
Verifiable Credentials WG
TPAC 2022

Day 1: September 15, 2022
Chairs: Brent Zundel, Kristina Yasuda
Location: Vancouver (and cyberspace)

1

Welcome!

● Logistics
● W3C WG IPR Policy and Health Policy
● Agenda
● IRC and Scribes
● Status
● Timeline Reminder

2

Logistics
● Zoom call:

○ See https://www.w3.org/events/meetings/a91c3c5b-298a-46a8-8575-61cf15926a97 for dial in
information (member only link)

● Meeting times:
○ Thursday Sep 15: 8:00-17:00 PST

○ Friday Sep 16: 8:00-17:00 PST

● VC WG Agenda: https://tinyurl.com/3kyhzejj
● Live slides: https://tinyurl.com/458sp44s (Google Slides)

3

https://www.w3.org/events/meetings/a91c3c5b-298a-46a8-8575-61cf15926a97
https://www.timeanddate.com/worldclock/fixedtime.html?msg=VCWG+TPAC&iso=20220915T08&p1=256&ah=9
https://www.timeanddate.com/worldclock/fixedtime.html?msg=VCWG+TPAC&iso=20220916T08&p1=256&ah=9
https://tinyurl.com/3kyhzejj
https://tinyurl.com/458sp44s

W3C WG IPR Policy

● This group abides by the W3C patent policy
https://www.w3.org/Consortium/Patent-Policy-20200915/

● Only people and companies listed at
https://www.w3.org/groups/wg/vc/participants are allowed to make substantive
contributions to the specs

● Code of Conduct https://www.w3.org/Consortium/cepc/

4

https://www.w3.org/groups/wg/vc/participants
https://www.w3.org/Consortium/cepc/

Today’s agenda

5

8:00 Chairs Introduction and logistics

8:30 Chairs Introduction and logistics Brent Zundel

9:00 Real World Use Cases Chairs

9:30 Updating the Use Cases Note Joe Andrieu

10:00

10:15 Transformations of the core data model Chairs

10:45 Transformations of the core data model Chairs

11:15 Transformations of the core data model Orie Steele

12:15

13:15 APA WG Joint Meeting (use-cases, etc.)

14:15 Streamlining Data Integrity Cryptosuites Manu Sporny

14:45 Streamlining Data Integrity Cryptosuites Manu Sporny

15:15

15:30 VC Extensions Registries Mike Jones/Orie Steele

16:00 VC Extensions Registries Mike Jones/Orie Steele

16:30 Intro to ACDC Sam Smith (remote)

IRC and Scribes
● Meeting discussions will be

documented

○ Text Chat:
http://irc.w3.org/?channels=vcwg

○ IRC://irc.w3.org:6665/#vcwg

● Telecon info
○ https://www.w3.org/events/meetings/a91c

3c5b-298a-46a8-8575-61cf15926a97

Morning 1 M2 Afternoon 1 A2

Thurs Manu Mkhraisha Phila CEL

Fri Joe Kevin/Phila DLongley Orie

6

<JoeAndrieu> q+ to comment on biometrics
<brent> ack JoeAndrieu
<Zakim> JoeAndrieu, you wanted to comment on biometrics

http://irc.w3.org/?channels=vcwg
http://irc.w3.org:6665/#vcwg
https://www.w3.org/events/meetings/a91c3c5b-298a-46a8-8575-61cf15926a97
https://www.w3.org/events/meetings/a91c3c5b-298a-46a8-8575-61cf15926a97

VC WG Mission and Goals
● “The mission of the Verifiable Credentials Working Group is to make

expressing, exchanging, and verifying credentials easier and more secure on
the web.”

Charter Deliverables and Status

8

● Verifiable Credentials Data Model (VCDM) 2.0

● Verifiable Credential Data Integrity 1.0

● Verifiable Credential JSON Web Token

● Verifiable Credential JSON Web Signature 2020

W3C Technical Report Process

● Working Draft (WD) - does not imply consensus
● Candidate Recommendation (CR)

○ Entry - to publish as CR, the document is expected to be feature complete, have had wide
review, and must specify the implementation requirements needed to exit

○ Exit - to exit CR (and move to PR), the document must satisfy the stated implementation
requirements; it must also not have made any substantive change not warned about upon entry

● Proposed Recommendation (PR)
○ Basically a one-month sanity check during which the AC is encouraged to have any final review

and discussion, but if anything major happens it’s a fail (requiring a move back to CR or earlier)

● Recommendation - Done
○ But errata are possible

9

Jun 2024May 2024Jan 2024
(CR2)

Sep 2023
(CR1) .

July 2022
(FPWD)

Timing of our primary spec

10
https://www.w3.org/2021/Process-20211102/

Mar 2023
(Feature freeze)

https://www.w3.org/2021/Process-20211102/

Goals for this meeting

11

● Make progress on the current set of boulders
○ Core Data Model

■ Border between core DM and Securing VCs
● Transformations, etc.

■ Disposition of non-normative content
○ Data Integrity streamlining
○ VC Registries
○ Test Suites

Introductions

12

Real World Use Cases
& what did we learn from implementing v1.1

(Brent, 15 min)

13

Where are VCs used Today?

14

● Travel documentation
● Staff onboarding
● Customer relationships
● Age verification
● Supply chain tracking
● Education credentials
● Content Authenticity
● Govt ID
● eKYC
● What else?

Discussion
- What did the implementers

learn?
- Benefits of VC? What do we

like about the vc-data-model
v1.1 spec?

- Problems, asks, questions for
vc-data-model-v2?

Updating Use Cases
(Joe Andrieu & Kevin Dean, 45 min)

15

Topics

● Current Use Case Document
● Lessons Learned
● Proposal for New Content
● Next Steps
● Open Discussion

Current Document

https://w3.org/TR/vc-use-cases

https://w3.org/TR/vc-use-cases

Roles

Four Primary Roles in the system

User Needs

User Needs

● 30 Use Cases
● In 7 Domains
● Problems/Opportunities
● Each with a paragraph

E.1 Digital transcript
Joleen is the registrar of Mega University and, by virtue of her office, is responsible for the integrity,

accuracy, and security of academic records. Joleen has been a pioneering registrar in advocating an

"extended transcript" that includes not only the standard set of course grades but also adds supplementary

information on learner competencies. These might include work experiences and non-educational but

marketable skills. Upon the request of her students, Joleen issues a digital credential that includes an

extended transcript.

User Tasks

User Tasks

● Captures the tasks needed to support Normal use of VCs, for each Role
● 8 Tasks
● Issue, Assert, Verify, Store, Retrieve, Move, Revoke, Amend

4.1 Issue Claim
Requirement
It MUST be possible for any entity to issue a verifiable credential.
Motivation
Individuals and organizations need a way to issue claims about themselves or others that can be
verified and trusted.
Needs
F.1 Reuse know your customer, E.1 Digital transcript, L.1 Digital driving license, H.1 Prescribing

Focal Use Cases

● Three In-Depth Use Cases
○ Citizenship by Parentage
○ Expert Dive Instructor
○ International Travel with Minor and Upgrade

● Extra Content
○ Background
○ Distinction
○ VCs and VPs involved
○ Trust Hierarchy
○ Threat Model

■ Threat / Responses

User Sequences

Creating a VC

Example VCs (5)

EXAMPLE 1: Malathi's passport (simple model)
{
 "@context": [
 "https://w3id.org/credentials/v1",
 "https://example.com/travel-vocab/v1"
],
 "id": "urn:uuid:9f6878c8-73c7-11e8-ab37-23a1a3504fd0",
 "type": ["VerifiableCredential", "PassportCredential"],
 /* gov't DID */
 "issuer": "did:example:CCnF3zFaXkPN4zB94XaomRdvw2zX3XHPVX3aExcgo6PV",
 "expires": "2028-01-01T00:00:00Z",
 "claim": {
 "id": "did:example:BcRisGnqV4QPb6bRmDCqEjyuubBarS1Y1nhDwxBMTXY4",
 "givenName": "Malathi",
 "familyName": "Hamal",
 "citizenship": "US",
 /* any other claims made by gov't */
 },
 "proof": {/* signature by gov't */}
}

User Sequences

Using a VC

Lessons Learned

● Amend
● Evidence
● How do you refer to a VC?
● Hard to get contributions

○ Hard to keep iterating

● VCs are statements, but …
○ its subtle and we struggle to get that across.
○ @Context matters

● Wallet Descriptors/Display
● Visual Presentation Layer

New Content Proposal

1. Update VC Use Cases
2. New Editors: Joe Andrieu, Kevin Dean
3. Update Actions

a. Replace “Amend” with “Reference”
b. Store, Retrieve, Move?

4. New Use Cases for better coverage
a. Traceability
b. Evidence

i. Reference / inclusion of authority to issue (as VC)
ii. Reference / inclusion of proof of control

c. Mobile / Web Integration
d. Accessibility (especially screen-reader style complications)
e. Display of VCs?

Traceability - The Problem

● Full traceability records everything that happens as the product moves through
the supply chain

○ Not just the movements themselves, but the conditions (temperature, humidity, etc.)

● Discovering data is difficult, usually just one-up and one-down
● A discovery service could respond to broadcast requests but who gets to ask?

○ Consumer with product in hand (authenticated by use of valid serial number)

○ Trading partner

○ Regulator

Traceability - Responding to Queries

● How does the discovery service respond to the broadcast?
○ No response (timeout)
○ “I have no data”
○ “I may have data”
○ “I have data”

● How does the discovery service respond to a direct query?
○ No response (timeout)
○ No data
○ Filtered data
○ All data

Traceability - Use of Verifiable Credentials

● Proof of role within the supply chain

○ Distributor - known to the manufacturer

○ Retailer - known to the distributor, who wants to hide identifying information from the
manufacturer to protect customer base

Next Steps

1. Formally adopt the work item
2. Assign Editors
3. Additional Collaborators?
4. Call for input
5. Cadence for Review in main calls

a. every other month

Discussion

33

Break
(15 mins)

34

Serializations and the Core Data Model

(Kristina, 60 mins)

35

In VC-DATA-MODEL v1.1…Creating a Verifiable Credential

36

Core data
model

JSON-LD
serialization JWT

Linked Data
Proofs

Data Model Serialization Securing (proof)

diff: valid @context present or not
-> what to do with @context in JSON-serialized VCs?

