
WebCodecs in an in-browser video editor

Sören Balko
October 2021

Our mission is to

empower anyone

to tell stories

worth sharing

Only an in-browser platforms offers the
convenience of a cloud service combined
with the speed of a desktop application.

CLIPCHAMP

Clipchamp’s secret sauce

● Clipchamp’s full video production pipeline runs “in browser”

○ Great user experience (no upload of user media)

○ Near zero runtime cost

○ Perfect privacy for user media

6

CLIPCHAMP

But...

● The browser remains a challenging platform for fully featured
in-browser apps:

○ Resource allocation (memory, storage)

○ Performance

○ Access to low-level hardware capabilities

○ Cross-browser woes, buggy browsers, etc.

7

Decoder worker Encoder workerClipchamp in-browser app

FFmpegFilewriter API
writefs
(MP4 output file)

readfs
(audio input files)

Clipchamp service worker Asset cache
(IndexedDB)

streamfs
(raw input stream)

Resource
URL proxy

“Superfill”
(compositor and effects)

FFmpeg

readfs
(input video files)

“Peppermint”
decoder
(call FFmpeg
functions to extract
frame stream)

CLIPCHAMP

9

Integrating
WebCodecs
API into
Clipchamp’s
export pipeline

● Combine WebAssembly build of FFmpeg (for
de/muxing, file I/O, software codec fallbacks, filters)
with WebCodecs API

● Introduce new FFmpeg codec “stubs” for VP8, VP9,
H.264, AV1

● Codec calls out to Javascript for WebCodecs
interactions (to initialise/configure, push frames, pull
encoded packets, close down)

● Generate VideoEncoder configuration from FFmpeg’s
internal data structures

CLIPCHAMP

10

Gotchas

● Had to create a “preflight” dry-run of VideoEncoder to
generate codec extradata (eg. H.264 SPS/PPS NALUs)
to satisfy FFmpeg’s need to have that available during
codec initialization.

● A WebAssembly build of FFmpeg is inherently
synchronous, whereas the WebCodecs API is
asynchronous - we had to break FFmpeg up into
per-frame asynchronous calls.

CLIPCHAMP

Our wishlist for WebCodecs 2.0

● A big THANK YOU to the people who have pushed the
WebCodecs standard!

● Where we are hoping to see further improvements:

○ Active encoder back pressure detection

○ Quality control “tuning knob” (other than bitrate)

○ Support for HDR, HEVC decoding

○ Synchronous flavor of WebCodecs API inside workers

11

