine the desired fan speed as a fuzzy set, 

e.g., 0% stop, 20% slow and 80% fast. Defuzzification maps this back 
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to a numeric value. 

Fuzzy logic works with fuzzy sets in a way that mimics Boolean 

logic in respect to the values associated with the terms in the fuzzy 

sets. Logical AND is mapped to selecting the minimum value, logical 

OR is mapped to selecting the maximum value, and logical NOT to 

one minus the value, assuming values are between zero and one. 

Plausible reasoning expands on fuzzy logic to support a much 

broader range of inferences, including context dependent concepts, 

and the means to express fuzzy quantifiers and modifiers. 

Richer Queries and Fuzzy Quantifiers 

Here are some examples of richer queries: 

all ?x where color of ?x includes red from ?x kind-of rose 

few ?x where color of ?x includes yellow from ?x kind-of rose 

which ?x where color of ?x includes yellow from ?x kind-of rose 

most ?x where age of ?x greater-than 20 from ?x is-a person 

any ?x where age of ?x less-than 15 from ?x is-a person 

which ?x where ?x is-a person and age of ?x is very:old 

which ?x where ?x is-a person and age of ?x slightly:younger-than 25 

The first example searches the knowledge base to test if all roses are 

red. The where keyword is followed by a filter expressed as a 

conjunction of properties or relationships.  The filter is applied to the 

set obtained by applying the criteria following the optional from 

keyword, and expressed as conjunction of properties or relationships. 

In other words, we first find the set of things that are roses, and 

then test to see that they are all red. If the query omits from, the where 

filter applies to the entire knowledge base. 

Traditional logic is limited to two quantifiers: for all and there 

exists. Plausible reasoning enables a much richer variety:  none, few 

most, many, all, which and count. The meaning of few, many and most 

is interpreted by counting the number of elements obtained from the 

filter as compared to the size of the set they are drawn from. which 

returns the elements that pass the filter, whilst count returns the 

number of those elements. 

The last two example queries involve modifiers that correspond 

to adverbs or adjectives in natural language. Multiple modifiers can be 

applied to a given concept, where each modifier is followed by a colon 

as a delimiter, e.g., very:slightly:older-than. This reflects Lotfi 

Zadeh’s conception of fuzzy logic as a means to compute with words: 

“small can be multiplied by a few and added to large, or colder can be 
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added to warmer to get something in between.” 

The meaning of words is often context dependent, e.g., the same 

person may be considered old by a child, and young by an adult. To 

determine if someone is very old, we could query their age, and see 

where this fits in terms used for describing the age of people. 

range of age is infant, child, adult for person 

age of infant is 0, 4 for person 

age of child is 5, 17 for person 

age of adult is 18, age-at-death for person 

If John is 63 and Pamela is 82, this implies they are both adults. We 

can then look at the terms used to describe adults. 

range of age is young, middle-age, old, geriatric for adult 

age of young is 18, 44 for adult 

age of middle-age is 45, 65 for adult 

age of old is 66, age-at-death for adult 

age of geriatric is 78, age-at-death for adult 

This implies that John is middle-aged and Pamela is geriatric. If we 

then define very old as synonymous with geriatric, we can finally infer 

that Pamela is very old.  A complication is to how to compare a 

numerical age (in years) with the age at death. Essentially, a person’s 

age increases until they die. One way to model that is as follows: 

?person is-a person and age of ?person is ?age 

         implies ?age less-or-equal age-at-death 

We also need to define comparative concepts such as younger than as 

equivalent to less than, so we can determine if one person is younger 

than another person by comparing their respective ages. Modifiers 

such as slightly can be interpreted in respect to comparing the 

difference of ages with a person’s age, for example if Mary is 23 and 

Jenny is 25, the age difference is 2 years so Mary can be considered as 

slightly younger than Jenny given that 2/25 is 8%. 

Many such terms are inherently imprecise concepts that depend 

on the context and are debatable. Nonetheless, human communication 

abounds with imprecision, relying on the speaker and listener having 

roughly the same conceptual model. 

Reasoning by Analogy  

Analogies involve comparisons between things or objects where 

similarities in some respects can suggest the likelihood of similarities 
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in other respects, for instance, in their respective properties and 

relationships, or in ways to solve related problems. Gentner and 

Markman proposed a basis for modelling analogies in terms of 

establishing a structural alignment based on common relational 

structure for two representations, where the stronger the match, the 

better the analogy. 

In some cases, the objects may have the same properties, in other 

cases, there is a systematic mapping between different properties, e.g., 

relating electric current to the flow of a liquid in a pipe, and 

correspondingly, voltage to pressure. If you know that flow increases 

with pressure, you can infer that current increases with voltage. 

Analogical reasoning tests often take the form of A is to B as Y 

is to —, where students are asked to supply the missing term. This can 

be readily modelled using PKN, for example consider the query: 

leaf:tree::petal:?      # leaf is to tree as petal is to what? 

when applied to the knowledge: 

leaf part-of tree 

petal part-of flower 

The reasoner finds that leaf is related to tree via the part-of 

relationship, and can then use that to look for a part-of relationship 

involving petal, yielding the result flower. Now consider 

like:love::dislike:? 

when applied to the knowledge: 

love more-than like 

hate more-than dislike 

This gives the answer hate by matching the object of the relationship 

rather than the subject. Here is a more complex example showing the 

output from the reasoner: 

Premise: mansion:shack::yacht:? 
Found: mansion is large for building 
Found: shack is small for building 
So contrast is large, small 
Found: yacht is large for sailing-boat 
Found: dingy is small for sailing-boat 
 
Therefore mansion:shack::yacht:dingy 

Analogies involve a form of inductive reasoning, and is related to 

learning from examples, and being able to apply past experience to a 

new situation based upon noticing the similarities and reasoning about 
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the differences. Such reasoning can be simple as in the above examples 

or more complicated, for instance, when involving causal modelling. 