In Practice…Creating a Verifiable Credential

37

Core data
model

JSON-LD
serialization JWT

Linked Data
Proofs

Data Model Serialization Securing (proof)

JSON or
Incomplete
JSON-LD

serialization

In VC-DATA-MODEL v1.1…

38

Core data
model

JSON-LD
serialization JWT

Linked Data
Proofs

Data Model Serialization Securing (proof)

All components are in one specification:

VC-DATA-MODEL v1.1

In VC-DATA-MODEL v2.0…

39

Core data
model

JSON-LD
serialization JWT

Data
Integrity

Data Model Serialization Securing (proof)

Different documents for each component…

vc-data-model v2.0 vc-jwt

vc-data-integrity

Discussion topic:

40

Core data
model

JSON-LD JWT

Data
Integrity

Data Model Serialization Securing (proof)

vc-data-model v2.0

vc-jwt

vc-data-integrity

JSON
(ie SD-JWT)

JSON Web
Proofs (JWP)

ACDC

CBOR

CBOR-LD

etc.

Where do Serialization rules sit?

CWT

etc.
ACDC

Defining vs Securing
…the Core Data Model

(Orie Steele, 60 mins)

41

The branding problem.

42

Everyone wants to say their software
implements W3C Standards…
Nobody wants to change their software.

How much of “Verifiable Credentials” is
about “Graph Theory” or “Open World
Data Models”... or the “Semantic Web”... or
“Browser APIs”?

How do “Verifiable Credentials” reflect “W3C Values”?

43

What properties should W3C Verifiable
Credentials have when compared to
standards at IETF, ISO, or DIF?

W3C TAG Ethical Web Principles ?

Is the Semantic Web Dead?

https://www.w3.org/2001/tag/doc/ethical-web-principles/

The Core Data Model

44

Should we support decentralization?

How can Issuers, Holders and Verifiers agree to a
shared information model without a trusted
centralized registry?

The Core Data Model

45

Should be specific and useful enough to
justify a new standard

We already have JSON and JOSE…

We already have CBOR and COSE…

Why are we here?

The Core Data Model

46

Provide a bridge linking the semantic
web of the past, to the semantic web
of the future?

What is the Core Data Model?

47

● https://www.w3.org/TR/2022/REC-vc-data-model-20220303/
○ Normative statements only.

● What about all the informative sections?
○ Should they be moved to the implementation guide?
○ Should they remain in the core spec informatively?
○ Should they remain in the core spec normatively?

https://www.w3.org/TR/2022/REC-vc-data-model-20220303/

Creating a Verifiable Credential (in VC-DATA-MODEL v1.1)

● Vocabularies are used for extensibility
● Claims are defined in relation to RDF triples: subject, predicate, object

48

RDF JSON-LD VC-JWT

Data
Integrity

Data Model Serialization Securing (proof)

Where are the lines blurred today?

49

● “signature” or “proof” metadata
○ iat, nbf, iss, sub
○ proof.created, issuanceDate, issuer, credentialSubject

● Content Types, Semantics &
Schema Languages (JSON Schema / JSON-LD)

● Which representations are “verifiable credentials”?
○ application/jose
○ application/jose+vc
○ application/jose+json+vc
○ application/jose+json+ld+vc
○ application/cose+vc
○ application/cbor+ld+vc

Which “core data model” terms do we also see in “securing
formats” ?

50

* @context → The context assigned to the credential → … ? private claim names ?
* type → The type (in the context), assigned to the credential → …
* issuer → The claim identifies the principal that issued the credential → iss + public claim names + private claim names
* issuanceDate → When should a verify start accepting the claims from the issuer? → nbf
* credentialSubject → The subject and claims about the subject of the credential → sub + public claim names + private claim names

id → The unique identifier assigned to the credential → jti
holder → The claim identifies the principal that holds a credential → iss, sub … ?
expirationDate → When should a verify stop accepting the claims from the issuer? → exp
credentialStatus → Has the issuer revoked this credential? → … ?
credentialSchema → What schema validates this credential? (what type is this json) → … ?

Do we really want to specify all these for every new “proof format” ?

Who wants an unbounded number of representations for arbitrary content?

https://www.w3.org/TR/vc-data-model/#contexts
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.3
https://www.w3.org/TR/vc-data-model/#types
https://www.w3.org/TR/vc-data-model/#issuer
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.1
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.2
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.3
https://www.w3.org/TR/vc-data-model/#issuance-date
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.5
https://www.w3.org/TR/vc-data-model/#credential-subject
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.2
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.2
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.3
https://www.w3.org/TR/vc-data-model/#identifiers
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.7
https://www.w3.org/TR/vc-data-model/#dfn-holders
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.1
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.2
https://www.w3.org/TR/vc-data-model/#expiration
https://www.rfc-editor.org/rfc/rfc7519.html#section-4.1.4
https://www.w3.org/TR/vc-data-model/#status
https://www.w3.org/TR/vc-data-model/#differences-between-contexts-types-and-credentialschemas

Repeating the mistakes(?) of DID Core?

51

INFRA JSON JWS

Data
Integrity

Data Model Serialization Securing (proof)

CBOR CWS

JSON-LD

RDF

JWT

CWT

CBOR-LD

YAML?

Relaxing the verifiable credential requirements…

52

● v1: JWT + Linked Data Proofs… over JSON-LD.
● v2: JWT + Data Integrity Proofs + (JWS, JWE) ?.. over JSON-LD.

○ https://or13.github.io/draft-osteele-vc-jose/
● v3: … ?

What about mDoc?
What about CBOR?...
What about TOML and YAML?

https://or13.github.io/draft-osteele-vc-jose/

53

RDF
(JSON-LD)

VC-JWT Data Integrity

Data Model

vc-data-model v2.0

vc-sd-jwtvc-jwp

JWS

Producing and Securing Semantic Verifiable Credentials?

CWS

Securing (proof)

AnonCredsDizzy PGP ACDC

Open PRs

54

● Defining JWT production rules
○ https://github.com/w3c/vc-jwt/pull/11

● Relaxing the JWT requirements
○ https://github.com/w3c/vc-jwt/pull/10

● Leveraging IANA and existing registries
○ https://github.com/w3c/vc-jws-2020/pull/24

Images credits to the AI at: https://www.craiyon.com

https://github.com/w3c/vc-jwt/pull/11
https://github.com/w3c/vc-jwt/pull/10
https://github.com/w3c/vc-jws-2020/pull/24
https://www.craiyon.com/

Lunch
(60 mins)

55

Joint Session - APA WG
(APA WG, 60 mins)

56

Streamlining Data Integrity
(Manu Sporny, 60 mins)

57

VCWG
Data Integrity

August 2022 - A proposal for
streamlining crypto suites

Agenda

Agility and proliferation
The Problems

A Solution
Simplification plan

Roadmap
Execution timeline

01

02

03

The Problems
01

The Problem (2020): Crypto Suite Proliferation

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1",
 "https://w3id.org/security/suites/ed25519-2020/v1"
],
 "id": "http://example.edu/credentials/58473",
 "type": ["VerifiableCredential", "AlumniCredential"],
 ...
 "proof": {
 "type": "Ed25519Signature2020",
 "created": "2022-02-25T14:58:42Z",
 "verificationMethod": "https://example.edu/issuers/a#key-1",
 "proofPurpose": "assertionMethod",
 "proofValue": "z3FXQjecWufY46…UAUL5n2Brbx"
 }

New concern: "There are going to be soooo many crypto suites,
and they all have more or less the same properties!"

"Ok, let's be less coupled to the VC data model context and more agile.
Let's move crypto suite definitions into their own JSON-LD Contexts!"

The Problem (2020): Crypto Suite Proliferation
How many crypto suites could there be? Well, there are at least this many today:

● https://w3id.org/security/suites/ed25519-2020/v1
● https://w3id.org/security/suites/x25519-2019/v1
● https://w3id.org/security/suites/merkle-disclosure-2021/v1
● https://w3id.org/security/suites/secp256k1recovery-2020/v1
● https://w3id.org/security/suites/pgp-2021/v1
● https://w3id.org/security/suites/blockchain-2021/v1
● https://w3id.org/security/suites/jws-2020/v1
● https://w3id.org/security/suites/bls12381-2020/v1
● https://w3id.org/security/suites/eip712sig-2021/v1
● https://w3id.org/security/suites/secp256k1-2020/v1
● https://w3id.org/security/suites/secp256k1-2019/v1
● https://w3id.org/security/suites/merkle-2019/v1
● https://w3id.org/security/suites/chained-2021/v1

It's not terrible, and some of those are necessary, but most of them only differ by the crypto suite
type that they define, such as Ed25519Signature2020 or JsonWebSignature2020.

A Solution
02

A Solution
What if we define a base Data Integrity Proof type in the Verifiable Credentials v2

context that works for 80% of the crypto suites that we already have?

Since we only seem to be changing the crypto suite type in most crypto suites, if we
shift that value to be a string, we can greatly reduce crypto suite proliferation.

This solution is backwards-compatible and does not preclude other more advanced
crypto suites.

The Solution: A Backwards-Compatible Example

{
 "@context": [
 "https://www.w3.org/2022/credentials/v2",
 "https://www.w3.org/2022/credentials/examples/v2"
],
 "id": "http://example.edu/credentials/58473",
 "type": ["VerifiableCredential", "AlumniCredential"],
 ...
 "proof": {
 "type": "DataIntegrityProof",
 "cryptosuite": "eddsa-2022", <-- this is now a string value
 "created": "2022-02-25T14:58:42Z",
 "verificationMethod": "https://example.edu/issuers/a#key-1",
 "proofPurpose": "assertionMethod",
 "proofValue": "z3FXQjecWufY46…UAUL5n2Brbx"
 }

Other potential crypto suites: nist-ecdsa-2022, koblitz-ecdsa-2022, rsa-2022, pgp-2022, bbs-2022,
eascdsa-2022, ibsa-2022, jws-2022, recommended-2022, selective-disclosure-2022, postquantum-2022, etc.

Downsides?

Semantic compression with CBOR-LD can't easily compress short, unique strings, so
we become ~10-15 bytes less efficient per encoded signature.

…any other downsides?

The Roadmap
03

The Roadmap

Define v2
DataIntegrityProof

(1 month)

Call for Multiple
Implementations

(6 months)

Demonstrate Implementation and
Test Suite
(3 months)

Candidate Rec by June
2023

1 2 3 4

Future Data Integrity Work (for later discussion)

● The Multikey format
● Recommended, agile crypto suites

Discussion?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Credits
Do you have any questions?

msporny@digitalbazaar.com

https://www.w3.org/2017/vc/WG/

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/
mailto:msporny@digitalbazaar.com
https://www.w3.org/2017/vc/WG/

Break
(15 mins)

72

VC Registries
(Orie Steele, Mike Jones, 60 mins)

73

What are Registries?

