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Our mission is to

empower anyone

to tell stories

worth sharing





Only an in-browser platforms offers the 
convenience of a cloud service combined 
with the speed of a desktop application.



CLIPCHAMP

Clipchamp’s secret sauce

● Clipchamp’s full video production pipeline runs “in browser”

○ Great user experience (no upload of user media)

○ Near zero runtime cost

○ Perfect privacy for user media

6



CLIPCHAMP

But...

● The browser remains a challenging platform for fully featured 
in-browser apps:

○ Resource allocation (memory, storage)

○ Performance

○ Access to low-level hardware capabilities

○ Cross-browser woes, buggy browsers, etc.
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CLIPCHAMP
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Integrating 
WebCodecs 
API into 
Clipchamp’s 
export pipeline

● Combine WebAssembly build of FFmpeg (for 
de/muxing, file I/O, software codec fallbacks, filters) 
with WebCodecs API

● Introduce new FFmpeg codec “stubs” for VP8, VP9, 
H.264, AV1

● Codec calls out to Javascript for WebCodecs 
interactions (to initialise/configure, push frames, pull 
encoded packets, close down)

● Generate VideoEncoder configuration from FFmpeg’s 
internal data structures



CLIPCHAMP
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Gotchas

● Had to create a  “preflight” dry-run of VideoEncoder to 
generate codec extradata (eg. H.264 SPS/PPS NALUs) 
to satisfy FFmpeg’s need to have that available during 
codec initialization.

● A WebAssembly build of FFmpeg is inherently 
synchronous, whereas the WebCodecs API is 
asynchronous - we had to break FFmpeg up into 
per-frame asynchronous calls.



CLIPCHAMP

Our wishlist for WebCodecs 2.0

● A big THANK YOU to the people who have pushed the 
WebCodecs standard!

● Where we are hoping to see further improvements:

○ Active encoder back pressure detection

○ Quality control “tuning knob” (other than bitrate)

○ Support for HDR, HEVC decoding

○ Synchronous flavor of WebCodecs API inside workers
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