

ETSI work on Next Generation Protocols for 5G

- John Grant, Nine Tiles
- Chairman, ETSI ISG NGP

ETSI ISG NGP

- Industry Specification Group, Next Generation Protocols
- First meeting in January 2016 at BSI (Chiswick)
 - initiative mainly from UK, including 5GIC (located at University of Surrey)
- Phase 1 of 5G (3GPP Release 15) concentrates on New Radio
 - more bits/s/Hz as well as new wavebands
 - lower latency
- ISG NGP is working on core and access networks, targeting Release 17
 - fix operators' problems with IP-based LTE core
 - natively support mobility, security, etc
 - more application bits/s/Hz
 - support new services proposed for 5G, e.g. sub-ms latency
 - new transport protocols
 - TCP mistakes delays on the air interface for congestion

NGP work items

Completed

- GS 1: Scenario definitions
- GS 2: Self-organising control and management planes
- GR 3: Packet routing technologies
- GR 4: Identity oriented networks
- GS 5: Requirements
- GR 6: Intelligence-defined network
- GS 7: Reference model

In progress

- GR 8: Mobile deterministic networking
- GS 9: Architecture
- GR 10: New transport technologies
- GR 11: Slicing
- GS 12: Key performance indicators
- GS 13: User plane packet formats and forwarding mechanisms

The rest of this talk outlines GS12 and then describes the two most radical features of GS13

Operators' requirements

Operators' requirements: headline KPIs

- Addressing
 - identify the entity, not the interface
 - identity must not be conflated with location
- Efficiency
 - minimise the size of packet headers and the amount of processing they need
 - IP header compression (used for voice over LTE) is power-hungry
- Latency
 - meet requirements for URLLC
 - new transport protocols that aren't slowed by retransmissions on the air interface
- Security (built in, not an add-on)
 - resist DDoS; avoid attack vectors such as "well-known ports"
 - operators are using NAT with IPv6 to avoid security risks of fixed addresses
- Interworking with previous generations and with the Internet

Evolution of digital platforms

- 1970s
 - Arpanet IMP
 - almost everything in software
 - hardware calculation of checksum
 - maybe to reduce memory accesses by the CPU
 - limited memory (64KB address space)
 - connectionless routing
 - to avoid keeping state
 - everything needed for routing must be in the header
 - still needs state to route global addresses
 - line speed 0.056 Mb/s
 - 0.6 Mb/s (per pin) memory interface

- 1980s
 - Nine Tiles Superlink
 - almost everything in software
 - ASIC: few hundred gates
 - limited memory (64KB address space)
 - connection-oriented routing
 - to reduce per-packet processing
 - can connect by name or location
 - only need flow state, not routing information
 - line speed 1.5 Mb/s
 - 2 Mb/s memory interface

• 2010s

- can do much more in logic
- multiple Gb/s line speed
- few Gb/s memory interface
- dRAM chip sizes in Gb

- Computing systems are sequential
 - with everything passing over the memory interface
 - incoming data must be buffered until the CPU is ready to look at it
 - and memory speeds haven't increased as much as other parameters

von Neumann architecture

Harvard architecture

logic: a continuous process

code: a batch process

more complexity → takes more time

more data → takes more space
locate data by memory address (random access)
processes compete for CPU time and memory bandwidth

more complexity →
takes more space
more data →
takes more time
locate data by time of
arrival (sequential)
processes run
independently

video in align to framing 1st stage transform 2nd stage transform entropy coding transmit in packets network

Example: wavelet transform

- 9 pixel values and 5 coefficients per pixel (for each component)
 - c0p[n] + c1(p[n-1] + p[n+1]) + c2(p[n-2] + p[n+2]) + ... + c4(p[n-4] + p[n+4])
 - in logic a 5-stage multiply-and-accumulate at pixel clock rate
 - 5-clock pipeline: pixel values used by each block in turn

- Most packets don't go through the CPU's memory
- Entry in the routing table shows how to route each "flow"
- Control and management packets routed to the CPU

IP is connectionless to save memory, but ...