Many specifications define extension points
Registries are authoritative listings of items utilizing those extension points
A registry entry typically includes:
● Identifier for the item registered
● Short description of the item registered
● Reference to specification defining the registered item
● Who is authorized to update the registry entry

They may also contain other fields pertinent to the item registered
● Such as a status field

74

Example: IANA JSON Web Signature and Encryption
Algorithms Registry
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
Two registry entries:

75

Algorithm Name Algorithm
Description

Algorithm Usage
Location(s)

JOSE
Implementation
Requirements

Change Controller Reference

ES256 ECDSA using P-256
and SHA-256

alg Recommended+ [IESG] [RFC7518, Section
3.4]

RSA-OAEP-384 RSA-OAEP using
SHA-384 and MGF1
with SHA-384

alg Optional [W3C_Web_Cryptogr
aphy_Working_Grou
p]

[https://www.w3.org
/TR/WebCryptoAPI]

https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
https://www.iana.org/assignments/jose/jose.xhtml#IESG
https://www.iana.org/go/rfc7518
https://www.iana.org/go/rfc7518
https://www.iana.org/assignments/jose/jose.xhtml#W3C_Web_Cryptography_Working_Group
https://www.iana.org/assignments/jose/jose.xhtml#W3C_Web_Cryptography_Working_Group
https://www.iana.org/assignments/jose/jose.xhtml#W3C_Web_Cryptography_Working_Group
https://www.w3.org/TR/WebCryptoAPI
https://www.w3.org/TR/WebCryptoAPI

Why use Registries?

Registries enable interoperable implementations of extensions
● Registries reference authoritative definitions for each extension
● Avoids conflicting definitions for the same identifier
● Developers implement registered extensions using referenced definitions

For instance, enables distinct implementations of “RSA-OAEP-384” to interoperate

76

The IETF/IANA Registry Process

Internet Assigned Numbers Authority (IANA) administers registries for IETF
● Independent of working groups, IESG, etc.

Process:
● An RFC is created establishing a registry (e.g., JWA - RFC 7518)

○ The RFC defines registration criteria
○ The RFC populates the initial registry entries

● The IESG (the IETF area directors) selects Designated Experts
● Another spec requests registry of entries (via IANA Considerations §)

○ Typically can be any stable specification - not just an RFC

● Designated experts review request and approve/reject
● IANA adds new entries to the registry for approved requests

See Guidelines for Writing an IANA Considerations Section in RFCs [RFC 8126] for details
77

https://www.rfc-editor.org/rfc/rfc8126

The W3C Registry Process

W3C enables designation of a specification of being a registry
W3C registry administered by a working group or community group
● No independent organization to objectively administer registries
● No designated experts
● No provision for registry administration beyond the lifetime of the WG or CG

Information above courtesy of Ivan Herman and Wendy Seltzer

For example, DID WG administers the DID Specification Registries
● https://www.w3.org/TR/did-spec-registries/

78

https://www.w3.org/TR/did-spec-registries/

W3C Working Group using IANA Registries

WebAuthn WG chose to use IANA registries
● Created Registries for Web Authentication (WebAuthn) [RFC 8809] to establish

the IANA registries that WebAuthn needs
● Registries at https://www.iana.org/assignments/webauthn/webauthn.xhtml
● Both WebAuthn specs and FIDO2 specs utilize these registries

We could choose to do the same

79

https://www.ietf.org/rfc/rfc8809.html
https://www.iana.org/assignments/webauthn/webauthn.xhtml

Registry Process GitHub Issue

Define policies for VC Extension Registry
● https://github.com/w3c/vc-data-model/issues/909

80

https://github.com/w3c/vc-data-model/issues/909

How do we “extend” verifiable credentials?

81

vc-data-model - https://www.w3.org/2018/credentials

vc-jwt - https://www.iana.org/assignments/jose
vc-data-integrity -
- https://w3id.org/security/suites/jws-2020
- https://w3id.org/security/suites/ed25519-2020

See also:

did - https://www.w3.org/ns/did
activity pub - https://www.w3.org/ns/activitystreams
web of things - http://www.w3.org/ns/td

https://www.w3.org/2018/credentials
https://www.iana.org/assignments/jose
https://w3id.org/security/suites/jws-2020
https://w3id.org/security/suites/ed25519-2020
https://www.w3.org/ns/did
https://www.w3.org/ns/activitystreams
http://www.w3.org/ns/td

Where do we “register” verifiable credential types?

82

- https://w3id.org/traceability
- https://w3id.org/citizenship
- https://w3id.org/vaccination
- https://spec.rebase.xyz
- https://github.com/decentralized-identity/schema-directory

https://w3id.org/traceability
https://w3id.org/citizenship
https://w3id.org/vaccination
https://spec.rebase.xyz
https://github.com/decentralized-identity/schema-directory

What lessons did we learn from did spec registries?

83

- consider splitting registries up by “frequency of updates”.
- consider requiring / not requiring value judgment / impact statements for each registered item.
- consider the cost of registration for “multiple representations”.
- define the registration criteria in such a way that maintainers can operate autonomously

Intro to ACDCs
(Sam Smith, 30 mins)

84

Authentic Chained Data Container
ACDC

Samuel M. Smith Ph.D.
sam@prosapien.com
W3C TPAC 2022/09/15

Verifiable Data Structures (Graphs)
that support

Authenticatable Attestations & Credentials

Resources
Specification Documentation:
 ACDC Internet Draft (ToIP - IETF)

https://github.com/trustoverip/tswg-acdc-specification

ACDC for Muggles
 https://docs.google.com/presentation/d/1mO1EZa9BcjAjWEzw7DWi124uMfyNyDeM3HuajsGNoTo/edit#slide=id.ga411be7e84_0_0

Resources on KERI and ACDC
 https://keri.one/keri-resources/

GLEIF vLEI Credentials (Global Legal Entity Identifier Foundation) ISO LEI specification
https://www.gleif.org/en/vlei/introducing-the-verifiable-lei-vlei

Community: (meetings, open source code, IETF internet drafts)

ACDC Working Group
https://wiki.trustoverip.org/display/HOME/ACDC+%28Authentic+Chained+Data+Container%29+Task+Force

Related Internet Drafts
https://github.com/WebOfTrust/keri

https://github.com/trustoverip/tswg-acdc-specification
https://docs.google.com/presentation/d/1mO1EZa9BcjAjWEzw7DWi124uMfyNyDeM3HuajsGNoTo/edit#slide=id.ga411be7e84_0_0
https://keri.one/keri-resources/
https://www.gleif.org/en/vlei/introducing-the-verifiable-lei-vlei
https://wiki.trustoverip.org/display/HOME/ACDC+%28Authentic+Chained+Data+Container%29+Task+Force
https://github.com/WebOfTrust/keri

Important ACDC Features
ACDC is based on KERI so one gets all the features of KERI for free.

Leverage SAIDs (Self-Addressing Identifiers) and AIDs (Autonomic Identifiers)
Based on white magic (dumb) crypto: digests, and digital signatures.

Leverages CESR (Composable Event Streaming Representation) to resolve the text vs binary tension.
JSON Schema (Type-is-schema, schema are immutable)
Chaining (property graph model)
Graduated Disclosure (compact, partial, private, selective)
Contractually Protected Disclosure (chain-link confidentiality, contingent disclosure)

Protection against data exploitation from both statistical correlation and cryptographic correlation
Decentralized extensibility model
Zero-trust End-Verifiable

Basic ACDCs
Private Compact Variant
{
 "v": "ACDC10JSON00011c_",
 "d": "EAdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",
 "u": "0ABghkDaG7OY1wjaDAE0qHcg",
 "i": "did:keri:EBkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",
 "ri": "did:keri:ECmRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",
 "s": "ED6jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",
 "a": "EEveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "e": "EFH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZIl3MOA",
 "r": "EG71iheqcywJcnjtJtQIYPvAu6DZIl3MORH3dCdoFOLB"
}

Basic ACDC JSON Schema

{
 "$id": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "title": "Compact Private ACDC",
 "description": "Example JSON Schema for a Compact Private ACDC.",
 "credentialType": "CompactPrivateACDCExample",
 "type": "object",
 "required":
 [
 "v",
 "d",
 "u",
 "i",
 "ri",
 "s",
 "a",
 "e",
 "r"
],

 "properties":
 {
 "v":
 {
 "description": "ACDC version string",
 "type": "string"
 },
 "d":
 {
 "description": "ACDC SAID",
 "type": "string"
 },
 "u":
 {
 "description": "ACDC UUID",
 "type": "string"
 },
 "i":
 {
 "description": "Issuer AID",
 "type": "string"
 },
 "ri":
 {
 "description": "credential status registry ID",
 "type": "string"
 },
 "s": {
 "description": "schema SAID",
 "type": "string"
 },
 "a": {
 "description": "attribute SAID",
 "type": "string"
 },
 "e": {
 "description": "edge SAID",
 "type": "string"
 },
 "r": {
 "description": "rule SAID",
 "type": "string"
 }
 },
 "additionalProperties": false
}

Private Compact Variant
{
 "v": "ACDC10JSON00011c_",
 "d": "EAdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",
 "u": "0ABghkDaG7OY1wjaDAE0qHcg",
 "i":

"did:keri:EBkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",
 "ri":

"did:keri:ECmRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",
 "s": "ED6jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",
 "a": "EEveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "e": "EFH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZIl3MOA",
 "r": "EG71iheqcywJcnjtJtQIYPvAu6DZIl3MORH3dCdoFOLB"
}Non-Composed JSON Schema

Uncompacted Private Attribute Section
{
 "a":
 {
 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "u": "0AwjaDAE0qHcgNghkDaG7OY1",
 "i": "did:keri:EpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPmkPreYA",
 "score": 96,
 "name": "Jane Doe"
 }
}

{
 "a":
 {
 "description": "attribute section",
 "oneOf":
 [
 {
 "description": "attribute SAID",
 "type": "string"
 },
 {
 "description": "uncompacted attribute section",
 "type": "object",
 "required":
 [
 "d",
 "u",
 "i",
 "score",
 "name"
],
 "properties":
 {
 "d":
 {
 "description": "attribute SAID",
 "type": "string"
 },
 "u":
 {
 "description": "attribute UUID",
 "type": "string"
 },
 "i":
 {
 "description": "Issuee AID",
 "type": "string"
 },
 "score":
 {
 "description": "test score",
 "type": "integer"
 },
 "name":
 {
 "description": "test taker full name",
 "type": "string"
 }
 },
 "additionalProperties": false,
 }
]
 }
}

