
Proprietary + Confidential

on the Web

Jonathan Bingham / 2020-07-31

A proposed web standard to

Load and Run ML Models

1

Proprietary + ConfidentialProprietary + Confidential

2

Proprietary + ConfidentialProprietary + Confidential

const modelUrl = 'url/to/ml/model';
var exampleList = [{
 'Feature1': value1,
 'Feature2': value2
}];
var options = {
 maxResults = 5
};

const modelLoader = navigator.ml.createModelLoader();
const model = await modelLoader.load(modelUrl)
const compiledModel = await model.compile()
compiledModel.predict(exampleList, options)
 .then(inferences => inferences.forEach(result => console.log(result)))
 .catch(e => {
 console.error("Inference failed: " + e);

 });

Draft Spec for the Model Loader API

3

Proprietary + ConfidentialProprietary + Confidential

Why use machine learning in a web page
as opposed to on the server?

According to the TensorFlow.js team:

ML in the browser / client side means:

lower latency
high privacy, and
lower serving cost

4

Proprietary + Confidential

5

Proprietary + ConfidentialProprietary + Confidential

6

Why create a new web standard?

Don’t these awesome JavaScript libraries
already address the need?

Proprietary + ConfidentialProprietary + Confidential

7

Speed ma ers
for ML

New hardware enables
new applications

TPU >> GPU >> CPU

Google TPU custom chip

Proprietary + ConfidentialProprietary + Confidential

WebGL WASM WASM+SIMD Plain JS

iPhone XS 18.1 140 426.4

Pixel 3 77.3 266.2 2345.2

Desktop Linux 17.1 91.5 61.9 1049

Desktop Windows 41.6 123.1 37.2 1117

MacBook Pro 2018 19.6 98.4 30.2 893.5

Inference times for MobileNet in ms.

The web provides APIs for acceleration today. They help!

Sample TensorFlow.js performance data:

8

Proprietary + ConfidentialProprietary + Confidential

Device: Pixel 3, Android 9, updated on 12/2018, Chromium 70.0.3503Device configuration: XPS 13 Laptop, CPU: Intel i5-8250U, Ubuntu Linux
16.04, Chromium 70.0.3503

● Offload heavy ops gets significant speedup
○ Conv2D (90% computation): 5X faster on PC, 3X faster on smartphone
○ Conv2D+DepthwiseConv2D (99% computation): 33X faster on PC, 7X faster on smartphone

● Create bigger graph by connecting more ops gets better performance:
○ Per op graph vs. one graph: 3.5X slower on PC, 1.5X slower on smartphone

Running on native hardware can be even faster

Source: Ningxin Hu
March 14 2019

9

Proprietary + ConfidentialProprietary + Confidential
How to use Next Steps:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Operations APIs for
the most compute-
intensive, like Conv2D
and MatMul

1 2 3 4

Graph API similar to
the Android Neural
Networks API

Model loader API to
load a model by URL
and execute it with
a native engine like
CoreML, TFlite,
WinML, etc

Application-specific
APIs, like Shape
Detection for
barcodes, faces, QR
codes

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

How could the web platform accelerate ML?

Lower level Higher level

10

Proprietary + ConfidentialProprietary + Confidential

Approach Benefits Challenges

1. Operations ✓ Small, simple API surface
✓ A few operations could provide

a large performance gain

x No fusing, graph optimizations, or shared
memory

x Too low-level for web developers to use
directly

Operation-level APIs for ML

11

Proprietary + ConfidentialProprietary + Confidential

Approach Benefits Challenges

2. Graph ✓ Allows fusing, graph
optimizations, and shared
memory

x 100+ operations to standardize
x Large attack surface to secure
x ML frameworks need to be able to

convert to the standard
x Large JavaScript API surface for

browsers to implement
x Too low-level for web developers to use

directly

Graph APIs open up more performance gains

12

Proprietary + Confidential

Proprietary + ConfidentialProprietary + Confidential

Approach Benefits Challenges

4. Application-specific ✓ Small, simple API surface
✓ Easy for developers to use

directly

x Customized models are impossible/hard
x Long delay before models are added to

the web platform

Application-specific ML APIs are easiest for developers

14

Examples of Shape Detection APIs:
● Barcodes
● QR codes
● Faces
● Text in an image
● Features of an image

const faceDetector = new FaceDetector(
 maxDetectedFaces: 5,
 fastMode: false
});
try {
 const faces = await faceDetector.detect(image);
 faces.forEach(face => drawMustache(face));
} catch (e) {
 console.error('Face detection failed:', e);
}

Proprietary + ConfidentialProprietary + Confidential

Approach Benefits Challenges

3. Model loader ✓ Small, simple JavaScript API
surface

✓ Easy for developers to use
directly

✓ Allows fusing, graph
optimizations, shared memory

✓ Existing ML model formats
provide several full specs

✓ Unblocks experimentation and
ML evolution

x 100+ operations to parse and validate
x Large attack surface to secure
x CoreML, PyTorch, TFlite, WinML are only

partly convertible.
x What format(s) to support? There are

many...

The model loader API balances flexibility and performance

15

Proprietary + ConfidentialProprietary + Confidential

Summarizing the options for ML APIs on the web

■ Building ML-specific APIs into the web can increase performance

■ There are multiple approaches, with tradeoffs

■ The Model Loader API is complementary to graph, operations, and

application-specific APIs

■ We don’t know yet which level(s) of API we should propose to a working group.

○ Let’s get feedback from developers

16

Proprietary + ConfidentialProprietary + Confidential

Caveat: it’s early days and there are big challenges

■ ML is evolving rapidly.

○ New computational operations are being invented and published regularly.

○ Eg, TensorFlow has seen around 20% growth in operations every year.

■ Hardware is evolving too, with tensor processing units and more

■ Backward compatibility guarantees are essential for web standards, and not yet

common for ML libraries.

■ ML frameworks each have their own operation sets, and overlap between them is

only partial, and conversion is not always possible.

○ The ONNX project (onnx.ai) is trying to define a common subset.

17

http://onnx.ai

Proprietary + ConfidentialProprietary + Confidential

The current plan

✓ Incubate in the Web ML Community Group

➢ Now: Chrome and Chrome OS are working on an experimental build with

TFlite integration

○ Coordinate with WebNN API efforts

■ Next: shim the Model Loader API on top

○ Goal: alternate model formats and execution engines are possible

○ Run benchmarking to measure the performance gains

■ Make a custom build available to developers

■ Gather feedback

18

Proprietary + Confidential

Thank You
binghamj@google.com

github.com/webmachinelearning/model-loader

19

https://github.com/webmachinelearning/model-loader

