
ETSI work on Next Generaton Protocols for 5G
John Grant, Nine Tiles
Chairman, ETSI ISG NGP

ETSI ISG NGP

Industry Specifcatin Griup, Next Generatin Priticils
First meetnn in anuary 2016 at BSI (Chiswick)
• initatve mainly frim UK, includinn 5GIC (licated at University if Surrey)

Phase 1 if 5G (3GPP Release 15) cincentrates in New Radii
• mire bits/s/Hz as well as new wavebands
• liwer latency

ISG NGP is wirkinn in cire and access netwirks, tarnetnn Release 17
• fx iperatirs’ priblems with IP-based LTE cire

• natvely suppirt mibility, security, etc

• mire applicatin bits/s/Hz
• suppirt new services pripised fir 5G, e.n. sub-ms latency
• new transpirt priticils

• TCP mistakes delays in the air interface fir cinnestin

 This is the LTE user plane

– multiple tunnels, all implemented in IP

NGP work items

Cimpleted
• GS 1: Scenarii defnitins
• GS 2: Self-irnanisinn cintril and mananement planes
• GR 3: Packet riutnn technilinies
• GR 4: Identty iriented netwirks
• GS 5: Requirements
• GR 6: Intellinence-defned netwirk
• GS 7: Reference midel

In prinress
• GR 8: Mibile deterministc netwirkinn
• GS 9: Architecture
• GR 10: New transpirt technilinies
• GR 11: Slicinn
• GS 12: Key perfirmance indicatirs
• GS 13: User plane packet firmats and

firwardinn mechanisms

The rest of this talk outlines GS12 and then
describes the two most radical features of GS13

Operators’ requirements

Operators’ requirements: headline KPIs

Addressinn
• identfy the entty, nit the interface

• identty must nit be cinfated with licatin

Efciency
• minimise the size if packet headers and the amiunt if pricessinn they need

• IP header cimpressiin (used fir viice iver LTE) is piwer-hunnry

Latency
• meet requirements fir URLLC
• new transpirt priticils that aren’t sliwed by retransmissiins in the air interface

Security (built in, nit an add-in)
• resist DDiS; aviid atack vectirs such as “well-kniwn pirts”

• iperatirs are usinn NAT with IPv6 ti aviid security risks if fxed addresses

Interwirkinn with previius neneratins and with the Internet

Evoluton of digital platorms

 ● 1970s
– Arpanet IMP
– almost everything in software

● hardware calculation of checksum
– maybe to reduce memory accesses by the CPU

– limited memory (64KB address space)
● connectionless routing

– to avoid keeping state
– everything needed for routing must be in the header
– still needs state to route global addresses

– line speed 0.056 Mb/s
– 0.6 Mb/s (per pin) memory interface

 ● 1980s
– Nine Tiles Superlink
– almost everything in software

● ASIC: few hundred gates

– limited memory (64KB address space)
● connection-oriented routing

– to reduce per-packet processing
– can connect by name or location
– only need flow state, not routing information

– line speed 1.5 Mb/s
– 2 Mb/s memory interface

● 2010s
– can do much more in logic
– multiple Gb/s line speed
– few Gb/s memory interface
– dRAM chip sizes in Gb

● Computing systems are sequential
– with everything passing over the memory interface

● incoming data must be buffered until the CPU is ready to look at it

– and memory speeds haven't increased as much as other parameters

CPU

program memory

data memory

CPU

memory

von Neumann architecture

Harvard architecture

code: a batch process

align to framing

memory

CPU

more complexity → takes more time

more data → takes more space

more complexity →

more data →

takes more time

takes more space

logic: a continuous process
video in

network

locate data by memory address (random access)

locate data by time of

arrival (sequential)

processes compete for CPU time and memory bandwidth

processes run

independently

1st stage transform

2nd stage transform

entropy coding

transmit in packets

Example: wavelet transform

● 9 pixel values and 5 coefficients per pixel (for each component)
● c0p[n] + c1(p[n-1] + p[n+1]) + c2(p[n-2] + p[n+2]) + … + c4(p[n-4] + p[n+4])

– in logic a 5-stage multiply-and-accumulate at pixel clock rate
● 5-clock pipeline: pixel values used by each block in turn

p[n] p[n-2]