- Memory is no longer a scarce resource
 - sockets keep information about flows in the endsystems
 - SDN controllers keep information about flows
 - routing tables keep information about flows

IP is connectionless to save memory, but ...

- Memory is no longer a scarce resource
 - sockets keep information about flows in the endsystems
 - SDN controllers keep information about flows
 - routing tables keep information about flows
 - how are those flows identified?

Proposed new protocol

- Header contains only the label and the length
 - all other information is in routing tables (control plane or data plane)
 - header format is local to the link
- Set route up on connect() instead of when first packet sent

Proposed new protocol

- Can support much more communication with the application
 - including multiple addressing schemes
 - IPv4, IPv6, content-centric, service name, ...
 - maybe use domain name directly instead of translating to IP address
 - adding new address type does not require change to packet format

Proposed new protocol

- Can support much more communication with the application
 - also
 - QoS negotiation
 - security: authorisation, authentication, ...
 - format etc information for the remote entity

Steam age vs 21st century?

Live streams, "real world" signals

Time

- in IT (computing)
 - X must happen after Y
 - time per CPU instruction not well-defined
 - QoE depends on time to complete a process
 - few seconds latency is acceptable

- in AV (& other continuous media)
 - X is needed at time t
 - very precise word/pixel clocks
 - QoE depends on every sample arriving at the right time
 - 30ms delay mic-to-monitor impairs performance
 - 15ms motion-to-photon for VR
 - 1ms specified for tactile feedback

Packet networking as a best-effort service

- Competition for outgoing link in switches
 - can't predict offered traffic; requires queuing
 - longer queue → longer delay before forwarding

- unbounded queue size + fixed memory size → packets can be dropped
- Good for unpredictable "IT traffic" (e.g. web surfing, file transfer)
 - using acknowledgement & retransmission as in TCP
- Not good for live continuous media where latency matters
 - including some of the new services proposed for 5G

Three levels of determinacy

also identified by IETF DetNet group

- Best-effort
 - no guarantees
- Asynchronous
 - reserved capacity on each link
 - multiple queues with different priorities
 - bounded latency, no dropped packets
- Synchronous
 - scheduled transmission on each link
 - fixed latency, no dropped packets

Retrofitting timeliness to IT standards is complex

NGP has a separate service for AV traffic

- wired links are formatted into "frames" divided into 64-byte "slots"
 - each slot can be allocated to a flow
 - carries a (variable-length) packet for that flow
 - latency is well-defined
 - per-flow allocation means no policing or shaping needed

NGP has a separate service for AV traffic

- wired links are formatted into "frames" divided into 64-byte "slots"
 - each slot can be allocated to a flow
 - carries a (variable-length) packet for that flow
 - originally intended to have variable-sized transmission slots
 - fixed-size found to be better in proof-of-technology implementation
 - difficult to allocate slots if some flows have frequent small packets and others have large packets
 - e.g. 96 kHz audio sample time 10.4 μ s, 1500 bytes @ 1 Gb/s = 12 μ s

slot size for new flow

slots allocated to existing flows

Synchronous service for AV traffic

- frames phase-locked on all links
 - very simple mechanism found to be effective
 - packets don't need labels
 - recipient can identify flow from time of arrival (or, equivalently, position in frame)
- all incoming data written to forwarding buffer
 - stays for a few microseconds until overwritten
 - schedule shows where to copy from for each slot
 - similar to cross-point audio and video switches
 - makes multicasting easy

- AV and IT services multiplexed together on wired links
 - can use a more sophisticated format with today's electronics
 - position AV (synchronous) packets where required ("foreground layer")
 - IT (best-effort) packets use remaining bytes ("background layer")
 - IT packets can be longer than a slot; no fragmentation headers needed

Switch structure

Control plane signalling

- IEC 62379-5-2 standard used in proof-of-technology implementation
 - TLV format, fixed part + Information Elements
 - 5G will probably use a different format

