
Privacy-preserving
enumeration of Payments

Mathieu Hofman (Invited Expert)

Requirements from the browser

Maintain security and privacy

- Sensitive information not disclosed without user consent

- Merchant or its third parties shouldn’t be able to learn anything about who the
customer is unless the customer is performing a payment action.

- Payment handlers shouldn’t be able to learn anything about which merchants
the customer visits, unless the customer performs a payment action with an
instrument managed by the handler

Specific threats: fingerprinting and 3rd party tracking

Assumptions for customer

May have different types of payment instruments:

- Saved with the merchant
- Saved in the browser, e.g. through a configured Payment Handler
- Not saved anywhere

Customer may not want to save their instrument in the browser (e.g. guest
checkout on a friend’s computer)

Assumptions for merchant

May not support some of the instruments the customer possesses.

Wants to increase the likelihood the customer will complete the transaction
(conversion):

- Offer as many supported options as possible
- Reduce friction where possible (increase cohesiveness of experience, remove

unnecessary steps)
- Keep customer in experience they control and may optimize for

Merchant experience

Show UI for supported payment selection, without user interaction (drive-by),
in a way the customer can understand what selection they are making

- Non WebPayments methods offered alongside, to support instruments the
customer hasn’t saved, or for methods that do not support WebPayments API

- Avoid onboarding an instrument into WebPayments
the flow can be onerous and leads to high drop offs (e.g. phone call
verification to onboard some cards in a mobile wallet)

Handler implementation constraints

Needs to decide which or if any instruments are available when requested

- Proprietary business logic, which probably can’t be formalized
- Based on its notion of the current user (data scoped to the handler’s origin)

Example merchant integration

Show a list of branded card wallet buttons

Only display a button for which the user has a card ready to pay

Merchant’s processor in the merchant’s country integrates with 3 wallets and only
supports 2 card networks

Current Situation

hasEnrolledInstrument() has a quota to prevent fingerprinting

Requires merchants to choose between unbranded buttons, or allowing instrument
onboarding in all wallets.

With multiple methods behind single action,
browser has to implement a payment method
selection sheet.

Proposal part 1: Enumeration

enumeratePayments(
 methodData: PaymentMethodData[],
 options: PaymentEnumerateOptions
): Promise<PaymentOpaqueIdentifers[]>

Can still pass arbitrary payment method data as in
PaymentRequestConstructor, e.g. to indicate which card networks are
supported

Shared options to control things like requiring enrolled instruments

Returns a list of opaque identifiers representing the available payment methods

Proposal part 1: Enumeration

Browser does mediation between merchant and payment handlers

Browser invokes handlers, which runs custom code to check if logged in user has
any compatible enrolled instrument and return true or false

Browser generates temporary unique ids (valid only for this page load) to
represent each payment method that returned true.

Enumeration with different data / options is rate limited

Proposal part 2: Presentation

<payment-request-method-button
 method-id={enumerateResult[0]}
 type="donate"
 theme="light"
 height="40px"
></payment-request-method-button>

Merchant can customize theme (e.g. dark) and “Pay with” wording type

Merchant creates PaymentRequest with single supportedMethod containing
opaque identifier chosen by customer

Proposal part 2: Presentation

WebComponent provides DOM encapsulation

No intrinsic size, replaced elements in CSS model to avoid the website inferring
information from the component’s layout

Open question: What data should the handler expose to allow the browser to
render this component

Review of Isolation so far

✔ drive by website has limited information about the user

Only how many compatible wallets with a set of given constraints the user has

Cannot vary constraints to gain more bits of information

Native Web Components encapsulation allows displaying user actionable data
without leaking fingerprints to the website

❌ handler still learns about website the user visits, can establish side channels

Proposal part 3: Worklets

Payment Handlers would be based on Worklets, not Service Workers

Granted read only access to storage

No network access or other communication channels

Can only answer browser’s invocation

After customer makes selection, aka merchant invokes PaymentRequest with
opaque id, Payment Handler has access to normal APIs (since it’s showing in a
first party modal)

Open questions

What interface does the Payment Handler modal use to communicate with
browser?
Keep Service Worker for this only?

How do we standardize Payment Method presentation details?
Manifest, Worklet APIs?

Are Payment Details needed at enumeration time?
Do Payment Handler Worklets need any of the information to determine availability

How to allow Handlers to perform merchant verification in privacy preserving way?
Independent step where handler has network access but no local data access?

Payment Instrument Enumeration

Can this concept be expanded to instrument enumeration?

How to visually merge instruments between multiple methods or with the
merchant’s own saved payment instruments for the customer

Spectre

Does not protect against Spectre type attacks.

Maybe make enumeratePayments mutually exclusive with
SharedArrayBuffer? Aka make Handlers equivalent of CORP: same-origin
and consider handlers as having their own nested document

Or require User Agents to run Handlers in a different process than renderer?
Attacker may still be able to gather extra bits from Web Components but that
might be acceptable