Inferences vs Model Construction 

Philip Johnson-Laird (1980, 1983) argues that the best account 

for human reasoning is not in terms of systematic rules or inference 

patterns, but rather in terms of the manipulation of mental models. 

Alan Collins by contrast talks about plausible reasoning in terms of 

inference patterns. How can both approaches be combined? 

One solution is to base model construction on rule execution, 

where rule actions update working memory with new statements. This 

would involve an extension of the PKN rule syntax to represent actions 

as consequents. Such actions can also be used as a means to invoke 

external behavior, for instance, to direct a robot arm to pick something 

up, or to communicate with another agent. A cognitive architecture for 

perception, cognition and action, is presented in a later section of this 

chapter, along with a framework for chunks and rules. However, 

further work is needed to identify a higher level notation for 

manipulating mental models and for metacognition. 

Metacognition 

Metacognition is reasoning about reasoning, including, 

reasoning about reasoning strategies, for instance, reasoning about 

how to solve a given problem by comparing it to previous problems 

and adapting their solutions to match the new context. 

Metacognition is applicable to deciding when the current 

approach isn’t working well, so that it is time to try a different 

approach or to give up on the problem, at least for now, and perhaps 

to consider a different problem relating to the same overall goal.  

Metacognition is likewise relevant to managing multiple 

concurrent goals, when it is necessary to dynamically switch focus 

between them, and to resource effort on them according to their 

priorities. Such goals can be at many different levels of abstraction. 

Non-deductive Reasoning and Imagined Contexts 

There are many forms of reasoning other than reasoning 

deductively from facts to conclusions. Inductive reasoning considers 

similarities and differences across a group of things. Abductive 

reasoning considers which explanations best suit a set of known facts. 

This may involve reasoning with causal models that can be used 

forwards to predict a potential future, or backwards when seeking 
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plausible explanations or ways to achieve a desired outcome. 

A common requirement is the need to represent things that are 

only true in a given context, whether past, present or an imagined 

situation. This is also needed to implement a theory of mind in which 

a cognitive agent represents and reasons about the likely beliefs of 

other agents (human or artificial). Story telling is central to human 

culture, and likewise involves the need to model knowledge specific 

to a fictional world. 

Episodic contexts are those that relate to the passage of time, 

describing what was happening at different times, and involving the 

means to support temporal reasoning. This is key to continuous 

learning and further details are given in a later section. 

PKN in relation to RDF and LPG 

RDF (the resource description framework) is a suite of standards 

from W3C for symbolic graphs, the Semantic Web and Linked Data. 

These include SPARQL for querying RDF-based graphs, OWL as an 

ontology language and SHACL for expressing constraints on sub-

graphs as a basis for validation. 

RDF is based upon triples, i.e., directed labelled graph edges. 

RDF has several notations including XML, Turtle, N34 and JSON-LD. 

In RDF, graph vertices are URIs, blank nodes or literals, such as text 

strings, dates, numbers and truth values.  Blank nodes are identifiers 

scoped to a serialization of particular graph. URIs are globally unique 

identifiers, such as HTTP based universal resource locators (URLs). 

Linked Data makes use of HTTP as a basis for linking to further 

information about an RDF identifier, along with the means to 

download an RDF graph or a text description as appropriate.  There is 

a rapidly growing number of open datasets and many ontologies. 

LPG (labelled property graphs) allow both vertices and edges to 

be associated with sets of property-values. This is convenient when 

you want to annotate edges. One example is where the edge represents 

the relationship between an employer and an employee, where you 

want to indicate the employee’s start date, his/her role, department and 

so forth. 

PKN is at a higher level than RDF in that each PKN statement 

corresponds to multiple RDF triples. A PKN relationship corresponds 

to a single triple, but the statement metadata complicates matters, by 

requiring the relationship to be reified. Here is an example by a way 

 
4 Notation 3 (N3) is a superset of RDF 
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of explanation: 

# PKN: John knows Mary (certainty high) 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

@prefix pkn: <http://example.com/pkn/> . 

_:x rdf:type rdf:Statement . 

_:x rdf:subject <#John> . 

_:x rdf:predicate foaf:knows . 

_:x rdf:object <#Mary> . 

_:x pkn:certainty pkn:high . 

Reification replaces an RDF triple by a set of triples for the subject, 

predicate and object. This example introduces a blank node (_:x) and 

an RDF triple that indicate it represents a reified triple.  The example 

uses three RDF namespaces, one for the core RDF syntax, one for 

FOAF, the friend of a friend vocabulary, and another hypothetical 

vocabulary for the PKN core terms.  The latter is used to annotate the 

relationship with the qualitative measure of certainty. 

A similar approach can be used to represent PKN property 

statements.  The argument is mapped to a subject node, the descriptor 

to the RDF predicate, and the referent to an object node. The PKN 

operator, e.g., includes, can be declared using another triple with 

pkn:operator as its predicate. One complication is that PKN allows 

properties to have a comma separated list of referents.  These can be 

mapped to RDF collections, as in the following example: 

# PKN: flowers of Netherlands includes daffodils, tulips 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix pkn: <http://example.com/pkn/> . 

_:x rdf:type rdf:Statement . 

_:x rdf:subject <#Netherlands> . 

_:x rdf:predicate <#flowers> . 

_:x pkn:operator pkn:includes . 

_:x rdf:object _:y . 

_:y rdf:type rdf:List 

_:y rdf:first <#daffodils> . 

_:y rdf:rest _:z . 

_:z rdf:first <#tulips> . 

_:z rdf:rest rdf:nil . 
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In principle, PKN could be easily extended to map referents to RDF 

identifiers in given namespaces as a basis for automating mapping 

PKN to RDF. One way to do this would be to borrow the context 

mechanism from JSON-LD. This would allow the RDF identifiers to 

be declared in separate files, linked from the PKN knowledge base. 

