RNNoise, Neural Speech Enhancement, and the Browser

Jean-Marc Valin jmvalin@jmvalin.ca

W3C Workshop on Web and Machine Learning September 2020

(the audio for this talk is processed with RNNoise)

Speech Enhancement

- The signal processing (DSP) way
 - Spectral estimators, hand-tuned parameters
 - Works on stationary noise at mid to high SNR
- The new deep neural network (DNN) way
 - Data driven, often large models (tens of MBs)
 - Handles non-stationary noise, low SNR
- RNNoise: trying to get DNN quality with DSP complexity

RNNoise: A Hybrid Solution

- Start from conventional DSP approach
- Replace complicated estimators with an RNN
- Divide spectrum into 22 "critical bands"
 - Independently attenuate each band

 Use "pitch filter" to remove noise between harmonics

Results (Quality)

 Interactive Demo: https://people.xiph.org/~jm/demo/rnnoise/

Complexity (48 kHz)

- Requires 215 neurons, 88k weights
- Based on 10-ms frames
- Total complexity: ~40 MFLOPS
 - DNN (matrix-vector multiply): 17.5 MFLOPS
 - FFT/IFFT: 7.5 MFLOPS
 - Pitch search (convolution): 10 MFLOPS
- Unoptimized C code
 - 1.3% CPU on x86, 14% CPU on Raspberry Pi 3
 - Real-time with asm.js via Emscripten

Looking Forward (And Bigger)

- RNNoise
 - DNN could still grow by 100x to 1000x
 - Need fast matrix-vector product, low overhead
- Pure-DNN approaches
 - Some approaches use large convolutional networks
 - Up to 10s of GFLOPS (may require GPU)
- Vocoder-based re-synthesis
 - TTS-like systems using denoised acoustic features
 - WaveRNN/LPCNet: 3-10 GFLOPS, sample latency

Resources

- RNNoise source code (BSD): https://github.com/xiph/rnnoise/
- Demo page: https://jmvalin.ca/demo/rnnoise/
- References
 - J.-M. Valin, <u>A Hybrid DSP/Deep Learning Approach to Real-Time Full-Band Speech</u> <u>Enhancement</u>, *Proc. MMSP Workshop*, arXiv:1709.08243, 2018.
 - S. Maiti, M.I. Mandel, <u>Speaker independence of neural vocoders and their effect on</u> parametric resynthesis speech enhancement, *Proc. ICASSP*, pp. 206-210, 2020
 - N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord, S., Dieleman, K. Kavukcuoglu, <u>Efficient neural audio</u> <u>synthesis</u>, arXiv:1802.08435, 2018.
 - J.-M. Valin, J. Skoglund, <u>LPCNet: Improving Neural Speech Synthesis Through</u> <u>Linear Prediction</u>, *Proc. ICASSP*, arXiv:1810.11846, 2019.