FindRoute message

- sets up flow
 - includes all per-flow information (which in IP is per-packet or via other protocols)
 - replaces DHCP, DNS, ARP, SIP, SDP, RSVP, ICMP, NAT, ...
- similar process also required for connectionless technologies
 - less controllable, involves guesswork and folklore
 - e.g. assume UDP more urgent then TCP
 - "Reserving resources before packet transmission ... is impossible to avoid"
 - (4.3.2 in DetNet architecture draft)

- FindRoute message (continued)
 - wide variety of ways to identify the called party
 - equipment name etc in MIB
 - 64-bit unit identifier
 - Ethernet, IPv4, IPv6, E.164, etc, address
 - service name
 - content identifier
 - can prefix with a locator to define scope (recursively)
 - includes identification of data format, protocol, etc
 - supports negotiation between endpoints
 - also with the network, e.g. trade-off between image quality and bandwidth

FindRoute message (continued)

- can also include
 - QoS negotiation
 - security information (identification, authorisation)
 - service name (e.g. "Radio 4 LW")
 - importance (e.g. on-air, "fader away from on-air", just listening)
 - privilege level (listener/subscriber, operator, supervisor, maintenance)
 - charging information
 - •

Security

- Routing only uses information from neighbour
 - signalling messages forwarded by neighbour after its own processing
 - if using SDN, area covered is a walled garden
 - can check before setting up flow in forwarding plane
 - more controllable than firewalls based on IP address and port number
 - message can include information on trustworthiness of upstream systems
 - possibility to notify "fingerprint" of DDoS attack to edge
 - forwarding plane only routes flows set up by control plane
 - IT flow label from neighbour's routing table
 - AV slot positions assigned by neighbour
- Control plane messages get priority over other IT flows
 - can't be impeded by excess of user traffic

Transport layer options

TCP

- adjusts throughput to match network
- retransmits dropped packets
- provides an end-to-end data integrity check
- All still needed if used over the IT service
- For transport over the AV service
 - throughput can be negotiated between endpoints and network
 - no dropped packets
 - just need end-to-end data integrity check
 - confirmation of correct receipt can be combined with flow clear-down

Migration

- Legacy protocols over NGP
 - encapsulate in IT flows: similar to MPLS
 - can also implement a PseudoWire service using AV flows
 - bridge (include layer 2 header) or route (just send IP datagram)
- NGP over legacy protocols ("virtual link")
 - encapsulation based on Audio Engineering Society AES51 standard
 - over Ethernet or UDP
 - service expected for AV flows is signalled in FindRoute message
- Enables gradual replacement of equipment
 - applications can use old or new protocols
 - small Flexilink islands can expand and coalesce
 - apps using new protocols see improved service when within an island

- Network ports auto-detect framing
 - current implementation supports both new and old
 - receive side auto-selects format

- NGP MAC is selected if it recognises correct frames
- Ethernet MAC is selected otherwise

John Grant

mailto: j@ninetiles.com

http://www.ninetiles.com/

send e-mail to request participation in UK5G's open, informal group for development and trialling of NGP

ETSI ISG NGP

http://www.etsi.org/technologies-clusters/technologies/next-generation-protocols

Additional slides: packet routing details

IT packet routing: receive side

IT packet routing: transmit side

dRAM interface clock domain PHY clock domain width of dRAM interface 8 bits wide

AV packet routing: receive side

PHY clock domain | internal clock domain 8 bits wide | up to 512 bits wide

AV

AV packet routing: transmit side

AV packet payload

IT

AV

IT packet payload

idle

The orange slots have been allocated to traffic from ports other than 1 and 2

<----- "window" during which first green slot is in buffer ----->

The green flow has been routed, coming in on port 1

The red flow has been routed, coming in on port 1

The blue flow has been routed, coming in on port 2

The purple flow has been routed, coming in on port 2

The purple flow has also been routed to port 15, which didn't have any flows routed previously