PKN can be mapped to Labelled Property Graphs by mapping 

PKN properties to LPG node properties, and PKN relationships to 

LPG relationships. The details depend on the notation for property 

graphs which varies from one LPG vendor to the next. 

Scaling and Graphs of Overlapping Graphs 

Very large knowledge graphs are difficult to deal with. For 

instance, when visualizing the graph, it is intimidatingly complex 

when zoomed out, and lacks context when zoomed in. The lack of 

context is also a challenge for automated reasoning. One technique to 

address this is to transform very large graphs into overlapping smaller 

graphs that model individual contexts.  The transformation can be 

applied either statically or dynamically according to criteria of interest. 

In a large enterprise, subgraphs can be used for different business 

functions, offering different views for different departments, and 

dependency tracking for old and new uses given the enduring need to 

support a mix of new and old applications. 

Contexts are also important for temporal reasoning, for handling 

counterfactuals when reasoning about explanations, and for imagined 

situations, e.g., when reasoning about plans.  Contexts are important 

for natural language as a basis for grouping things that commonly 

occur in the same context. 

This is further related to Roger Shank’s idea of scripts, which 

describe a stereotyped sequence of events in a given context, such as 

having a meal in a restaurant. Some events/actions have causal 

dependencies, whilst others have statistical correlations. 

A complementary technique is to associate graph vertices with 

activations levels that are boosted when accessed or created, and 

otherwise decay over time, so that the activation level is a measure of 

how frequently a given vertex is used, mimicking the human forgetting 

curve. This can be combined with spreading activation as a way of 

priming related concepts.  Each time a vertex is accessed, updated or 

added, a wave of activation spreads out along the connected graph 

edges. The more edges from a given vertex, the weaker the activation 

boost through each edge. A further weakening occurs at each vertex, 

to ensure that the wave rapidly decays. 
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Activation can be combined with stochastic recall to mimic other 

characteristics of human memory. If two edges have the same 

activation levels, they will be equally likely to be recalled.  A further 

refinement is to mimic the spacing effect, which progressively reduces 

the boost when the time interval since the last boost is small compared 

to a given time window.  The effect will be familiar to students in that 

the benefit of cramming revision into a short time is short lived 

compared to a more structured approach over a longer period of time. 

Cognitive Architecture for Artificial Minds 

Cognitive architecture provides a functional model at a level 

above that of implementation choices. Consider the human brain as a 

source of inspiration: 

 
 

 

 

This suggests the following functional architecture where the cortex is 

modelled as a collection of specialized graph databases along with 

associated algorithms that execute local to the data. The inner part of 

the brain is mapped to a set of cognitive circuits, analogous to 

blackboard systems, as each circuit has access to multiple cognitive 

modules in the cortex. This supports sharing of information along with 

invocation of cortical functions, including graph algorithms. 

In the human brain, different senses are mapped to different 

cortical lobes. As an example, when we see a lemon, we perceive its 

shape, size, color, texture and smell. The Anterior Temporal Lobe acts 

as a hub for relating semantic multimodal models to unimodal models 

in the different lobes. The same hub and spoke model can be applied 

to semantic integration across the senses for artificial minds. 

Courtesy of  Clipart Library 

Anterior temporal lobe as hub for integration across senses 
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Cognitive Architecture 

 

The architectural components have the following functions: 

Cortex supports memory and parallel computation. Recall is 

stochastic, reflecting which memories have been found to be useful in 

past experience. Spreading activation and activation decay mimics 

human memory with semantic priming, the forgetting curve and 

spacing effect. 

Perception interprets sensory data and places the resulting models into 

the cortex. Cognitive rules can set the context for perception, and direct 

attention as needed. Events are signaled by queuing chunks to 

cognitive buffers to trigger rules describing the appropriate behavior. 

A prioritized first-in first-out queue is used to avoid missing closely 

spaced events. 

System 1 covers intuitive/emotional thought, cognitive control and 

prioritizing what’s important. The limbic system provides rapid 

assessment of past, present and imagined situations. Emotions are 

perceived as positive or negative, and associated with passive or active 

responses, involving actual and perceived threats, goal-directed drives 

and soothing/nurturing behaviors.  

System 2 is slower and more deliberate thought, involving sequential 

execution of rules to carry out particular tasks, including the means to 

invoke graph algorithms in the cortex, and to invoke operations 

involving other cognitive systems. Thought can be expressed at many 

different levels of abstraction, and is subject to control through 

metacognition, emotional drives, internal and external threats. 

Action is about carrying out actions initiated under conscious control, 

leaving the mind free to work on other things. An example is playing 
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a musical instrument where muscle memory is needed to control your 

finger placements as thinking explicitly about each finger would be far 

too slow. The cerebellum provides real-time coordination of muscle 

activation guided by perception. Of note is the fact that the human 

cerebellum has over three times the number of neurons compared to 

the cortex, packed into a much smaller space. 

System 1 and 2 

The idea of System 1 and 2 were popularized by Daniel 

Kahneman in his book “Thinking Fast and Slow”. System 1 is fast, 

intuitive and apparently effortless, yet opaque as we aren’t aware how 

we came to a conclusion. System 1 is subject to many cognitive biases 

and sometimes wrong. 

Natural language understanding is largely handled via System 1, 

as we understand in real-time what people are saying by constructing 

a coherent explanation that hides the ambiguity of language. This 

involves semantic priming together with everyday knowledge that fills 

in the gaps in what we heard. 

System 1 and 2 work in cooperation, with System 2’s analysis 

overriding System 1’s intuition as needed. System 2 is accessible to 

introspection and much slower. It also feels effortful, making thinking 

hard work and quite exhausting! 