+

x

+

c1

p[n] p[n-4]

+

x

+

c2

p[n] p[n-6]

+

x

+

c3

p[n] p[n-8]

+

x

+

c4

p[n]

x

c0

CPU

data memory

DMADMA

CPU

data memory

DMADMA

buffer memory

routing
table

logic logic

1980s switch

21st century switch

CPU

data memory

DMADMA

buffer memory

routing
table

logic logic

● Most packets don't go through the CPU's memory
● Entry in the routing table shows how to route each “flow”
● Control and management packets routed to the CPU

– also (in the case of IP) packets
for which no entry in the table

IP is connectionless to save memory, but ...

● Memory is no longer a scarce resource
– sockets keep information about flows in the endsystems
– SDN controllers keep information about flows
– routing tables keep information about flows

IP is connectionless to save memory, but ...

● Memory is no longer a scarce resource
– sockets keep information about flows in the endsystems
– SDN controllers keep information about flows
– routing tables keep information about flows
– how are those flows identified?

socket
flow
table
entry

search
for

match

handle

32 bits

MAC and IP addresses,
port numbers, etc

typically 104 bits

entry number

~16 bits

application | driver | cable | switch

Proposed new protocol

 Header contains only the label and the length

– all other information is in routing tables (control plane or data plane)

– header format is local to the link

 Set route up on connect() instead of when first packet sent

socket
flow
table
entry

handle

32 bits

entry number

~16 bits

application | driver | cable | switch

label

~16 bits

Proposed new protocol

 Can support much more communication with the application

– including multiple addressing schemes
• IPv4, IPv6, content-centric, service name, ...

• maybe use domain name directly instead of translating to IP address

• adding new address type does not require change to packet format

socket
flow
table
entry

handle

32 bits

entry number

~16 bits

application | driver | cable | switch

label

~16 bits

Proposed new protocol

 Can support much more communication with the application

– also
• QoS negotiation

• security: authorisation, authentication, ...

• format etc information for the remote entity

socket
flow
table
entry

handle

32 bits

entry number

~16 bits

application | driver | cable | switch

label

~16 bits

RTP UDP IP MAC

label

Steam age vs 21st century?

Live streams, “real world” signals

Time
● in IT (computing)

– X must happen after Y
– time per CPU instruction not

well-defined
– QoE depends on time to

complete a process
– few seconds latency is

acceptable

● in AV (& other continuous media)
– X is needed at time t
– very precise word/pixel clocks

– QoE depends on every sample
arriving at the right time

– 30ms delay mic-to-monitor impairs
performance

– 15ms motion-to-photon for VR
– 1ms specified for tactile feedback

Packet networking as a best-effort service

● Competition for outgoing link in switches
– can't predict offered traffic; requires queuing
– longer queue → longer delay before forwarding
– unbounded queue size + fixed memory size → packets can be dropped

● Good for unpredictable “IT traffic” (e.g. web surfing, file transfer)
– using acknowledgement & retransmission as in TCP

● Not good for live continuous media where latency matters
– including some of the new services proposed for 5G

Three levels of determinacy

● Best-effort
– no guarantees

● Asynchronous
– reserved capacity on each link

● multiple queues with different priorities

– bounded latency, no dropped packets
● Synchronous

– scheduled transmission on each link
– fixed latency, no dropped packets

also identified by
IETF DetNet group

Retrofitting timeliness to IT standards is complex

NGP has a separate service for AV traffic

● wired links are formatted into “frames” divided into 64-byte “slots”
– each slot can be allocated to a flow

● carries a (variable-length) packet for that flow
● latency is well-defined
● per-flow allocation means no policing or shaping needed

NGP has a separate service for AV traffic

● wired links are formatted into “frames” divided into 64-byte “slots”
– each slot can be allocated to a flow

● carries a (variable-length) packet for that flow

– originally intended to have variable-sized transmission slots
● fixed-size found to be better in proof-of-technology implementation

– difficult to allocate slots if some flows have frequent small packets and others have large packets
– e.g. 96 kHz audio sample time 10.4 µs, 1500 bytes @ 1 Gb/s = 12 µs

slot size for new flow

slots allocated to existing flows

Synchronous service for AV traffic

● frames phase-locked on all links
– very simple mechanism found to be effective
– packets don't need labels