Composed JSON Schema

Private Compact Variant
{
 "v": "ACDC10JSON00011c_",
 "d": "EAdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",
 "u": "0ABghkDaG7OY1wjaDAE0qHcg",
 "i":

"did:keri:EBkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",
 "ri":

"did:keri:ECmRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",
 "s": "ED6jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",
 "a": "EEveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "e": "EFH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZIl3MOA",
 "r": "EG71iheqcywJcnjtJtQIYPvAu6DZIl3MORH3dCdoFOLB"
}

Edge Section
{
 "e":
 {
 "d": "EBrzwLIr9Bf7V_NHwY1lkFrn9y2PgveY4-9XgOcLxUdY",
 "boss":
 {
 "d": "EFy2PgveY4-9XgOcLxUdYerzwLIr9Bf7V_NHwY1lkFrn",
 "n": “EIl3MORH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZA”,
 "s": “EFOLe71iheqcywJcnjtJtQIYPvAu6DZAIl3MORH3dCdo”,
 }
 }
}

Nested Edge Section with Operators
{
 "e":
 {
 "d": "EBrzwLIr9Bf7V_NHwY1lkFrn9y2PgveY4-9XgOcLx,UdY",
 "o": "AND",
 "boss":
 {
 "n": “EGl3MORH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZA",
 "o": ["NI2I", "NOT"]
 },
 "baby":
 {
 "n": "EMRH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZAIl3A",
 "o": "I2I"
 },
 "food":
 {
 "o": "OR",
 "plum":
 {
 "n": "EHIYPvAu6DZAIl3AORH3dCdoFOLe71iheqcywJcnjtJt",
 "o": "NI2I"
 },
 "pear":
 {
 "n": "ECtQIYPvAu6DZAIl3AORH3dCdoFOLe71iheqcywJcnjt",
 "o": "NI2I"
 }
 }
 }
}

ACDC Normative Field Labels
ACDC Field Labels

Label Title Description

Top Level Fields
v Version String Regex-able format: "ACDCvvSSSShhhhhh_" that provides protocol type, protocol version, serialization type, serialized size, and terminator.

d Digest (SAID) Self-Addressing IDentifier. Self-referential fully qualified (agile) cryptographic digest of enclosing map in CESR format:
"EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM"

i Issuer Identifier (AID) Autonomic IDentifier whose control authority is established via KERI verifiable key state in CESR format:
"EAkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM"

u UUID Random Universally Unique IDentifier as fully qualified high entropy pseudo-random string, a salty nonce. Protection from rainbow table attack on private variants in CESR format:
"0ABghkDaG7OY1wjaDAE0qHcg"

ri Registry Identifier Issuance and/or revocation, transfer, or retraction registry identifier, cryptographically derived from Issuer Identifier (AID-ish) in CESR format:
"ECmRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt"

s Schema Either the SAID in CESR format block in CESR format or the block itself: "ED6jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A"

a Attribute Either the SAID of a block of attributes in CESR format or the block itself in CESR format: "EEveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY"

A Attribute Aggregate Either the Aggregate of a selectively disclosable block of attributes in CESR format or the block itself in CESR format:
"EHveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY"

e Edge Either the SAID of a block in CESR format of edges or the block itself in CESR format:

r Rule Either the SAID a block of rules in CESR format or the block itself.

Other Fields
d Digest (SAID) Self-Addressing IDentifier. Self-referential fully qualified (agile) cryptographic digest of enclosing map in CESR format:

"EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM"

i Identifier (AID) Autonomic IDentifier context dependent whose control authority is established via KERI verifiable key state in CESR format, such as, Issuee Identifier,:
"EAkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM"

u UUID Random Universally Unique IDentifier as fully qualified high entropy pseudo-random string, a salty nonce. Protection from rainbow table attack on private variants in CESR format:
"0ABghkDaG7OY1wjaDAE0qHcg"

n Node SAID of another ACDC in CESR format as the terminating point (vertex) of a directed edge that connects the encapsulating ACDC node to the specified ACDC as a distributed
property graph (PG) fragment:

o Operator Either unary operator on edge or m-ary operator on edge-group in edge section. Enables expressing of edge logic on edge subgraph.

w Weight Edge weight property that enables default property for directed weighted edges and operators on directed weighted edges.

l Legal Language Text of Ricardian contract clause.

Big Picture: What is an ACDC?
• Decentralizable distributed verifiable data structure that is structurally constrained by

immutable but composable JSON Schema.
• Each ACDC is universally uniquely referenced by its SAID.
• Authenticatable decentralizable distributed graph fragment that may be communicated

securely.
• Graph fragments use SAIDs to (hash-chain) together without any expansion needed.
• The composition of graph fragments is an authenticatable verifiable graph data structure,

i.e. a chained set of ACDCs (zero-trust end-verifiable security model)
• Verifiable data structures all the way down

Chained ACDCs (graphs) Enable
Provenanced chains-of-custody of decentralizable authenticatable data attestations

Traceable data for data supply chains

Provenanced chains-of-authority for decentralizable authenticatable credentials

 Verifiable delegated entitlements or authorizations

GLEIF vLEI Credential Example
Qualified vLEI Issuer (QVI) Credential

Legal Entity (LE) Credential

Engagement Context Role (ECR) Credential

Qualified vLEI Issuer (QVI) Credential

Legal Entity (LE) Credential

Official Organizational Role Authorization (OOR-AuthZ) Credential

Official Organizational Role (OOR) Credential

Anyone in the chain-of-authority can revoke the credential issued-by them.
This breaks the chain and thereby may invalidate any authorizations or
attestations that are chained from their credential.

GLEIF vLEI Authorized Attestation Example
Qualified vLEI Issuer (QVI) Credential

Legal Entity (LE) Credential

Official Organizational Role Authorization (OOR-AuthZ) Credential

Official Organizational Role (OOR) Credential

Verifiable IXBRL Report Attestation (ViRA)

Anyone in the chain-of-authority can revoke the credential issued-by
them. This breaks the chain and thereby may invalidate any
authorizations or attestations that are chained from their credential.

GLEIF vLEI Credential Example: Schema Edge OOR-Auth
"e": {

 "oneOf": [

 {

 "description": "edge block SAID",

 "type": "string"

 },
 {

 "description": "edges block",

 "properties": {

 "d": {

 "description": "said of edges block",

 "type": "string"

 },

 “auth": {

 "description": "chain to Auth vLEI credential from legal entity",

 "properties": {

 "n": {

 "type": "string"

 },

 "s": {

 "type": "string",

 "description": "SAID of required schema of the credential pointed to by this
node",

 "const": "EDpuiVPt4_sa1pShx6vOCnseru1edVPeNvRaQm6HrmMI"

 },

 “o": {

 "type": "string",

 "description": "operator indicating this node is not the issuer",

 "const": "I2I"

 }

 },

 "additionalProperties": false,

 "required": [

 "n",

 "s",

 "o"

],

 "type": "object"

 }

 },

 "additionalProperties": false,

 "required": [

 "d",

 "auth"

],

 "type": "object"

 }

]

 },

Append-to-Extend
Append-only verifiable data structures have strong security properties that simplify end-verifiability & foster decentralization.

Append-only provides permission-less extensibility by downstream issuers, presenters, and/or verifiers

Each ACDC has a universally-unique content-based identifier with a universally-unique content-based schema identifier.

Fully decentralized name-spacing.

Custom fields are appended via chaining via one or more custom ACDCs defined by custom schema (type-is-schema).

No need for centralized permissioned name-space registries to resolve name-space collisions.

The purposes of a registry now become merely schema discovery or schema blessing for a given context or ecosystem.

The reach of the registry is tuned to the reach of desired interoperability by the ecosystem participants.

Human meaningful labels on SAIDs are local context only.

Versioning is simplified because edges still verify if new schema are backwards compatible. (persistent data structure model)

Custom Fields
Custom Schema

Extended
Credential Chain

Custom Fields
Custom Schema

Extended
Credential Graph

Pre-existing Fields
and Schema

Pre-existing Fields
and Schema

ACDC Summary
Push the functionality envelope of “verifiable credentials” using minimally sufficient means tooling.

Future looking features:

 SAIDS (agile self-referential content identifiers)

Graduated Disclosure

Contractually Protected Disclosure

Chaining and Delegation

Permissionless Extensibility

Fully Decentralizable Zero-Trust via End-Verifiable Data Structures

Multiple Serializations

Scalability (text and binary streaming support) via CESR self-framing composable primitives and groups of
primitives

Minimally Sufficient Means

Dumb Crypto (Digests and Digital Signatures)

JSON and JSON Schema (composability features)

 Extensible Layered Model

Interoperability Through Layering
The ACDC/KERI stack is opinionated about security with very precisely defined
properties.

Fully decentralizable, distributable, zero-trust, end-verifiable, over-the-wire
mechanisms for authenticatable extensible verifiable data structures (append-only
hash chained signed)

Mashups of security mechanisms that sort of provide those security properties are
antithetical to the ACDC/KERI stack ethos.

Interoperable security first, then interoperable semantics for upper layers of the
application stack.

ACDCs could be used as a secure conveyance for other representations that appear
as an opaque payload in the ACDC.

ACDCs could be a blessed trust spanning layer for W3C VCs for those who want its
security properties.

ACDC Community Interoperability Ask
Enable one-to-one mappings between ACDCs and other data models and
representations without forcing ACDCs to use syntax from other data models and
representations.

ACDCs use JSON-Schema with JSON, CBOR, MGPK, and CESR serializations, compact
labels & CESR Primitives.

CESR primitives can be mapped one-to-one to JWT primitives.

ACDC normative field labels can be mapped one-to-one to their equivalents in other
representations.

Allow JSON Schema (ACDCs need composition operators from JSON Schema).

Not asking to replace JSON-LD but be allowed to co-exist with JSON-LD.

JSON is well just JSON. Please no MUST have non-JSON artifacts (@context).

Questions?

Least Disclosure
Principle of Least Disclosure
ACDCs are designed to satisfy the principle of least disclosure.
The system should disclose only the minimum amount of information about a given party needed to facilitate a
transaction and no more.
Partial Disclosure
 Compactness
 Chain-link Confidentiality
Selective Disclosure
 Unbundling
 Bulk-issuance

Mechanisms:

Compact via SAID over content
Blinded via SAID over content with embedded UUID (salty-nonce)
Unbundled via Aggregate of bundle of blinded content
Uncorrelatable via bulk issued blinded content

Three Party Exploitation Model
First-Party = Discloser of data.
Second-Party = Disclosee of data received from First Party (Discloser).
Third-Party = Observer of data disclosed by First Party (Discloser) to Second Party (Disclosee).