Modelling the Cortico-Basal Ganglia Circuit 

The following diagram illustrates a functional model of the 

cortico-basal ganglia circuit as an asynchronous sequential rule 

engine, inspired by John Anderson’s work on ACT-R: 

 

 
Model of cortico-basal ganglia cortical circuit 
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The rule engine is connected to different cortical modules via 

buffers that each hold a single chunk – a collection of name/value 

pairs. These buffers correspond to a bundle of nerve fibers whose 

concurrent activation levels can be interpreted as a vector in a noisy 

high dimension space. Chris Eliasmith uses the term semantic pointers, 

and has shown how chunks can be encoded and decoded using circular 

convolution. 

Perception dynamically updates the chunks to reflect the model 

of the current state of the world. Events update the chunk buffers to 

trigger the appropriate behavioral responses. 

Procedural knowledge is encoded as collections of rules. The 

rule engine determines which rules match the current state of the 

buffers, and stochastically selects a matching rule to execute. Each rule 

has one or more antecedents and one or more consequents. A 

consequent may directly update a buffer, or do so indirectly via 

invoking a cortical operation on a module.  These operations are 

asynchronous and can be loosely compared to the Web’s hypertext 

transfer protocol (HTTP), with methods to retrieve (GET) and update 

data (PUT), as well as to invoke server-side operations (POST). 

Chunks and Rules 

The W3C Cognitive AI Community Group has devised a simple 

notation for chunks and rules, along with a variety of built-in 

operations, and an open-source implementation with a variety of web-

based demos. Each chunk is associated with a chunk identifier, a chunk 

type and a set of name/value pairs for its properties. The chunk type is 

convenient way of grouping chunks, rather than having a predefined 

meaning. 

The chunk notation minimises the need for punctuation, and you 

can choose between using a line break or a semicolon as a property 

separator. Here are examples with both conventions: 

dog d25 {name molly; breed terrier; gender female; age 6} 

dog d26 { 

    name butch 

    breed bulldog 

    gender male 

    age 3 

} 

Property values are chunk identifiers, string literals, URLs, ISO8601 
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dates, numbers, Booleans and comma separated sequences thereof. 

Note that using @ as a prefix is reserved for system identifiers. The 

chunk identifier (e.g., d25 in the above example) is optional and will 

be automatically assigned if missing. 

Chunk Rules 

Chunk rules are composed from chunks and have one or more 

conditions, and one or more actions. Conditions and actions are 

associated with the module they apply to, defaulting to the goal 

module. 

count {state start; from ?num1; to ?num2} 
   => count {state counting},  
     increment {@module facts; @do get; number ?num1} 

This example has one condition and two actions. The condition is 

matched to the goal module buffer. The first action updates that buffer 

changing the start property from start to counting. The second action 

applies to the facts module and initiates a get operation for the given 

number. Rule variables are prefixed with a question mark and scoped 

to the rule. 

Module operations are invoked with @do. The above example 

invokes get to asynchronously retrieve a chunk that matches the 

properties given in the action, excluding the ones prefixed with @. The 

recalled chunk is put into the named buffer, triggering a fresh round of 

rule selection. 

Both conditions and actions can use @id to bind to a chunk 

identifier and @type to bind to the chunk type. The following actions 

are built-in, with update as the default action: 

• @do update to directly update the module’s buffer 

• @do queue to push a chunk to the queue for the module 

• @do clear to clear the module’s buffer and pop the queue 

• @do get to recall a chunk with matching type and properties 

• @do put to save the buffer as a new chunk in the module’s graph 

• @do patch to use the buffer to patch chunk in the module’s graph 

• @do delete to forget chunks with matching type and properties 

• @do next to load the next matching chunk in an implementation 

dependent order 

• @do properties to iterate over the set of properties in a buffer 

• @for to iterate over the items in a comma separated list 

Applications may define additional operations, e.g., for controlling a 

robot arm. Apart from clear, update and queue, all actions are 

asynchronous, and when complete set the buffer status to reflect their 
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outcome. Rules can query the status using @status. The value can 

be pending, okay, forbidden, nomatch and failed. 

This is loosely analogous to the hypertext transfer protocol 

(HTTP) and allows rule engines to work with remote cognitive 

databases. To relate particular request and response pairs, use @tag in 

the action to pass an identifier to the subsequent asynchronous 

response where it can be accessed via @tag in a rule condition. 

You can define rules that match a buffer when a module 

operation hasn’t succeeded. To do this place an exclamation mark 

before the chunk type of the condition. 

Actions can be used in combination with @id to specify the 

chunk identifier, for instance, to recall a chunk with a given identifier. 

Additional operations are supported for operations over property 

values that are comma separated lists of items, see below. The default 

action is @do update, which just updates the properties given in the 

action, leaving another properties in the buffer unchanged. You can 

use @do clear to clear all properties in the buffer. 

Whilst @do update allows you to switch to a new goal, 

sometimes you want rules to propose multiple sub-goals. You can set 

a sub-goal using @do queue which pushes the chunk specified by an 

action to the queue for the module's buffer. 

You can use @priority to specify the priority as an integer in the 

range 1 to 10 with 10 the highest priority. The default priority is 5. The 

buffer is automatically cleared (@do clear) when none of the buffers 

matched in a rule have been updated by that rule. This pops the queue 

if it is not already empty. 

Actions that directly update the buffer do so in the order that the 

action appears in the rule. In other words, if multiple actions update 

the same property, the property will have the value set by the last such 

action. 

The @do get action copies the chunk into the buffer. Changing 

the values of properties in the buffer won't alter the graph until you 

use @do put or @do patch to save the buffer to the graph. Put creates 

a new chunk, or completely overwrites an existing one with the same 

identifier as set with @id. Patch, by contrast will just overwrite the 

properties designated in the action. 

Applications can define additional operations when initialising a 

module. This is used in the example demos, e.g., to allow rules to 

command a robot to move its arm, by passing it the desired position 

and direction of the robot's hand. Operations can be defined to allow 

messages to be spoken aloud or to support complex graph algorithms, 

e.g., for data analytics and machine learning. Applications cannot 
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replace the built-in actions listed above. 