● recipient can identify flow from time of arrival (or, equivalently, position in frame)

● all incoming data written to forwarding buffer
– stays for a few microseconds until overwritten
– schedule shows where to copy from for each slot

● similar to cross-point audio and video switches
● makes multicasting easy

● AV and IT services multiplexed together on wired links
– can use a more sophisticated format with today’s electronics
– position AV (synchronous) packets where required (“foreground layer”)
– IT (best-effort) packets use remaining bytes (“background layer”)

– IT packets can be longer than a slot; no fragmentation headers needed

AV AV packet payloadIT IT packet payload idle

slot start / AV packet headerIT packet header

PHY MAC logic
AV packets

(as scheduled)

IT packets
(intermittent)

PHYMAC logic

Switch structure

CPU

data memory

DMADMA

IT packet routing

AV packet
scheduling

IT routing
table

MAC logic

AV packet routing
Less complexity than
OpenFlow front end

MAC logic

Control plane signalling

● IEC 62379-5-2 standard used in proof-of-technology implementation
– TLV format, fixed part + Information Elements
– 5G will probably use a different format

● FindRoute message
– sets up flow

● includes all per-flow information (which in IP is per-packet or via other protocols)
● replaces DHCP, DNS, ARP, SIP, SDP, RSVP, ICMP, NAT, ...

– similar process also required for connectionless technologies
● less controllable, involves guesswork and folklore

– e.g. assume UDP more urgent then TCP
● “Reserving resources before packet transmission ... is impossible to avoid”

– (4.3.2 in DetNet architecture draft)

● FindRoute message (continued)
– wide variety of ways to identify the called party

● equipment name etc in MIB
● 64-bit unit identifier
● Ethernet, IPv4, IPv6, E.164, etc, address
● service name
● content identifier
● can prefix with a locator to define scope (recursively)

– includes identification of data format, protocol, etc
● supports negotiation between endpoints
● also with the network, e.g. trade-off between image quality and bandwidth

● FindRoute message (continued)
– can also include

● QoS negotiation
● security information (identification, authorisation)
● service name (e.g. “Radio 4 LW”)
● importance (e.g. on-air, “fader away from on-air”, just listening)
● privilege level (listener/subscriber, operator, supervisor, maintenance)
● charging information
● ...

Security

● Routing only uses information from neighbour
– signalling messages forwarded by neighbour after its own processing

● if using SDN, area covered is a walled garden

– can check before setting up flow in forwarding plane
● more controllable than firewalls based on IP address and port number
● message can include information on trustworthiness of upstream systems
● possibility to notify “fingerprint” of DDoS attack to edge

– forwarding plane only routes flows set up by control plane
● IT flow label from neighbour’s routing table
● AV slot positions assigned by neighbour

● Control plane messages get priority over other IT flows
– can’t be impeded by excess of user traffic

Transport layer optons

● TCP
– adjusts throughput to match network
– retransmits dropped packets
– provides an end-to-end data integrity check

● All still needed if used over the IT service
● For transport over the AV service

– throughput can be negotiated between endpoints and network
– no dropped packets
– just need end-to-end data integrity check
– confirmation of correct receipt can be combined with flow clear-down

Migraton

● Legacy protocols over NGP
– encapsulate in IT flows: similar to MPLS
– can also implement a PseudoWire service using AV flows
– bridge (include layer 2 header) or route (just send IP datagram)

● NGP over legacy protocols (“virtual link”)
– encapsulation based on Audio Engineering Society AES51 standard

● over Ethernet or UDP
● service expected for AV flows is signalled in FindRoute message

● Enables gradual replacement of equipment
– applications can use old or new protocols
– small Flexilink islands can expand and coalesce
– apps using new protocols see improved service when within an island

● Network ports auto-detect framing
– current implementation supports both new and old

● receive side auto-selects format

– NGP MAC is selected if it recognises correct frames
– Ethernet MAC is selected otherwise

PHY

NGP MAC

Ethernet MAC

AV packet routing

IT packet routing

 ihn Grant
mailti: j@ninetles.cim

htp://www.ninetles.cim/
send e-mail ti request partcipatin in UK5G’s ipen, infirmal nriup

fir develipment and triallinn if NGP

ETSI ISG NGP
htp://www.etsi.irn/technilinies-clusters/technilinies/next-neneratin-priticils

mailto:j@ninetiles.com
http://www.ninetiles.com/
http://www.etsi.org/technologies-clusters/technologies/next-generation-protocols