Second-Party (Disclosee) Exploitation
implicit permissioned correlation.
 no contractual restrictions on the use of disclosed data.
explicit permissioned correlation.
 use as permitted by contract
explicit unpermissioned correlation with other second parties or third parties.
 malicious use in violation of contract

Third-Party (Observer) Exploitation
implicit permissioned correlation.
 no contractual restrictions on use of observed data.
explicit unpermissioned correlation via collusion with second parties.
 malicious use in violation of second party contract

Contractually Protected Disclosure
Ricardian Contracts:
https://en.wikipedia.org/wiki/Ricardian_contract

Chain-link Confidentiality
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
2045818

Consent, Waiver, Terms-of-use, Remuneration, etc.

https://en.wikipedia.org/wiki/Ricardian_contract
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2045818
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2045818

Chain-Link Confidentiality

A chain-link confidentiality regime contractually links the disclosure of information to obligations to protect that
information as the information moves downstream.
The system focuses on the relationships not only between the discloser of information and the initial recipient but
also between the initial recipient and subsequent recipients.
Through the use of contracts, this approach links recipients of information as in a chain, with each subsequent
recipient bound by the same obligation to protect the information.
These chain contracts contain at least three kinds of terms:
1) obligations and restrictions on the use of the disclosed information;
2) requirements to bind future recipients to the same obligations and restrictions; and
3) requirements to perpetuate the contractual chain.

This approach creates a system for the permissible dissemination of information.
It protects Disclosers by ensuring that the recipient’s obligation to safeguard information is extended to third
parties.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2045818

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2045818

Contractual Exchange

Discloser provides a non-repudiable Offer with verifiable metadata (sufficient partial disclosure) which includes
any terms or restrictions on use.
Disclosee verifies Offer against composed schema and metadata adherence to desired data.
Disclosee provides non-repudiable Accept of terms that are contingent on compliant disclosure.
Discloser provides non-repudiable Disclosure with sufficient compliant detail.
Disclosee verifies Disclosure using decomposed schema and adherence of disclosed data to Offer.

Disclosee may now engage in permissioned use and carries liability as a deterrent against unpermissioned use.

IPEX: Issuance & Presentation Exchange protocol
Presentation Exchange:

An exchange that provides disclosure of one or more ACDCs between a Discloser and a Disclosee.

A presentation exchange is the process by which authenticatable information may be exchanged between two parties, namely, the Discloser and Disclosee.

ACDC:

Type of data as issuance concretely defined by the ACDC specification.

Discloser:

An ACDC in a disclosure is disclosed by the Discloser.

Disclosee:

An ACDC in a disclosure is disclosed to the Disclosee.

Issuer:

An ACDC is issued by the Issuer. The Issuer identifier (AID) appears in the top level of the ACDC.

Issuee:

An ACDC is optionally issued to the Issuee. When present, the Issuee identifier (AID) appears at the top level of the attribute section or in the attribute list at the top level of the
attribute aggregate section of the ACDC.

Each ACDC MUST have an Issuer and MAY have an Issuee

IPEX: Issuance & Presentation Exchange protocol
The set of ACDCs so disclosed in a presentation exchange MUST be chained.

This set of chained ACDCs define a directed acyclic graph (DAG) that MUST have at least one vertex and MAY have
zero or more edges pointing to other vertices.

Each ACDC itself defines a graph fragment consisting of one vertex and zero or more directed edges.

Each directed edge contained in an ACDC points to a vertex contained in another ACDC. The ACDC that contains

the origin vertex of the DAG is called the origin or primary ACDC of the presentation exchange.

IPEX: Issuance & Presentation Exchange protocol
The disclosure performed by a presentation exchange MAY be graduated and/or MAY be contractually protected.

Issuance Exchange:

A special case of a presentation exchange where the Discloser is the Issuer of the origin (Primary) ACDC of

the DAG formed by the set of chained ACDCs so disclosed.

In an issuance exchange, when the origin ACDC has an Issuee, the Disclosee MAY also be the origin

(Primary) ACDC’s Issuee.

The Issuer MUST provide a signature on the SAID of the most compact variant defined by the schema of the ACDC.
When more than one variant is defined by the schema via the oneOf composition operator for any top-level field,
the most compact variant MUST appear as the first entry in the oneOf list. When only one variant of each top-level
field is defined by the schema, that variant is therefore by definition the most compact variant.

ACDC analogy to Merkle Tree
The different variants of an ACDC form a hash tree (using SAIDs) that is analogous to a Merkle Tree.

Signing the top-level SAID of the compact version of the ACDC is equivalent to signing the Merkle Root of a Merkle
Tree.

Different variants of an ACDC (SADs with SAIDs) correspond to different paths through a Merkle tree.

The process of verifying that a SAD via its SAID of a section is included in a schema authorized variant down from
the top-level SAID is equivalent to a Merkle Tree proof of inclusion along a path in the Merkel Tree down from its
Root.

This allows a single signature to provide proof of Issuance of the presentation of any schema authorized variants of
the ACDC.

Proof-of-Issuance Proof-of-Disclosure
An Issuer MAY provide signatures of the SAIDS of other variants, as well as signatures of the SADs of other variants.

Proof of issuance is provided by disclosing the SAID of the most compact variant and a reference to the SEAL
anchoring that SAID in either the KEL or TEL of the issuer.

Proof of disclosure is provided by disclosing the SAD of the most compact variant and then recursively disclosing
the nested SADs of each of the top level sections of the most compact variant as needed for the promised
disclosure.

Thus for any and all disclosed variants of an ACDC, the Disclosee need only verify the same proof of issuance as
defined above and may need to verify the specific proof of disclosure for the given disclosed variant as defined
above.

Append-to-Extend
Append-only verifiable data structures have strong security properties

Append-only simplifies end-verification

Append-only provides permission-less extensibility

Interoperable permissioned name-space registries are no longer needed with append-to-extend

Chain-Link Confidentiality
Disclosures via Presentations Exchanges may be contractually protected by Chain-Link Confidentiality (i.e a
Chain-Link Confidential disclosure).

The chaining in this case is different from the chaining described above between Issuances in a DAG of chained
Issuances. Chain-link confidentiality, in contrast, chains together a sequence of Disclosees.

Each Disclosee in the sequence in turn is the Discloser to the next Disclosee.

The terms-of-use of the original disclosure as applied to the original Disclosee MUST be applied by each
subsequent Discloser to each subsequent Disclosee via each of the subsequent disclosures (presentation
exchanges).

These terms-of-use typically constrain disclosure to only approved parties, i.e. imbue the chain of disclosures with
some degree of confidentiality. These terms-of-use are meant to contractually protect the data rights of the original
Issuer or Issuee of the data being disclosed.

Endorsers vs. Issuers
The ACDC Issuer is the securely attributable source of the ACDC. (Secure Attribution) that is designated in the Issuer field of
the ACDC. The Issuer AID may be controlled by by set of controllers given multiple key-pairs with a threshold. Proof of
Issuance requires the threshold be met.

An ACDC Endorser merely lends credibility (reputation) to an ACDC by signing the ACDC. The Endorser has its own AID with
its own set set of controllers. The Endorser AID is not included in the ACDC.

Essentially a disclosure by the Discloser of an ACDC where the discloser is not the Issuer makes the Discloser by virtue of
signing the disclosure, a type of Endorser. However in such a disclosure the purpose of the signing by the Discloser may be
more than an endorsement such as to make a commitment with respect to a contractually protected disclosure.

When the Discloser is the Issuee then the signing of the Disclosure is not merely an endorsement but provides a temporal
proof of control over the Issuee AID and could satisfy a “live” presentation requirement by the Disclosee.

Uncompacted Public Attribute Section

{
 "a":
 {
 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "i": "did:keri:EpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPmkPreYA",
 "score": 96,
 "name": "Jane Doe"
 }
}

{
 "a":
 {
 "description": "attribute section",
 "oneOf":
 [
 {
 "description": "attribute SAID",
 "type": "string"
 },
 {
 "description": "uncompacted attribute section",
 "type": "object",
 "required":
 [
 "d",
 "i",
 "score",
 "name"
],
 "properties":
 {
 "d":
 {
 "description": "attribute SAID",
 "type": "string"
 },
 "i":
 {
 "description": "Issuee AID",
 "type": "string"
 },
 "score":
 {
 "description": "test score",
 "type": "integer"
 },
 "name":
 {
 "description": "test taker full name",
 "type": "string"
 }
 },
 "additionalProperties": false
 }
]
 }
}

Composed JSON Schema

Public Compact Variant
{
 "v": "ACDC10JSON00011c_",
 "d": "EAdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",
 "i":

"did:keri:EBkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",
 "ri":

"did:keri:ECmRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",
 "s": "ED6jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",
 "a": "EEveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "e": "EFH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZIl3MOA",
 "r": "EG71iheqcywJcnjtJtQIYPvAu6DZIl3MORH3dCdoFOLB",
}

Attribute Section
{
 "a":
 {
 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",
 "u": "0AwjaDAE0qHcgNghkDaG7OY1",
 "i": "did:keri:EpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPmkPreYA",
 "score": 96,
 "name": "Jane Doe"
 }
}

Edge Section
{
 "e":
 {
 "d": "EerzwLIr9Bf7V_NHwY1lkFrn9y2PgveY4-9XgOcLxUdY",
 "boss":
 {
 "d": "E9y2PgveY4-9XgOcLxUdYerzwLIr9Bf7V_NHwY1lkFrn",
 "n": "EIl3MORH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZA",
 "w": "high"
 }
 }
}

Latent Accountability

Escrow
 KYC
 Contingent Enforcement and Recourse
Bonding
Bounties

Example Use Cases

PAC Theorem

A conversation may be two of the three: private, authentic, and confidential
to the same degree, but not all three at the same degree.

Trade-offs
required!

Definitions
Private:

The parties to a conversation are only known by the parties to that conversation.
Authentic:

The origin and content of any statement by a party to a conversation is provable to any other party.
Confidential:
 All statements in a conversation are only known by the parties to that conversation.