Note if you add to, or remove matching chunks during an 

iteration, then you are not guaranteed to visit all matching chunks. A 

further consideration is that chunks are associated with statistical 

weights reflecting their expected utility based upon past experience. 

Chunks that are very rarely used may become inaccessible. 

Iteration over properties 

You can iterate over each of the properties in a buffer by 

using @do properties in an action for that buffer. The following 

example first sets the facts buffer to foo {a 1; c 2} and then initiates an 

iteration over all of the buffer's properties that don't begin with '@': 

run {}  => 

    foo {@module facts; a 1; c 2}, # set facts buffer to foo {a 1; c 2} 

    bar {@module facts; @do properties; step 8; @to goal} # launch 
iteration 

# this rule is invoked with the name and value for each property 

# note that 'step 8' is copied over from the initiating chunk 

bar {step 8; name ?name; value ?value}  => 

    console {@do log; message ?name, is, ?value}, 

    bar {@do next}  # to load the next instance from the iteration 

Each property is mapped to a new chunk with the same type as the 

action (in this case bar). The action's properties are copied over (in this 

example step 8), and name and value properties are used to pass the 

property name and value respectively. The @more property is given 

the value true unless this is the final chunk in the iteration, in which 

case @more is given the value false.  

By default, the iteration is written to the same module's buffer as 

designated by the action that initiated it. However, you can designate 

a different module with the @to property. In the example, this is used 

to direct the iteration to the goal buffer. By setting additional properties 

in the initiating action, you can ensure that the rules used to process 

the property name and value are distinct from other such iterations. 

Operations on comma separated lists 

You can iterate over the values in a comma separated list with 

the @for. This has the effect of loading the module's buffer with the 

first item in the list. You can optionally specify the index range 

with @from and @to, where the first item in the list has index 0, just 
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like JavaScript. 

# a chunk in the facts module 

person {name Wendy; friends Michael, Suzy, Janet, John} 

# after having recalled the person chunk, the 

# following rule iterates over the friends 

person {@module facts; friends ?friends} 

   => item {@module goal; @for ?friends; @from 1; @to 2} 

which will iterate over Suzy and Janet, updating the module buffer by 

setting properties for the item's value and its index, e.g. 

item {value Suzy; @index 1; @more true} 

The action's properties are copied over apart from those starting with 

an '@'. The item index in the list is copied into the chunk as @index. 

You can then use @do next in an action to load the next item into the 

buffer. The @more property is set to true in the buffer if there is more 

to come, and false for the last property in the iteration. Action chunks 

should use either @do or @for, but not both. Neither implies @do 

update. 

You can append a value to a property using @push with the 

value, and @to with the name of the property, e.g. 

person {name Wendy} => person {@push Emma; @to friends} 

which will push Emma to the end of the list of friends in the goal 

buffer. 

person {name Wendy} => person {@pop friends; @to ?friend} 

will pop the last item in the list of friends to the variable ?friend. 

Similarly, you can prepend a value to a property using @unshift with 

the value, and @to with the name of the property, e.g. 

person {name Wendy} => person {@unshift Emma; @to friends} 

will push Emma to the start of the list of friends in the goal buffer. 

person {name Wendy} => person {@shift friends; @to ?friend} 

will pop the first item in the list of friends to the variable ?friend. 

Named Contexts 

It is sometimes necessary to represent knowledge that is only 

true in a specific context, for example, when modelling another agent’s 

knowledge, or when reasoning about counterfactuals during abductive 

reasoning.  This is supported using @context. In its absence, the 

default context applies.  Here is an example adapted from John Sowa. 
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# Tom believes that Mary wants to marry a sailor 

believes s1 {@subject Tom; proposition s2} 

wants s3 {@context s2; person Mary; situation s4} 

married-to s5 {@context s4; @subject Mary; @object s6} 

a s6 {@context s4; isa person; profession sailor} 

More complex queries 

Modules may provide support for more complex queries that are 

specified as chunks in the module's graph, and either apply an 

operation to matching chunks, or generate a result set of chunks in the 

graph and pass this to the module buffer for rules to iterate over. In this 

manner, chunk rules can have access to complex queries capable of set 

operations over many chunks, analogous to RDF's SPARQL query 

language. The specification of such a chunk query language is left to 

future work, and could build upon existing work on representing 

SPARQL queries directly in RDF. 

A further opportunity would be to explore queries and rules 

where the conditions are expressed in terms of augmented transition 

networks (ATNs), which loosely speaking are analogous to RDF's 

SHACL graph constraint language. ATNs were developed in the 

1970's for use with natural language and lend themselves to simple 

graphical representations. This has potential for rules that apply 

transformations to sets of sub-graphs rather than individual chunks. 

Natural Language 

Natural language will be key to enabling flexible dialogs 

between cognitive agents and humans, including commands, handling 

questions, providing answers, understanding and learning from text-

based resources. The field of computational linguistics focuses on text 

processing, but not on representing and reasoning with the meaning of 

language. Traditional logic is inadequate when it comes to the 

flexibility of natural language, including uncertainty, imprecision and 

context sensitivity. This suggests that different approaches are needed 

that support plausible reasoning. 

Large Language Models 

Large language models such as GPT-3 and BLOOM are based 

upon neural network models trained to predict masked words using a 

vast corpus of text documents. BLOOM’s language model has 176 

billion parameters covering 46 human languages. The model maps the 
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user supplied text to an opaque internal model of the meaning, referred 

to as the latent semantics. This can then be used stochastically to 

generate text continuations consistent with those semantics. 

