ETSI work on Next Generation Protocols for 5G

John Grant, Nine Tiles
Chairman, ETSI ISG NGP
Industry Specification Group, Next Generation Protocols

First meeting in January 2016 at BSI (Chiswick)

- initiative mainly from UK, including 5GIC (located at University of Surrey)

Phase 1 of 5G (3GPP Release 15) concentrates on New Radio

- more bits/s/Hz as well as new wavebands
- lower latency

ISG NGP is working on core and access networks, targeting Release 17

- fix operators’ problems with IP-based LTE core
 - natively support mobility, security, etc
 - more application bits/s/Hz
- support new services proposed for 5G, e.g. sub-ms latency
- new transport protocols
 - TCP mistakes delays on the air interface for congestion
This is the LTE user plane
- multiple tunnels, all implemented in IP
NGP work items

Completed

• GS 1: Scenario definitions
• GS 2: Self-organising control and management planes
• GR 3: Packet routing technologies
• GR 4: Identity oriented networks
• GS 5: Requirements
• GR 6: Intelligence-defined network
• GS 7: Reference model

In progress

• GR 8: Mobile deterministic networking
• GS 9: Architecture
• GR 10: New transport technologies
• GR 11: Slicing
• GS 12: Key performance indicators
• GS 13: User plane packet formats and forwarding mechanisms

The rest of this talk outlines GS12 and then describes the two most radical features of GS13
Operators’ requirements
Operators’ requirements: headline KPIs

Addressing
- identify the entity, not the interface
 - identity must not be conflated with location

Efficiency
- minimise the size of packet headers and the amount of processing they need
 - IP header compression (used for voice over LTE) is power-hungry

Latency
- meet requirements for URLLC
- new transport protocols that aren’t slowed by retransmissions on the air interface

Security (built in, not an add-on)
- resist DDoS; avoid attack vectors such as “well-known ports”
 - operators are using NAT with IPv6 to avoid security risks of fixed addresses

Interworking with previous generations and with the Internet
Evolution of digital platforms
1970s
- Arpanet IMP
- almost everything in software
 - hardware calculation of checksum
 - maybe to reduce memory accesses by the CPU
- limited memory (64KB address space)
 - connectionless routing
 - to avoid keeping state
 - everything needed for routing must be in the header
 - still needs state to route global addresses
- line speed 0.056 Mb/s
- 0.6 Mb/s (per pin) memory interface
- 1980s
 - Nine Tiles Superlink
 - almost everything in software
 - ASIC: few hundred gates
 - limited memory (64KB address space)
 - connection-oriented routing
 - to reduce per-packet processing
 - can connect by name or location
 - only need flow state, not routing information
 - line speed 1.5 Mb/s
 - 2 Mb/s memory interface
• 2010s
 - can do much more in logic
 - multiple Gb/s line speed
 - few Gb/s memory interface
 - dRAM chip sizes in Gb
• Computing systems are sequential
 – with everything passing over the memory interface
 • incoming data must be buffered until the CPU is ready to look at it
 – and memory speeds haven't increased as much as other parameters

von Neumann architecture

Harvard architecture
code: a batch process

more complexity → takes more time
more data → takes more space
locate data by memory address (random access)
processes compete for CPU time and memory bandwidth

logic: a continuous process

video in

align to framing

more complexity →
takes more space
more data →
takes more time
locate data by time of arrival (sequential)
processes run independently

1st stage transform

2nd stage transform

entropy coding

transmit in packets

network
Example: wavelet transform

- 9 pixel values and 5 coefficients per pixel (for each component)
 - $c_0 p[n] + c_1 (p[n-1] + p[n+1]) + c_2 (p[n-2] + p[n+2]) + \ldots + c_4 (p[n-4] + p[n+4])$
 - in logic a 5-stage multiply-and-accumulate at pixel clock rate
 - 5-clock pipeline: pixel values used by each block in turn
- Most packets don't go through the CPU's memory
- Entry in the routing table shows how to route each “flow”
- Control and management packets routed to the CPU
 - also (in the case of IP) packets for which no entry in the table
IP is connectionless to save memory, but ...

- Memory is no longer a scarce resource
 - sockets keep information about flows in the endsystems
 - SDN controllers keep information about flows
 - routing tables keep information about flows
IP is connectionless to save memory, but...

