
Payment Handler
Proposals and

Discussion Topics
30 March 2020

Web Payments Working Group Virtual Meeting

Overview

• Read all the Proposals

https://github.com/w3c/payment-handler/wiki/2020-Mar-proposed-changes

1.1 Explicit Consent for
Payment Handler proposal

Proposed: Payment Handlers (both native and web-based)
need additional user consent prior to being able to:

• Receive Payment Request events; and

• Access local storage.

Discussion:

• What happens if consent is not given? For example, can the PH ask again

in the future?

• Should consent be waived for wellvetted payment apps (browser white
list)? In this case, would notification to the user still be useful that a
payment app has been installed?

Read the proposal

https://docs.google.com/document/d/1nd-zwf4YHxYsNjw5e2wfc4OTa6f-UCmjBxN0cwqr638/edit

1.2 Mandatory user interaction
with payment handler window

Proposed: Require user consent before any of the following
(especially when used together)

• Skip-the-sheet

• Preferred payment handler (user configuration)

• No user interaction (e.g., PH does not open window)

Discussion:

• Opportunities to seek consent (e.g., installation, first usage)

1.3 UX indication for explicit
cross-origin context switch

Proposed: Add additional non-blocking signals to the user
flow that inform users about the cross origin nature of PHs.
Specifically:

• Display a non-blocking alter prior to the PH load.

• Put stronger emphasis on the URL in the PH window. 

Not part of proposal:

• Explicit prompt that the user has to confirm before opening the PH

window under the hypothesis that this would add too much friction to the
flow.

• An onboarding flow under the hypothesis that it would be duplicative of
the user consent proposal

Read the proposal

https://docs.google.com/document/d/1i9ntZ1lEGyrzCAj1FnR9837u_rBU6vNoG0OZpiILKy0/edit

1.4 canMakePayment and
hasEnrolledInstrument

Proposed: Define separate events for payment handlers to
more clearly align with Payment Request’s
canMakePayment() and hasEnrolledInstrument() methods.
Specifically:

• Both return “true” by default unless any payment handler that is installed
returns “false”.

• In private browsing mode, no event is sent to the PH so browser always
returns “true” for both.

Read the proposal

https://docs.google.com/document/d/1C_xH-6sJb9UedrvifsvqS_2k_We0IlPSfWFo8Kg54ps/edit#

2.1 Payment handler browser
context 3P by default

Proposed:

• By default (and without prior consent), payment handlers will only have 3p

access to storage.

• Users can consent to granting 1P storage access to a payment handler

(identified by its origin).

Read the proposal

https://github.com/w3c/payment-handler/wiki/2020-3p-context

2.2 Read-only storage
access before show()

Proposed for Web-based payment handlers:

• Browsers will introduce a “read-only” state for service workers, where: 

• Writing to IndexedDB (the only local storage solution available to service
workers) will reject.

• Fetch requests will reject.

• Read from IndexedDB will still succeed.

• For a given payment request, all payment handlers start in the “read-only”
state.

• The payment handler selected for payment will exit the “read-only” state
when the payment request enters “interactive” state.

Read the proposal (including additional bits on Android)

https://docs.google.com/document/d/1novDOVYqgrSjBLKwZX3rUEixQvyxFcfr0O58k6qu6sA/edit#heading=h.xgjl2srtytjt

2.2 Read-only storage
access before show()

Discussion:

• How well would a “read-only” mode jive well with overall service worker

architecture?

• How hard would it be to implement “read-only”? 

• Should the “install” and/or “activate” events in the payment handler also
be read-only, if they are preceding a payment event?

• What if a service worker receives a push notification after
“canmakepayment” event, but before it opens a window? Is it possible
to start a separate instance of the same service worker in read/write
state?

• How critical is freshness?

Read the proposal (including additional bits on Android)

https://docs.google.com/document/d/1novDOVYqgrSjBLKwZX3rUEixQvyxFcfr0O58k6qu6sA/edit#heading=h.xgjl2srtytjt

3.1 Skip-the-sheet
Proposed:

• Skip the sheet into any payment handler that supports delegation, even if
others are available for the transaction but don’t support delegation.

Discussion:

• Does it make sense to skip-the-sheet to a payment handler that supports

delegation, even if the user could use another one to pay that does not?

• Does it make sense to skip-the-sheet to a payment handler that is already

installed, even if the user could use another one to pay that can be just-in-
time installed?

• Today only Chrome implements skip-the-sheet. Should we seek to
standardize this behavior?

• Do people expect a prolonged period where a diverse set of payment
handlers with different delegation support co-exist in the ecosystem?

Read the skip-the-sheet proposal

https://bit.ly/PaymentRequestSkipTheSheet

3.1 Just-in-Time Installation

Proposed: For a payment method A, crawl for Web-based
payment handlers:

• even if other payment handlers for A have been installed, and

• even if the basic card method is requested.

• Discussion:

• Should we disallow skip the sheet for JIT installable PHs, and always wait

for user consent inside the payment sheet/app selector before installing
payment handler service workers?

• For a given transaction, should we limit the number of payment methods
that the browser should crawl for? What’s the right limit?

• Similarly, should we limit the number of web app manifests that the browser
will crawl for, per payment method manifest?

Read the just-in-time proposal

https://docs.google.com/document/d/1bzhh14E1DuJGYrueFhg87decGwvpPQz7D9mLzW8Yif4/edit?usp=sharing

3.2 Combining Web Authentication and
Payment Handler Initiation Gestures

Proposed:

• payment handlers registers credential with browser

• browser changes “Pay” button “Authenticate” and uses one gesture for

launching both WebAuthn and payment handler.

• Discussion:

• This proposal is not likely to work for JIT install as WebAuthn requires an

explicit credential enrollment step.

• Challenge is generated by the browser, which saves a round-trip to the

server. Will that work?

• Question: Are scenarios where this flow should not be followed (e.g., the

payment handler is not yet set up for this)?

• Would it be useful to augment this proposal for other forms of

authentication through the Credentials API?

Read the just-in-time proposal

http://www.w3.org/2020/03/ahb-webauthn.pdf