Large language models are surprisingly good at this, and can 

effectively mimic a wide range of topics and styles of text, e.g., 

BLOOM generated the italicized text below following the user 

supplied prompt shown in regular text:  

John picked up his umbrella before stepping out of the door as 

he had heard the weather forecast on the radio in the living room that 

said that heavy rain was forecasted and that there was a high chance 

of thunderstorms throughout the afternoon. The rain had become a 

little less torrential as he made his way to his sister’s house, so that he 

didn’t feel too drenched when he arrived.  

Large language models show that machine learning can be 

successfully applied to learning to generate latent representations of 

the meaning of everyday language, and that these representations can 

be used in reverse to generate plausible text continuations. 

Unfortunately, we have yet to discover how to mimic human-

like reasoning in terms of operations applied directly to the latent 

semantics embodied in large language models. Similarly, we can’t yet 

map the latent semantics to symbolic graphs as another way to 

implement reasoning. Both challenges are exciting opportunities for 

research studies. 

Natural Language and Common Sense 

Another approach to natural language understanding is to 

combine conventional parsing with symbolic representations of 

meaning such as the plausible knowledge notation (PKN). Parsing 

isn’t particularly difficult, provided that dealing with the ambiguity of 

natural language is largely delegated to semantic processing. 

This involves tasks such as selecting the most appropriate sense 

of each word according to the context in which it appears, figuring out 

how to correctly attach prepositional phrases, creating semantic 

models and resolving references. 

Finding a semantically coherent model of a given text utterance 

is challenging, despite being apparently effortless for humans. A 

promising approach is to combine spreading activation with models of 

everyday knowledge, as a basis for understanding what’s implicit in 

the utterance. 

As an example, consider the sentence “John opened the bottle 

and poured the wine.” Human readers know that John is a male adult, 

and that the occasion is likely to be social event such as a dinner or a 
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party. The wine is a liquid for the guests to drink from their glasses. 

The bottle needs to be opened before it can be poured into the glasses. 

Pouring transfers liquid from one container to another, conserving the 

volume of liquid as it does so. 

Human readers are aware of all of this, and don’t need to spend 

effort consciously reasoning it out unless that becomes necessary, 

nonetheless, the background knowledge is key to efficiently finding a 

coherent model of the utterance. 

Further work is now needed to look at how this can be mimicked 

by cognitive agents. This can start from a small set of examples where 

the background knowledge and typical inferences can be developed 

with a modest level of effort. 

Natural language generation involves an understanding of aims 

of the communication, the knowledge that the listener or reader is 

likely to already have, and how to minimize what needs to be said.  

Grice’s maxims describe the principles of cooperative dialogue in 

terms of quantity, quality, relation and manner. 

• Try to be informative and give as much information as needed, 

but no more. 

• Try to be truthful and avoid giving information that is false or 

not supported by the evidence. 

• Try to be relevant and say things pertinent to the discussion. 

• Try to be clear and orderly, avoiding obscurity and ambiguity. 

How can cognitive agents be designed to implement these maxims? It 

is likely that cognitive agents can be trained to be effective by using 

machine learning techniques that pit a generator against an adversary 

that seeks to distinguish machine generated from human generated 

utterances in respect to a large training corpus of short dialogs. 

Metaphors in Everyday Language 

Lackoff and Johnson in their book “Metaphors we live by” 

(1980) showed just how much humans rely on metaphor in everyday 

thought and language. People will likewise expect cognitive agents to 

understand and to use metaphors in human-agent dialogs. 

 One such metaphor is ideas as food, e.g., raw facts, and half-

baked ideas. People use many different metaphors, and much of this is 

culture dependent, i.e., learned from what we read and listen to. In 

principle, cognitive agents should be able to do likewise, 

understanding previously unheard metaphors in terms of reasoning 

about analogies.  This is an example of continuous learning. 
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Continuous Learning 

Many AI systems are trained up front, and have difficulties in 

coping when the statistics of the run-time data diverge from that of the 

training data. Continuous learning is a way to adapt as the data 

changes, and will be essential for resilient operation of cognitive 

agents. 

There are different ways to learn. Syntagmatic learning deals 

with patterns in co-occurrence statistics. Paradigmatic learning deals 

with taxonomic abstractions. Skill compilation is the process of 

speeding reasoning by exploiting experience with previous solutions 

as a short cut, including the use of analogies. Meta-learning is the 

process of learning how to learn, including reasoning about strategies 

and tactics for how to reason. 

Learning can be from direct experience by interacting with the 

world, and exploiting a sense of curiosity about how things work. 

However, there are issues of safety and cost for applying this in 

practice, e.g., with allowing robots to roam around freely.  A work 

around is to use virtual worlds, but it is challenging to make those a 

sufficiently faithful representation of the real world. 

Another approach is learning from observations and asking 

questions. Children are incredibly good at this. There is a huge 

opportunity to learn from large corpora of text documents, images and 

videos. 

Finally, learning can be arranged in the form of lessons and 

assessments, i.e., courses designed specifically for AI agents. Enabling 

AI agents to devise their own knowledge representations as part of 

machine learning is likely to more scalable than direct hand authoring 

of knowledge, see the later section on scalable knowledge engineering. 

Hive Minds, Knowledge Caching and Swarm Intelligence 

Cognitive agents can be designed using shared access to remote 

cognitive databases, analogous to the lobes in the cerebral cortex. By 

duplicating agents in this way, as each agent learns, the updated 

knowledge and skills are immediately available to all of the agents, 

contributing to accelerated communal learning, in what can be thought 

of as a form of hive mind. Existing knowledge often helps when it 

comes to learning new knowledge, so it is likely that the speed up will 

be greater than linear in respect to the number of agents involved. 

Resilience in the face of disrupted connectivity to remote 

cognitive databases can be achieved via mechanisms for selectively 

duplicating frequently used knowledge to local storage, as a form of 
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knowledge caching. This would come with the need for synching local 

updates to the cache with the remote cognitive databases when 

connectivity resumes. 