Additonal slides: packet routng details

IT packet routing: receive side

MAC logic

MAC logic

MAC logic

●

●

●

IT packet
buffers

FIFO

FIFO

FIFO

PHY clock domain | dRAM interface clock domain

dRAM (external to FPGA)
forwarding buffers 1 MB per port
also buffers for packets to CPU

8 bits wide | width of dRAM interface

●

●

●

port 1

port 2

port n

payload

routing
table

queuing logic

header

address
for write

AV AV packet payloadIT IT packet payload idle

copying pauses
when framing or
AV packet being
received

port, new label
header

address =
(port, label)

IT packet routing: transmit side

MAC logic

MAC logic

MAC logic

●

●

●

IT packet
buffers

FIFO

FIFO

FIFO

dRAM interface clock domain | PHY clock domain

queue per port for
- forwarded packets
- packets from CPU

width of dRAM interface | 8 bits wide

●

●

●

port 1

port 2

port n

de-queuing logic
address
for read

copy data when space in FIFO

copying pauses
when framing or
AV packet being
transmitted

AV AV packet payloadIT IT packet payload idle

AV packet routing: receive side

MAC logic

MAC logic

MAC logic

●

●

●

AV packet
buffer

FIFO

FIFO

FIFO

block sRAM (internal to FPGA)
1 subframe (2KB) per port

●

●

●

port 1

port 2

port n

PHY clock domain | internal clock domain

8 bits wide | up to 512 bits wide

ports write in rotation
write address =

(port number, slot number)

AV AV packet payloadIT IT packet payload idle

AV packet routing: transmit side

MAC logic

MAC logic

MAC logic

●

●

●

AV packet
buffer

shift register

ports read in rotation

read address =
(port, subframe, slot)

up to 512 bits wide | 8 bits wide
AV output
schedule

read address
from schedule

port 1

port 2

port n

shift register

shift register

●

●

●

frame structure on each
output is 1 byte later than
on the previous port

AV AV packet payloadIT IT packet payload idle

AV packet forwarding example

 Port 1 incoming: subframes 0,1

12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 16151413 17 21201918 22

654 7 111098 12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 1413

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 3 outgoing: subframes 3,0

 Port 2 incoming: subframes 2,3

The orange slots have been allocated to traffic from ports other than 1 and 2

AV packet forwarding example

 Port 1 incoming: subframes 0,1

12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 16151413 17 21201918 22

654 7 111098 12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 1413

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 3 outgoing: subframes 3,0

 Port 2 incoming: subframes 2,3

<------ “window” during which first green slot is in buffer ------->

The green flow has been routed, coming in on port 1

AV packet forwarding example

 Port 1 incoming: subframes 0,1

12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 16151413 17 21201918 22

654 7 111098 12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 1413

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 3 outgoing: subframes 3,0

 Port 2 incoming: subframes 2,3

The red flow has been routed, coming in on port 1

AV packet forwarding example

 Port 1 incoming: subframes 0,1

12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 16151413 17 21201918 22

654 7 111098 12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 1413

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 3 outgoing: subframes 3,0

 Port 2 incoming: subframes 2,3

The blue flow has been routed, coming in on port 2

AV packet forwarding example

 Port 1 incoming: subframes 0,1

12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 16151413 17 21201918 22

654 7 111098 12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 1413

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 3 outgoing: subframes 3,0

 Port 2 incoming: subframes 2,3

The purple flow has been routed, coming in on port 2

AV packet forwarding example

 Port 1 incoming: subframes 0,1

12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 16151413 17 21201918 22

654 7 111098 12 16151413 17 21201918 22 26252423 27 102928 2 6543 7 111098 12 1413

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 3 outgoing: subframes 3,0

 Port 2 incoming: subframes 2,3

1615 17 21201918 22 26252423 27 2928 10f 2 6543 7 111098 12 16151413 17 21201918 22 23

 Port 15 outgoing: subframes 3,0

14

The purple flow has also been routed to port 15, which didn’t have any flows routed previously

