Extending W3C ML Work to Embedded Systems

September 10, 2020
For the “W3C Workshop on Web and Machine Learning”

Peter Hoddie
Co-Founder, Moddable Tech
Chair, Ecma TC53
About Me

• Not an expert in Machine Learning

• Extensive experience with JavaScript for embedded devices
 • Delivering commercial embedded products with JavaScript for over a decade

• Chair of Ecma TC53 – ECMAScript Modules for Embedded Systems – creating standard JavaScript APIs for embedded systems
Beyond the Web

- JavaScript’s dominance on the web obscures its success in other domains

 - Node.js is part of the Web Platform, though it isn’t part of the browser

- Many other devices can and do run JavaScript

 - Expanding the scope of the W3C Machine Learning APIs would accelerate overall ecosystem
“Resource constrained embedded device”

- Very low cost microcontrollers — a few dollars, at most
- Not powerful enough to run Linux or Node.js
- Powerful enough to run standard JavaScript (ECMAScript 2020!)
- On track to integrate hardware accelerated Machine Learning features in the coming years
What APIs for Machine Learning?

- Silicon manufacturers will likely provide their own proprietary native APIs
 - Optimized for their hardware
 - Not portable

- Standard JavaScript APIs would be welcome
 - Portable
 - Well designed
 - Bridge to the web
JavaScript ML API Considerations

- Is it realistic to use the same API on the web and embedded devices?
 - Web hosts are 100x more powerful than many embedded devices

- If they cannot be identical, is there a way to bridge the two worlds?
Pattern #1:
Same API on Web & Embedded

• Some APIs can be supported in both environments
• W3C Sensor API is a good example
 • Implemented in web browsers
 • Implemented on embedded devices
• Ecma TC53 supports through a low level JavaScript Sensor API
 • Data formats normatively compatible with W3C Sensors for simplicity
Pattern #2: Different APIs with a Bridge

- Serial supported by both Ecma TC53 and Chrome
 - Different APIs
 - Many of the same API conventions
 - Nearly identical functionality

- Chrome API is too heavy for embedded

- Two worlds are bridged by a JavaScript implementation of TC53 Serial using Chrome Serial
 - Allows serial client code sharing between embedded and web
Anti-Pattern: “Light” version of Web API

- Light versions of libraries are a common idea
 - Fewer features for less powerful devices

- They almost always are a failure
 - Developers expect the full version
 - Developers try to use the light version to do more than it was designed for

- Better approach is to have two separate APIs
 - Each optimized for its target device class
 - Avoiding needless differences (e.g. use the same terminology)
Closing

• Great potential in extending the W3C Machine Learning JavaScript API initiative to embedded
 • Expand the reach of web developers to edge devices
 • Different approaches presented here for how that might be done

• Thank you!