In the face of the unexpected, a diversity of personalities, 

opinions, knowledge and skills can be invaluable. Rather than 

designing a hive of agents with identical clone minds, it makes much 

more sense to design the hive mind as a collective with shared 

knowledge and awareness, forming a collective consciousness, whilst 

allowing a diversity of different skills and perspectives to be deployed 

as appropriate to the challenges at hand. This would also allow human 

users to select the personality of the agents they interact with. The 

collective mind would be engineered to enforce confidentiality in 

respect to personal privacy.  

This can be contrasted with swarm intelligence featuring the 

collective behavior of decentralized, self-organized agents. Swarm 

intelligence typically involves identical agents applying relatively 

simple rules, e.g., to prevent a collection of airborne drones from 

crashing into each other, and enabling them to fly around obstacles. In 

principle, the two approaches can be used together, where swarm 

intelligence is a comparatively low-level solution under the control of 

the higher-level collective mind. 

Complementary Role of Artificial Neural Networks 

Deep learning over large corpora has produced very impressive 

results.  Text to image generators such as Stable Diffusion and DALL-

E are trained against many millions of images associated with short 

text descriptions. The following example shows that this approach has 

captured knowledge about marble, the effects of light and shadow, the 

human form, and the styles of famous sculptors. 
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Marble sculpture of a young woman generated using Stable Diffusion 

The breadth of the training data is reflected by the ability to generate 

images in a very wide range of styles. However, there are some 

obvious limitations. 

 
Painting of a woman generated with Stable Diffusion 

The woman’s hand has too many fingers!  This reflects weaker 

knowledge about hands and fingers compared to that of the human 

face. 

Another example is when the prompt is “one blue ball and two 

red cubes on a green floor”. Stable Diffusion clearly lacks an 

understanding of how to count instances of things, as can be seen in 

the two examples below generated using that prompt. 



 Personal Knowledge Graphs 

 

 

   
 

The same applies to the BLOOM large language model as can 

be seen with the following prompt where BLOOM’s text is in italics. 

There is one blue ball, two green balls and five red balls. How 

many balls are there in total? The first possible answer is '7' because 

there is one blue ball and six other balls. The second possible answer 

is '4', because the first ball is blue, two of the other six balls are green 

and the remaining four balls are red. 

Together, this suggests a huge potential for combining deep 

learning with techniques that support human-like reasoning and 

learning. Richer semantic knowledge would allow the software to 

understand text documents and images in the training set at a much 

deeper level, enabling faster learning from smaller data sets. 

It would also enable artists to work collaboratively with AI’s to 

iteratively improve a composition through suggestions on changes to 

particular aspects. One opportunity would be for generating richer 

experiences in the virtual reality Metaverse by exploiting learning 

from a vast corpora of text documents, images and videos. 

More generally, AI’s should be able to learn everyday 

knowledge and reasoning from understanding such corpora, just as 

young children do as they observe the world around them, applying 

their prior knowledge to reason about possible explanations, and by 

asking questions. 

Scalable Knowledge Engineering 

Hand crafted knowledge doesn’t scale and is brittle when it 

comes to the unexpected, i.e., things that the developers haven’t 

anticipated and designed for. Deep learning scales very effectively, but 

is similarly brittle, and requires vast datasets for training. 

Humans are much better at generalizing from a few examples by 
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seeking causal explanations based upon prior knowledge. Humans are 

also good at reasoning using mental models and chains of plausible 

inferences, supported by metacognition. 

We need research focused on extending artificial neural 

networks to support human-like learning and reasoning. At the same 

time, we should explore scalability of machine learning for symbolic 

representations of knowledge as a complementary technology, 

moreover, hand authoring for small scale experiments can help 

illustrate what’s needed from more scalable approaches. 

An open question is how to apply artificial neural networks to 

human-like reasoning and learning. It is likely that vector-space 

representations will prove to be very effective in respect to handling 

imprecise and context dependent concepts. 

Application to Privacy centered personal assistants 

Today’s consumer Web is dominated by advertising-based 

business models that have a strong focus on gathering personal 

information for metrics and for targeting advertising through live 

auctions for space on Web pages. Consumers are habituated to clicking 

away annoying permission requests for enabling tracking. 

It is time to make privacy a central part of ecosystems of 

services. One way to realize this is with personal assistants that act on 

their user’s behalf in respect to providing services using ecosystems of 

third-party providers. This would support a privacy centered evolution 

away from dominance by Web search engines. 

Personal assistants acting in this role can be thought of as digital 

guardian angels, and designed to apply and safeguard their user’s 

values as learned from observing their behavior via privacy-protecting 

federated machine learning. Personal assistants select services 

matching their user’s requests by using service metadata plus 

independent trust attestations and live auctions. 

For this to work, the business models need to align costs and 

benefits for implementing and operating personal assistants, as well as 

for attestations based upon aggregating feedback from both users and 

personal assistants. 

Personal assistants share pertinent personal information with the 

selected services, e.g., their user’s travel plans and preferences, when 

seeking proposals for flights, hotels, local travel, restaurants, 

museums, etc. Some services are immediate, whilst others may take 

significant time to fulfill, and rely on smart notifications to alert users 

when ready. 
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Personal information is shared subject to contractual terms and 

conditions. In principle, this can include the role of personal assistants 

in downstream checks and permissions. This gets more complicated as 

data is progressively transformed and merged with other sources of 

information. 

Practical personal assistants will be reliant on advances in 

human-like reasoning with everyday knowledge, as well as advances 

in natural language understanding and generation. 

Summary 

Plausible reasoning is a major paradigm shift for knowledge 

graphs, in that it embraces the uncertainty, imprecision, context 

sensitivity and inconsistencies in everyday knowledge and use of 

natural language. This addresses a key challenge for human-agent 

collaborative work in enabling the use of natural language dialogs. 