Privacy:
about control over the disclosure of who participated is in the conversation (non-content meta-data)

Authenticity:
about proving who said what in the conversation (secure attribution)

Confidentiality:
about control over the disclosure of what was said in the conversation (content data)

Relatively weak legal protection for non-content (supoena)
Relatively strong legal protection for content (search warrant)

https://www.lawfareblog.com/relative-vs-absolute-approaches-contentmetadata-li
ne
https://www.pogo.org/analysis/2019/06/the-history-and-future-of-mass-metadata-surveillance/

https://www.lawfareblog.com/relative-vs-absolute-approaches-contentmetadata-line
https://www.lawfareblog.com/relative-vs-absolute-approaches-contentmetadata-line

Proving Authenticity
Non-repudiable Proof:
 a statement's author cannot successfully dispute its authorship

Asymmetric key-pair digital signature

Repudiable Proof:
 a statement's author can successfully dispute its authorship

DH shared symmetric key-pair encryption (auth crypt)
Shared secret makes every verifier a potential forger

Trade-offs
Private:

The parties to a conversation are only known by the parties to that conversation.

Authentic:
The origin and content of any statement by a party to a conversation is provable to any other party.

Confidential:
 All statements in a conversation are only known by the parties to that conversation.

Non-repudiation means any party to conversation can proof to any other party exactly what was said by
whom.
This means that technologically there is no way to prevent disclosure by any party to some third party.
We can incentivize confidentiality by imposing a liability on the parties to the disclosure set before
disclosure occurs.
Enforcement of that liability will usually necessarily violate privacy but not confidentiality.
Real world value often requires transitivity.
Transitive value transfer will violate complete privacy.

Layering
A communication system can layer the different properties in different orders thereby imposing
a priority on each property.

Authenticity
Confidentiality
Privacy

Why Solve the Secure Attribution Problem
Secure attribution of any communication to its source

Authentic communication

Authentic interactions based on secure attribution of all statements by participants:

Data Provenance (Verifiable authenticity of data

Data Supply Chains (Authentic data economy)

Non-Repudiable Authenticity

Zo
e

Su
e

Signed with
private key

Verified with
public key

Non-repudiable authenticity is zero-trust

Repudiable Authenticity

Zo
e

Su
e

Encrypted with
shared private key

Decrypted with
shared private key

Repudiable authenticity requires trust (is not zero-trust)

Non-Repudiable Authenticity Is Legally Binding.
Repudiable Authenticity Is Not Legally Binding.

Zo
e

Su
e

Encrypted with
shared private

key

Decrypted with
shared private

key

Non-Repudiable authenticity has recourse.
Best fits current business and regulatory eco-systems.

Zero Knowledge Proof?

Zo
e

Su
e

ZK
Pone party (the prover) can prove to another party (the verifier) that a given statement is true,

without conveying any information apart from the fact that the statement is indeed true.

ZKPoK (selective disclosure)
Zoe proves to Sue that a given statement is true without enabling Sue to prove to a third party that the
statement is true and protecting Alice from Sue as a forger.
(plausible deniability, repudiability with forgery protection)

ZKP (selective disclosure)
Zoe proves an element of a bundle of information to Sue without disclosing any other element of the bundle
(non-repudiable or repudiable but if repudiable may not be protected from forgery)
Other “non-ZKP” like methods can perform a non-repudiable selective disclosure

Authentic ZKP: Is the information proven in a repudiable or non-repudiable
manner?

Privacy?

Stron
g

Wea
k

Wea
k

https://w3c-ccg.github.io/did-spec/

Strong Privacy

Weak Privacy

Definition: un-correlated interactions over unbounded time and space.

Super aggregators and state actors have effectively unlimited storage and
compute capacity. Eventually all disclosed data will be at least statistically
correlatable.

Definition: un-correlated interactions over bounded time and space.

when the cost of correlation exceeds the value of correlation the data will be
un-correlated.

Operating Regimes
Po
lit
ic
al

Economic

Ill
eg
iti
m
at
e

Le
gi
tim

at
e

Illegitimate Legitimate

Regulation
and/or

Legally Enforced Contracts

Criminally Enforced Contracts
?

Hide
and

Bribe

Hide
or

Bribe

Economics of Correlator

Economics of Correlator: Value Extraction

Economics of De-correlator

Economics of De-correlator: Value Extraction

Freedom

Freedom from … Freedom to …
balanced

exploitation (commercial)
intimidation (political)

extract value(commercial)

build community (political)censorship (political)
build relationships (social)

possibility of erasure = possibility of censorship
anonymity = loss-of-value from attribution

fairness = loss of privacy from attribution

Trust Balance

Cryptographi
c

Behaviora
l

Unified Identifier Model
AID: Autonomic Identifier (primary)

self-managing self-certifying identifier with cryptographic root of trust

secure, decentralized, portable, universally unique

LID: Legitimized Human Meaningful Identifier (secondary)

 legitimized within trust domain of given AID by a verifiable authorization from AID
controller

 authorization is verifiable to the root-of-trust of AID

Forms AID|LID couplet within trust domain of AID

AID|LID Couplet

625.127C125r

EXq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148|625.127C125r

Background

BADA (Best Available Data Acceptance) Policy
Authentic Data:
 Two primary attacks:

Replay attack:
 Mitigation: Monotonicity

Deletion attack:
 Mitigation: Redundancy

Replay Monotonicity:
Interactive:

Nonce
Non-interactive:

Memory (sequence number, date-time stamp, nullification)
More scalable

RUN off the CRUD
Client-Server API or Peer-to-Peer.
Create, Read, Update, Delete (CRUD)
Read, Update, Nullify (RUN)
Decentralized control means server never creates only client. Client (Peer) updates server (other Peer) always
for data sourced by Client (Peer). So no Create.
Non-interactive monotonicity means we can’t ever delete.
So no Delete. We must Nullify instead. Nullify is a special type of Update.
Ways to Nullify:

null value
flag indicating nullified

Rules for Update : (anchored to key state in KEL)
 Accept if no prior record.

Accept if anchor is later than prior record.
Rules for Update: (signed by keys given by key state in KEL, ephemeral identifiers have constant key state)
 Accept if no prior record.

Accept if key state is later than prior record.
Accept if key state is the same and date-time stamp is later than prior record.

Toolkits

https://w3c-ccg.github.io/did-spec/

Only have one set of tools for
truly secure data control!

Cryptographic one-way functions …

hashes, ECC scalar multiplication…
digital signatures, ZKPs …

Entropy Derived
Tools

its

bits cryptographic
pseudonymous identifiers

control correlation

Grey
Colorpicker

Slide Deck
Pages

Tripartite Authentic Data (VC) Model

Issuer: Source of the VC. Creates (issues) and signs VC
Holder: Usually the target of the VC. The holder is the “issuee” that receives the VC and holds it for its own use.
Verifier: Verifies the signatures on the VC and authenticates the holder at the time of presentation

The issuer and target each have a DID (decentralized identifier).
The DIDs are used to look-up the public key(s) needed to verify signatures.

Grey
Colorpicker

Slide Deck
Pages

Tripartite Authentic Data (VC) Model with VDR

Verifiable Data Registry (VDR) enables decentralized but interoperable discovery and verification of authoritative key
pairs for DIDs in order to verify the signatures on VCs. A VDR may also provide other information such as data schema
or revocation state of a VC.

Each controller of a DID registers that DID on a VDR so that a verifier can determine the authoritative key pairs for any
signatures.

We call this determination, establishment of control authority over a DID.

Tripartite without VDR

Bipartite Model

Joint Delegator-Service Model

Split Delegator-Service Model

Closed Loop Joint Model

Closed Loop Split Model

Open Loop Split Model

Grey
Colorpicker

Slide Deck
Pages

KERI VDRs vs. Shared Ledger VDRs
Most DID methods use a shared ledger (commonly referred to as a blockchain) for their VDR. Typically, in order to interoperate all
participants must use the same shared ledger or support multiple different DID methods. There are currently over 70 DID methods. Instead
GLEIF has chosen to use KERI based DID methods. KERI stands for Key Event Receipt Infrastructure. KERI based VDRs are ledger
independent, i.e. not locked to a given ledger. This provides a path for greater interoperability without forcing participants in the vLEI
ecosystem to use the same shared ledger.

A KERI VDR is called a key event log (KEL). It is a cryptographically verifiable signed hash chained data structure, a special class of verifiable
data structure. Each KERI based identifier has its own dedicated KEL. The purpose of the KEL is to provide proof of the establishment of
control authority over an identifier. This provides cryptographically verifiable proof of the current set of authoritative keys for the identifier.
KERI identifiers are long cryptographic pseudo random strings of characters. They are self-certifying and self-managing.

A KERI identifier is abstractly called an Autonomic Identifier (AID) because it is self-certifying and self-managing. A KERI DID is one concrete
implementation of a KERI AID. The same KERI prefix may control multiple different DIDs as long as they share the same prefix.

did:keri:prefix[:options][/path][?query][#fragme
nt]

did:keri:ENqFtH6_cfDg8riLZ-GDvDaCKVn6clOJa7ZXXVXSW
pRY

Grey
Colorpicker

Slide Deck
Pages

KERI Identifier KEL VDR Controls Verifiable Credential Registry TEL VDR
A KERI KEL for a given identifier provides proof of authoritative key state at each event. The events are ordered. This ordering may be used to
order transactions on some other VDR such as a Verifiable Credential Registry by attaching anchoring seals to KEL events.
Seals include cryptographic digest of external transaction data.
A seal binds the key-state of the anchoring event to the transaction event data anchored by the seal.
The set of transaction events that determine the external registry state form a log called a Transaction Event Log (TEL).
Transactions are signed with the authoritative keys determined by the key state in the KEL with the transaction seal.
The transactions likewise contain a reference seal back to the key event authorizing the transaction.
This setup enables a KEL to control a TEL for any purpose. This includes what are commonly called “smart contracts”.
The TEL provides a cryptographic proof of registry state by reference to the corresponding controlling KEL.
Any validator may therefore cryptographically verify the authoritative state of the registry.
In the case of the vLEI the associated TEL controls a vLEI issuance and revocation registry.

Grey
Colorpicker

Slide Deck
Pages

Registry with Separable VC Issuance-Revocation TELs
Each VC may be uniquely identified with a SAID.
Each VC also has a uniquely identified issuer using a KERI AID.
This combination enables a separable registry of VC issuance-revocation state.
The state may employ a cryptographic aggregation (such as an accumulator) for enhanced privacy

Each level of delegation forms a nested trust domain that is protected by the level above.
This increases ultimate security while enabling higher performance event issuance in lower layers.

The Level 1 entity AID provides the root-of-trust for the whole ecosystem. This enables secure
decentralized interoperability.

Each trust domain may make delegations of both identifiers and verifiable credentials to a subordinate
trust domain. These delegations provide revocable authorizations.

Delegations may be granular and include
authorizations of individual employees.
This provides specific scalable but
non-repudiable accountability of all
participants in the eco-system.