- Memory is no longer a scarce resource
 - sockets keep information about flows in the endsystems
 - SDN controllers keep information about flows
 - routing tables keep information about flows
 - how are those flows identified?

```
application          |   driver   |          cable          |                            switch
```

```
handle       ->  socket  
32 bits         

MAC and IP addresses, port numbers, etc
typically 104 bits

search for match

entry number
~16 bits

flow table entry
```
Proposed new protocol

- Header contains only the label and the length
 - all other information is in routing tables (control plane or data plane)
 - header format is local to the link
- Set route up on `connect()` instead of when first packet sent
Proposed new protocol

- Can support much more communication with the application
 - including multiple addressing schemes
 - IPv4, IPv6, content-centric, service name, ...
 - maybe use domain name directly instead of translating to IP address
 - adding new address type does not require change to packet format
Proposed new protocol

- Can support much more communication with the application
 - also
 - QoS negotiation
 - security: authorisation, authentication, ...
 - format etc information for the remote entity
Steam age vs 21st century?
Live streams, “real world” signals
Time

- in IT (computing)
 - X must happen after Y
 - time per CPU instruction not well-defined
 - QoE depends on time to complete a process
 - few seconds latency is acceptable

- in AV (& other continuous media)
 - X is needed at time t
 - very precise word/pixel clocks
 - QoE depends on every sample arriving at the right time
 - 30ms delay mic-to-monitor impairs performance
 - 15ms motion-to-photon for VR
 - 1ms specified for tactile feedback
Packet networking as a best-effort service

- Competition for outgoing link in switches
 - can't predict offered traffic; requires queuing
 - longer queue \rightarrow longer delay before forwarding
 - unbounded queue size + fixed memory size \rightarrow packets can be dropped
- Good for unpredictable “IT traffic” (e.g. web surfing, file transfer)
 - using acknowledgement & retransmission as in TCP
- Not good for live continuous media where latency matters
 - including some of the new services proposed for 5G
Three levels of determinacy

- **Best-effort**
 - no guarantees

- **Asynchronous**
 - reserved capacity on each link
 - multiple queues with different priorities
 - bounded latency, no dropped packets

- **Synchronous**
 - scheduled transmission on each link
 - fixed latency, no dropped packets

also identified by IETF DetNet group
Retrofitting timeliness to IT standards is complex.
NGP has a separate service for AV traffic

- wired links are formatted into “frames” divided into 64-byte “slots”
 - each slot can be allocated to a flow
 - carries a (variable-length) packet for that flow
 - latency is well-defined
 - per-flow allocation means no policing or shaping needed
NGP has a separate service for AV traffic

- wired links are formatted into “frames” divided into 64-byte “slots”
 - each slot can be allocated to a flow
 - carries a (variable-length) packet for that flow
 - originally intended to have variable-sized transmission slots
 - fixed-size found to be better in proof-of-technology implementation
 - difficult to allocate slots if some flows have frequent small packets and others have large packets
 - e.g. 96 kHz audio sample time 10.4 µs, 1500 bytes @ 1 Gb/s = 12 µs

slot size for new flow

slots allocated to existing flows
Synchronous service for AV traffic

- frames phase-locked on all links
 - very simple mechanism found to be effective
 - packets don't need labels
 - recipient can identify flow from time of arrival (or, equivalently, position in frame)
- all incoming data written to forwarding buffer
 - stays for a few microseconds until overwritten
 - schedule shows where to copy from for each slot
 - similar to cross-point audio and video switches
 - makes multicasting easy
AV and IT services multiplexed together on wired links
- can use a more sophisticated format with today’s electronics
- position AV (synchronous) packets where required (“foreground layer”)
- IT (best-effort) packets use remaining bytes (“background layer”)
 - IT packets can be longer than a slot; no fragmentation headers needed
Switch structure

- CPU
- Data memory
- DMA
- IT packet routing
- AV packet scheduling
- IT routing table
- MAC logic
- IT packet routing
- AV packet routing

Less complexity than OpenFlow front end
Control plane signalling
• IEC 62379-5-2 standard used in proof-of-technology implementation
 - TLV format, fixed part + Information Elements
 - 5G will probably use a different format

• FindRoute message
 - sets up flow
 • includes all per-flow information (which in IP is per-packet or via other protocols)
 • replaces DHCP, DNS, ARP, SIP, SDP, RSVP, ICMP, NAT, ...
 - similar process also required for connectionless technologies
 • less controllable, involves guesswork and folklore
 - e.g. assume UDP more urgent then TCP
 • “Reserving resources before packet transmission ... is impossible to avoid”
 - (4.3.2 in DetNet architecture draft)
• FindRoute message (continued)
 – wide variety of ways to identify the called party
 • equipment name etc in MIB
 • 64-bit unit identifier
 • Ethernet, IPv4, IPv6, E.164, etc, address
 • service name
 • content identifier
 • can prefix with a locator to define scope (recursively)
 – includes identification of data format, protocol, etc
 • supports negotiation between endpoints
 • also with the network, e.g. trade-off between image quality and bandwidth
• FindRoute message (continued)

 - can also include

 • QoS negotiation
 • security information (identification, authorisation)
 • service name (e.g. “Radio 4 LW”)
 • importance (e.g. on-air, “fader away from on-air”, just listening)
 • privilege level (listener/subscriber, operator, supervisor, maintenance)
 • charging information
 • ...