This chapter has presented two contrasting approaches, one 

focusing on plausible inferences inspired by Allan Collins, and the 

other on a procedural approach inspired by John Anderson. Further 

work is needed on how metacognition can be used to combine 

reasoning with mental models as per Philip Johnson-Laird, and logical 

reasoning based upon plausible inferences. 

Recent successes with large language models and image 

generation are very impressive, and demonstrate the practicality for 

applying machine learning to latent semantics, in essence, automating 

knowledge engineering. This is dramatically more scalable than hand 

authoring of knowledge graphs. 

Open AI’s ChatGPT is a large language model that supports 

follow-up questions, and can challenge incorrect premises and reject 

inappropriate requests. Nonetheless, it lacks continuous learning, and 

is limited to what was in its training dataset. 

Google’s Minerva is a large language model that was further 

trained on technical datasets. It correctly answers around a third of 

undergraduate level problems involving quantitative reasoning. 

However, it lacks a means to verify the correctness of the proposed 

solutions, as it is limited to intuitive reasoning.  

New work is needed that operates directly on latent semantics to 

support plausible reasoning and model building, combining intuitive 

reasoning with deliberative analytic reasoning. In principle, this will 

enable cognitive agents to learn more efficiently by understanding 

training examples at a deeper level. A related challenge is to enable 

general purpose agents rather than agents limited to a single domain of 
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competence. 

Work is also needed on symbolic graphs as a complementary 

approach to neural networks when it comes to scalable knowledge 

engineering, based upon advances in machine learning to circumvent 

the bottleneck of handcrafted knowledge.  It is conceivable that this 

may offer benefits in respect to avoiding the huge energy costs 

involved in applying deep learning to vast corpora. 

These advances will pave the way for developing digital 

guardian angels that are better at identifying inappropriate content, 

including fake news and social media posts that violate the terms of 

use. Guardian angels have plenty of other applications including 

enabling privacy-centric ecosystems of services, managing auctions 

for service providers and consumers, and orchestrating resources 

across the computing continuum from the far-edge to the cloud. 

More generally, the emergence of cognitive agents that mimic 

human-reasoning and learning will help to boost productivity and 

counter the shrinking work force associated with ageing human 

populations across many countries. 

The next generation of AI will probably seem like science 

fiction, and will grow to embrace intellectual and artistic skills better 

than most humans, based upon learning from vast corpora of text, 

images and videos, plus foundational courses designed for AIs and 

interaction with billions of people. 

This should enable economies to break free of constraints on 

growth associated with a limited work force, but at the same time will 

necessitate attention to distributing benefits fairly across society and 

countering the risk of monopolistic control of AI technology and its 

exploitation. 

 

Further Reading 

Here are some suggestions if you want to read more. 

Argument and Argumentation, Stanford Encyclopedia of Philosophy 

Core theory of plausible reasoning, Allan Collins and Ryszard 

Michalski, Cognitive Science Volume 13, Issue 1, 1989 

“Thinking Fast and Slow”, Daniel Kahneman, 2011, see excerpt “Of 

2 Minds: How Fast and Slow Thinking Shape Perception and 

Choice”, Scientific American, June 15, 2012. 

Lotfi Zadeh and the birth of Fuzzy Logic, IEEE Spectrum, June 1995 

John R. Anderson – Biography, American Psychologist, April 1995, 

https://plato.stanford.edu/entries/argument/index.html
http://www.mli.gmu.edu/papers/86-90/89-23.pdf
https://www.scientificamerican.com/article/kahneman-excerpt-thinking-fast-and-slow/
https://www.scientificamerican.com/article/kahneman-excerpt-thinking-fast-and-slow/
https://www.scientificamerican.com/article/kahneman-excerpt-thinking-fast-and-slow/
https://spectrum.ieee.org/lotfi-zadeh
http://act-r.psy.cmu.edu/peoplepages/ja/ja_bio.html
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see also the ACT-R Website, hosted by CMU 

“Metaphors we live by”, George Lackoff and Mark Johnson, 

University of Chicago Press, 1980, pp 276 

Structure Mapping in Analogy and Similarity, Dedre Gentner and 

Arthur Markman, 1997, American Psychologist, 52 (1), 45–56 

“Mental models or formal rules”, Philipp Johnson-Laird and Ruth 

Byrne, 1993, Behavioral and Brain Sciences 16 (2), 368-380 

“How to build a brain: A neural architecture for biological 

cognition”, Chris Eliasmith, 2013, Oxford University Press 

What we learn by doing, Roger Shank, 1995, Institute for the 

Learning Sciences Northwestern University 

W3C Cognitive AI Community Group, which developed the Chunks 

& Rules specification, along with a suite of web-based demos. 

Web-based demo for plausible reasoning and argumentation, Dave 

Raggett, 2022 

Stable Diffusion web-based demo by Hugging Face 

BLOOM (BigScience Large Open-science Open-access Multilingual 

Language Model) hosted by Hugging Face 

Minerva, a large language model pretrained on general natural 

language data and further trained on technical content, by Google 

Research 

ChatGPT, a conversational agent by Open AI 

DALL·E 2, image generator by Open AI 

The Semantic Web & Linked Data, Ruben Verborgh, Ghent 

University 

Metadata and Discovery, University of Pittsburgh 

http://act-r.psy.cmu.edu/
https://groups.psych.northwestern.edu/gentner/papers/GentnerMarkman97.pdf
https://www.rogerschank.com/What-We-Learn-When-We-Learn-by-Doing
https://github.com/w3c/cogai/blob/master/README.md
https://w3c.github.io/cogai/
https://w3c.github.io/cogai/
https://www.w3.org/Data/demos/chunks/reasoning/
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://arxiv.org/pdf/2206.14858.pdf
https://arxiv.org/pdf/2206.14858.pdf
https://openai.com/blog/chatgpt/
https://openai.com/dall-e-2/
https://rubenverborgh.github.io/WebFundamentals/semantic-web/
https://pitt.libguides.com/metadatadiscovery/linked-data
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