Grey
Colorpicker

Slide Deck
Pages

Identifier System Security

Authentic transmission of data may be verified using an identity system security overlay.
This overlay maps cryptographic key-pairs to identifiers.
When those identifiers are self-certifying they are derived via cryptographic one-way functions from the key
pairs.
This provides a self-certifying identifier with a cryptographic root-of-trust.
A key event log (KEL) provide support for secure key rotation without changing the identifier.
Message authenticity is provided by verifying signatures to the authoritative keys pairs for the identifier included
in the message.

The overlay’s security is contingent
on the mapping’s security.

Self-Certifying Identifiers:
Girault, M., “Self-certified public keys,” EUROCRYPT 1991: Advances in Cryptology, pp. 490-497, 1991

https://link.springer.com/content/pdf/10.1007%2F3-540-46416-6_42.pdf
Mazieres, D. and Kaashoek, M. F., “Escaping the Evils of Centralized Control with self-certifying pathnames,” MIT Laboratory for Computer Science,

http://www.sigops.org/ew-history/1998/papers/mazieres.ps
Kaminsky, M. and Banks, E., “SFS-HTTP: Securing the Web with Self-Certifying URLs,” MIT, 1999

https://pdos.csail.mit.edu/~kaminsky/sfs-http.ps
Mazieres, D., “Self-certifying File System,” MIT Ph.D. Dissertation, 2000/06/01

https://pdos.csail.mit.edu/~ericp/doc/sfs-thesis.ps
TCG, “Implicit Identity Based Device Attestation,” Trusted Computing Group, vol. Version 1.0, 2018/03/05

https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf
Autonomic Identifiers:
Smith, S. M., “Open Reputation Framework,” vol. Version 1.2, 2015/05/13

https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/open-reputation-low-level-whitepaper.pdf
Smith, S. M. and Khovratovich, D., “Identity System Essentials,” 2016/03/29

https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/Identity-System-Essentials.pdf
Smith, S. M., “Decentralized Autonomic Data (DAD) and the three R’s of Key Management,” Rebooting the Web of Trust RWOT 6, Spring 2018

https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/DecentralizedAutonomicData.pdf
Smith, S. M., “Key Event Receipt Infrastructure (KERI) Design and Build”, arXiv, 2019/07/03 revised 2021

https://arxiv.org/abs/1907.02143
Smith, S. M., “Key Event Receipt Infrastructure (KERI) Design”, 2020/04/22

https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
Stocker, C., Smith, S. and Caballero, J., “Quantum Secure DIDs,” RWOT10, 2020/07/09

https://github.com/WebOfTrustInfo/rwot10-buenosaires/blob/master/final-documents/quantum-secure-dids.pdf
Smith, S. M., “Universal Identifier Theory”, 2020/10/23
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/IdentifierTheory_web.pdf

Certificate Transparency:
Laurie, B., “Certificate Transparency: Public, verifiable, append-only logs,” ACMQueue, vol. Vol 12, Issue 9, 2014/09/08

https://queue.acm.org/detail.cfm?id=2668154
Google, “Certificate Transparency,”

http://www.certificate-transparency.org/home
Laurie, B. and Kasper, E., “Revocation Transparency,”

https://www.links.org/files/RevocationTransparency.pdf

Background References

https://link.springer.com/content/pdf/10.1007%2F3-540-46416-6_42.pdf
https://pdos.csail.mit.edu/~ericp/doc/sfs-thesis.ps
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/Identity-System-Essentials.pdf
https://arxiv.org/abs/1907.02143
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
https://github.com/WebOfTrustInfo/rwot10-buenosaires/blob/master/final-documents/quantum-secure-dids.pdf
https://queue.acm.org/detail.cfm?id=2668154
http://www.certificate-transparency.org/home

Internet Safety with KERI

Samuel M. Smith Ph.D.
IIW 20201 B

sam@keri.one
https://keri.one

Invasion Percolation Discovery
OOBIs (Out-Of-Band-Introductions)

Spanning Trust Layer

mailto:sam@keri.one
https://keri.one

User Permissioned (web-of-trust) Percolated Discovery
Invasion-Percolation Graph Theory for attack resistance

https://en.wikipedia.org/wiki/Percolation_theory

https://en.wikipedia.org/wiki/First_passage_percolation

http://www.physics.purdue.edu/flow/MMproject/Wilkinson1983.pdf

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.018701

The Square and the Tower: Networks and Power. Niall Ferguson 2018

Percolation Theory uses graph theory to model the rate and extent of information flow by

pair-wise or n-wise sharing of information. No global lookup. Weak and Strong Links etc.

If network enables percolation and is spanned then all information is eventually available everywhere

Primary Result (Invasion-Percolation):

Eventually information fills (invades) all honest nodes in the graph whenever “capillary force“ (authenticity) is greater for good information over
bad information.

User permissioning means honest nodes self-isolate dishonest-nodes.

Each honest user forms identity graph of other honest nodes it interacts with that forms web-of-trust anchoring percolation discovery network.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.018701

User Permission Percolated Discovery
Insight: Need-to-know just-in-time discovery (NTK-JIT)

Issuer may provide upon demand at issuance all information an Issuee (Holder) needs to

verify the issuance. Now Holder has discovered by percolation what it needs-to-know (NTK) just-in-time (JTK) to
verify.

Holder now may provide upon demand at presentation all information any verifier needs to to verify the
presentation. Now verifier has discovered by percolation what it needs-to-know (NTK) just-in-time (JTK) to verify.
This includes all the percolated discovery from Issuer to Holder.

Likewise the Verifier may imbue on a NTK-JIT basis any subsequent use of that information with all the percolated
discovery information it already received from the Holder plus any other information the Verifier needs to
contribute.

KERI End-Verifiability means zero-trust in the percolation path.

Discovery becomes an availability not a security problem.

User Permissioned Percolated Discovery
SPED (Speedy Percolated Endpoint Discovery)

Privacy preserving or public discovery as needed

User permissioned & totally decentralized

Replaces or Augments User Permissioned DHT

Watcher Network may provide super Nodes for aggregated discovery if desirable

End-to-end verifiability means any discovery source is as good as any other.

End verifiable “truth” is still true from whatever source it may have come.

This enables secure bootstrap of discovery from any source on a NTK JIT basis.

No need for a globally trusted discovery bootstrap resolver

Zero Trust Percolated Discovery
Primary Discovery Data are Endpoints of KERI Components:

Controllers, Agents, Backers (Witness, Registrar), Watchers, Jurors, Judges, Forwarders

Endpoint is URL: IP Scheme, Host, Port, Path etc

Data Model for Securely Managing EndPoint Data

Controller (Principal AID)

Authorizes a Component to act as Player in Role

Player is AID of Component Controller

Role is purpose or function such as Watcher

Zero Trust Data as Authorization in context of KERI KeyState

ACDC Issue Revoke Reissue model

RUN model (Read, Update, Nullify)

Anchored or Signed with replay and deletion attack protection

Safe Internet Use
Minimally Sufficient Means

Leverage existing internet but safely, with end-verifiability

Internet DNS/CA is out-of-band w.r.t. KERI security

Use DSN/CA for out-of-band introductions w.r.t. KERI only, not authentication

Use IP addresses (128.187.16.184) for communication

OOBI (Out-Of-Band-Introduction)
How to use DNS safely! Vacuuous discovery of service endpoints.

Basic
https://hackmd.io/MxTAIBQTRkWU4-w140tNuA

OOBI = Url and AID Simple enough for QR Code
http://8.8.5.6:8080/oobi/EaU6JR2nmwyZ-i0d8JZAoTNZH3ULvYAfSVPzhzS6b5CM

Variant: Use query string to label endpoint to be discovered.
http://8.8.5.6:8080/oobi/EaU6JR2nmwyZ-i0d8JZAoTNZH3ULvYAfSVPzhzS6b5CM?role=watcher&name=eve

https://example.com/oobi/EaU6JR2nmwyZ-i0d8JZAoTNZH3ULvYAfSVPzhzS6b5CM?role=witness

Well-Known Variant:
 /.well-known/keri/oobi/EaU6JR2nmwyZ-i0d8JZAoTNZH3ULvYAfSVPzhzS6b5CM

Result of well-known request is target URL or redirection
https://example.com/witness/witmer (redirection)

http://8.8.5.5:8080/witness/witmer (public IP)

http://10.0.5.15:8088/witness/witmer (private IP)

Any OOBI may forward to another OOBI.

This is safe because the eventual endpoint is end-verifiable (authenticated).

OOBI (Out-Of-Band-Introduction)
Verbose OOBI Multi-OOBI
{
 "v" : "KERI10JSON00011c_",
 "t" : "rpy",
 "d": "EZ-i0d8JZAoTNZH3ULaU6JR2nmwyvYAfSVPzhzS6b5CM",
 "dt": "2020-08-22T17:50:12.988921+00:00",
 "r" : "/oobi/witness",
 "a" :
 {
 "urls": ["http://example.com/watcher/watson", "http://example.com/witness/wilma"]
 "aid": "EaU6JR2nmwyZ-i0d8JZAoTNZH3ULvYAfSVPzhzS6b5CM"
 }
}

Special Route Path
{
 "v" : "KERI10JSON00011c_",
 "t" : "rpy",
 "d": "EZ-i0d8JZAoTNZH3ULaU6JR2nmwyvYAfSVPzhzS6b5CM",
 "dt": "2020-08-22T17:50:12.988921+00:00",
 "r" : "/oobi/EaU6JR2nmwyZ-i0d8JZAoTNZH3ULvYAfSVPzhzS6b5CM/watcher",
 "a" :
 {
 "eid": "BrHLayDN-mXKv62DAjFLX1_Y5yEUe0vA9YPe_ihiKYHE",
 "scheme": "http",
 "url": "http://example.com/watcher/wilma",
 }
}

Bare URL as Self or Blind OOBI
A bare URL but no AID may be used as a bare OOBI for blind or self introductions.
Querying that bare URL (OOBI) may return or result in a default target OOBI or default target endpoint reply.
This provides a mechanism for self-introduction, self OOBI (SOOBI) or blind-introduction, blind OOBI (BOOBI) .

http://8.8.5.7:8080/oobi
http://localhost:8080/oobi```
http://8.8.5.7:8080/oobi?role=controller&name=eve
http://localhost:8080/oobi?role=controller&name=eve

By default the result of get request to this OOBI URL could be another OOBI with an AID that is the `self` AID of the node
providing the bare OOBI endpoint or the actual authenticatable `self` endpoint with its AID or a default set of
authenticatable endpoints.
Useful to bootstrap components in an infrastructure where the target URLs do not use a public DNS address but use
instead something more secure like an explicit public IP address or a private IP or private DNS address.
A self introduction provides a bootstrap mechanism similar to a hostname configuration file with the exception that in the
OOBI case the AID is not in the configuration file just the bare OOBI URL and the given node queries that bare OOBI to
get the target endpoint AID. This allows bootstrap using bare IP addresses in systems where the IP infrastructure is
more securely managed than public DNS or where some other Out-Of-Band-Authentication (OOBA) mechanism is used
in concert.