Security
• Routing only uses information from neighbour
 – signalling messages forwarded by neighbour after its own processing
 • if using SDN, area covered is a walled garden
 – can check before setting up flow in forwarding plane
 • more controllable than firewalls based on IP address and port number
 • message can include information on trustworthiness of upstream systems
 • possibility to notify “fingerprint” of DDoS attack to edge
 – forwarding plane only routes flows set up by control plane
 • IT flow label from neighbour’s routing table
 • AV slot positions assigned by neighbour

• Control plane messages get priority over other IT flows
 – can’t be impeded by excess of user traffic
Transport layer options
- TCP
 - adjusts throughput to match network
 - retransmits dropped packets
 - provides an end-to-end data integrity check
- All still needed if used over the IT service
- For transport over the AV service
 - throughput can be negotiated between endpoints and network
 - no dropped packets
 - just need end-to-end data integrity check
 - confirmation of correct receipt can be combined with flow clear-down
- Legacy protocols over NGP
 - encapsulate in IT flows: similar to MPLS
 - can also implement a PseudoWire service using AV flows
 - bridge (include layer 2 header) or route (just send IP datagram)
- NGP over legacy protocols ("virtual link")
 - encapsulation based on Audio Engineering Society AES51 standard
 - over Ethernet or UDP
 - service expected for AV flows is signalled in FindRoute message
- Enables gradual replacement of equipment
 - applications can use old or new protocols
 - small Flexilink islands can expand and coalesce
 - apps using new protocols see improved service when within an island
- Network ports auto-detect framing
 - current implementation supports both new and old
 - receive side auto-selects format
 - NGP MAC is selected if it recognises correct frames
 - Ethernet MAC is selected otherwise
Nine Tiles

John Grant
mailto: j@ninetiles.com
http://www.ninetiles.com/
send e-mail to request participation in UK5G’s open, informal group for development and trialling of NGP

ETSI ISG NGP
http://www.etsi.org/technologies-clusters/technologies/next-generation-protocols
Additional slides: packet routing details
IT packet routing: receive side

PHY clock domain | dRAM interface clock domain
8 bits wide | width of dRAM interface

port 1 → MAC logic → FIFO
port 2 → MAC logic → FIFO
port n → MAC logic → FIFO

- copying pauses when framing or AV packet being received
- ... (continues)

routing table
address = (port, label)
port, new label
address for write
header
payload
dRAM (external to FPGA)
forwarding buffers 1 MB per port
also buffers for packets to CPU

IT packet buffers

IT packet payload
AV packet payload
AV
idle
IT

IT packet routing: transmit side

dRAM interface clock domain | PHY clock domain
width of dRAM interface | 8 bits wide

- copy data when space in FIFO
- address for read
- queue per port for
 - forwarded packets
 - packets from CPU

IT packet buffers

FIFO

mac logic

port 1

FIFO

MAC logic

port 2

FIFO

MAC logic

port n

- copying pauses when framing or
- AV packet being transmitted

IT

AV

AV packet payload

IT packet payload

idle
AV packet routing: receive side

PHY clock domain | internal clock domain
8 bits wide | up to 512 bits wide

ports write in rotation
write address = (port number, slot number)

block sRAM (internal to FPGA)
1 subframe (2KB) per port

port 1 → MAC logic → FIFO
port 2 → MAC logic → FIFO
port n → MAC logic → FIFO

AV packet buffer

AV packet payload | IT packet payload | idle
AV packet routing: transmit side

read address = (port, subframe, slot)

AV output schedule

read address from schedule

AV packet buffer

ports read in rotation

up to 512 bits wide | 8 bits wide

shift register -> MAC logic -> port 1

shift register -> MAC logic -> port 2

shift register -> MAC logic -> port n

frame structure on each output is 1 byte later than on the previous port

frame structure on each output is 1 byte later than on the previous port

AV packet payload

IT packet payload

idle
AV packet forwarding example

Port 1 incoming: subframes 0,1

Port 2 incoming: subframes 2,3

Port 3 outgoing: subframes 3,0

The orange slots have been allocated to traffic from ports other than 1 and 2
AV packet forwarding example

Port 1 incoming: subframes 0,1

Port 2 incoming: subframes 2,3

Port 3 outgoing: subframes 3,0

The green flow has been routed, coming in on port 1
AV packet forwarding example

Port 1 incoming: subframes 0,1

Port 2 incoming: subframes 2,3

Port 3 outgoing: subframes 3,0

The red flow has been routed, coming in on port 1
AV packet forwarding example

Port 1 incoming: subframes 0,1

```
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
```

Port 2 incoming: subframes 2,3

```
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
```

Port 3 outgoing: subframes 3,0

```
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
```

The blue flow has been routed, coming in on port 2.
AV packet forwarding example

Port 1 incoming: subframes 0,1
Port 2 incoming: subframes 2,3
Port 3 outgoing: subframes 3,0

The purple flow has been routed, coming in on port 2
AV packet forwarding example

Port 1 incoming: subframes 0,1

Port 2 incoming: subframes 2,3

Port 3 outgoing: subframes 3,0

Port 15 outgoing: subframes 3,0

The purple flow has also been routed to port 15, which didn’t have any flows routed previously.