Blind OOBI
Because the OOBI does not expose an AID, the resultant response when querying the OOBI may depend on
other factors such as the source IP of the querier (requester) and/or another out-of-band-authentication (OOBA)
mechanism. This supports private bootstrap of infrastructure.

Of course one could argue that this is just kicking the can down the road but IP addresses are correlatable and a
blind OOBI can leverage IP infrastructure for discovery when used in combination with some other OOBA
mechanism without unnecessary correlation.

Onion Routing with Blind OOBI

did-comm with Blind OOBI

Attack Protection
Replay Attack: Replay of Authenticated (signed) Data

TEL (ACDC) VDR Issue Revoke (kel anchored tel events) Heavyweight
Non TEL based: Best Available Data Model (BADA)

KEL anchored ordered data

KeyState-DateTime of signature ordered data.

Deletion Attack

Total erasure a security problem (GDPR flaw)

Once erased any stale authenticated data acting as authorization may be replayed without detection.

Mitigation for Deletion attack are redundant signed copies (eventually consistent DB)

BADA (Best Available Data Acceptance) Policy
Authentic Data:
 Two primary attacks:

Replay attack:
 Mitigation: Monotonicity

Deletion attack:
 Mitigation: Redundancy

Replay Monotonicity:
Interactive:

Nonce
Non-interactive:

Memory (sequence number, date-time stamp, nullification)
More scalable

BADA Rules
Update is included in or anchored to AID’s key-state in KEL:
Rules for Acceptance of update :
Accept if no prior record.
Accept if update’s anchor is later than prior record’s anchor.

Update is signed by AID, but the update itself is not included in or anchored to AID’s KEL:
1) Ephemeral AID whose key-state is fixed (no KEL needed)
2) Persistent AID whose key-state is provided by KEL

Rules for Acceptance of update :
If no prior record.
Accept if signature verifies against any key-state.

If prior record.
Compare key-state of the update’s verified signature against key-state of prior record’s verified signature.

 Accept If update’s key-state is later (in KEL) than prior record’s key-state.
 Accept if update’s and prior record’s key-states are the same
 & update’s date-time is later than prior record’s date-time.

RUN off the CRUD
Client-Server API or Peer-to-Peer.
Create, Read, Update, Delete (CRUD)
Read, Update, Nullify (RUN)
Decentralized control means server never creates only client. Client (Peer) updates server (other Peer) always
for data sourced by Client (Peer). So no Create.
Non-interactive monotonicity means we can’t ever delete.
So no Delete. We must Nullify instead. Nullify is a special type of Update.
Ways to Nullify:

null value
flag indicating nullified

EndPoint Disclosure
Datetime stamped BADA authorization by CID of EID in Role (Update)
Datetime stamped BADA deauthorization by CID of EID in Role (Nullify)
Datetime stamped BADA authorization by EID of URL for scheme (Update).
Datetime stamped BADA deauthorization by EID of URL for scheme (Nullify)

The Internet Protocol (IP) is
bro-ken

because it has no security layer.

We use bolt-on identity system security overlays.
(DNS-CA …)

Instead
…

Identity System Security Overlay

The overlay’s security is contingent
on the mapping’s security.

Establish authenticity of IP packet’s message
payload.

Administrative Identifier Issuance and Binding

DNS Hijacking
 A DNS hijacking is occurring at an unprecedented scale. Clever tricks allows attackers to obtain valid TLS certificate for hijacked domains.

https://arstechnica.com/information-technology/2019/01/a-dns-hijacking-wave-is-targeting-companies-at-an-almost-unprecedented-scale/

https://w3c-ccg.github.io/did-spec/

BGP Hijacking: AS Path Poisoning
 Spoof domain verification process from CA. Allows attackers to obtain valid TLS certificate for hijacked domains.

Birge-Lee, H., Sun, Y., Edmundson, A., Rexford, J. and Mittal, P., “Bamboozling certificate authorities with {BGP},” vol. 27th {USENIX} Security Symposium, no. {USENIX} Security 18,
pp. 833-849, 2018 https://www.usenix.org/conference/usenixsecurity18/presentation/birge-lee

Gavrichenkov, A., “Breaking HTTPS with BGP Hijacking,” BlackHat, 2015
https://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf

https://w3c-ccg.github.io/did-spec/

Identity System Security Overlay

Spanning Layer

https://web.archive.org/web/20050415042854/http://www.csd.uch.gr/~hy490-05/lectures/Clark_interoperation.htm

Hourglass

https://cacm.acm.org/magazines/2019/7/237714-on-the-hourglass-model/fulltext

Platform Locked Trust

Each trust layer only spans platform specific
applications
Bifurcated internet trust map
No spanning trust layer

 Trust Domain Based
Segmentation

https://w3c-ccg.github.io/did-spec/

Solution: Waist and Neck

Background

Discovery

Ledger
Based

Non-Ledger
Based

DNS “Hierarchical” Discovery

Diagrams from https://www.cloudflare.com/learning/dns/what-is-dns/

DNS “Hierarchical” Discovery

$ORIGIN example.com.
@ 3600 SOA

ns1.p30.oraclecloud.net. (
zone-admin.dyndns.com. ; address of

responsible party
2016072701 ; serial number
3600 ; refresh period
600 ; retry period
604800 ; expire time
1800) ; minimum ttl
86400 NS ns1.p68.dns.oraclecloud.net.
86400 NS ns2.p68.dns.oraclecloud.net.
86400 NS ns3.p68.dns.oraclecloud.net.
86400 NS ns4.p68.dns.oraclecloud.net.
3600 MX 10 mail.example.com.
3600 MX 20 vpn.example.com.
3600 MX 30 mail.example.com.
60 A 204.13.248.106
3600 TXT "v=spf1 includespf.oraclecloud.net

~all"
mail 14400 A 204.13.248.106
vpn 60 A 216.146.45.240
webapp 60 A 216.146.46.10
webapp 60 A 216.146.46.11

www 43200 CNAME example.com.

DHT “Distributed” Discovery

Diagrams from https://en.wikipedia.org/wiki/Kademlia
Diagrams from https://en.wikipedia.org/wiki/Distributed_hash_table

Kademlia

Certificate Transparency Problem

Pinning inadequate
Notaries inadequate
DNSSec inadequate
All require trust in 3rd party compute infrastructure that is inherently
vulnerable

“The solution the computer world has relied on for many years is to introduce into the system trusted
third parties (CAs) that vouch for the binding between the domain name and the private key. The
problem is that we've managed to bless several hundred of these supposedly trusted parties, any of
which can vouch for any domain name. Every now and then, one of them gets it wrong, sometimes
spectacularly.”

Certificate Transparency: (related EFF SSL Observatory)
Public end-verifiable append-only event log with consistency and inclusion
proofs
End-verifiable duplicity detection = Ambient verifiability of duplicity
Event log is third party infrastructure but zero trust because it is verifiable.
Sparse Merkle Trees for revocation of certificates

https://w3c-ccg.github.io/did-spec/

Certificate Transparency Solution

Public end-verifiable append-only event log with consistency and inclusion proofs
End-verifiable duplicity detection = ambient verifiability of duplicity
Event log is third party infrastructure but it is not trusted because logs are
verifiable.
Sparse Merkle trees for revocation of certificates
(related EFF SSL Observatory)

https://w3c-ccg.github.io/did-spec/

End of Day 1

198

Verifiable Credentials WG
TPAC 2022

Day 2: September 16, 2022
Chairs: Kristina Yasuda, Brent Zundel
Location: Vancouver (and the World Wide Web)

199

Today’s agenda

200

9:00 Setting expectations for day 2 15

9:15 Holder Binding Oliver Terbu (remote) 45

10:00 15

10:15 RCH WG time Markus and Phil 105

12:00 60

13:00 Delegated & Multi-party Credentials Gabe Cohen, Orie Steele 40

13:40 SD-JWT Kristina Yasuda 40

14:20 Test Suites Manu Sporny 40

15:00 15

15:15 Internationalization/Multilingual (Shigeya) Shigeya Suzuki 30

15:45 JSON Schemas in the VC Data Model (Gabe Cohen) Gabe Cohen 30

16:15 Any Other Business Chairs 45

IRC and Scribes
● Meeting discussions will be

documented

○ Text Chat:
http://irc.w3.org/?channels=vcwg

○ IRC://irc.w3.org:6665/#vcwg

● Telecon info
○ https://www.w3.org/events/meetings/a91c

3c5b-298a-46a8-8575-61cf15926a97

Morning 1 M2 Afternoon 1 A2

Thurs Manu Mkhraisha Phila CEL

Fri Joe Kevin/Phila Dave
Longley Orie

201

<JoeAndrieu> q+ to comment on biometrics
<brent> ack JoeAndrieu
<Zakim> JoeAndrieu, you wanted to comment on biometrics

http://irc.w3.org/?channels=vcwg
http://irc.w3.org:6665/#vcwg
https://www.w3.org/events/meetings/a91c3c5b-298a-46a8-8575-61cf15926a97
https://www.w3.org/events/meetings/a91c3c5b-298a-46a8-8575-61cf15926a97

Holder Binding
(Oliver Terbu, 45 mins)

202

Recap: Ecosystem Roles

https://www.w3.org/TR/vc-data-model/#ecosystem-overview

https://www.w3.org/TR/vc-data-model/#ecosystem-overview

holder

“A role an entity might perform by possessing one or more verifiable credentials and generating
verifiable presentations from them. Example holders include students, employees, and
customers.” - https://www.w3.org/TR/vc-data-model/#dfn-holders

subject

“An entity about which claims are made. Example subjects include human beings, animals, and
things. In many cases the holder of a verifiable credential is the subject, but in certain cases it is
not. For example, a parent (the holder) might hold the verifiable credentials of a child (the
subject), or a pet owner (the holder) might hold the verifiable credentials of their pet (the
subject). For more information about these special cases, see Appendix C. Subject-Holder
Relationships.” - https://www.w3.org/TR/vc-data-model/#dfn-subjects

Recap: Ecosystem Roles

https://www.w3.org/TR/vc-data-model/#dfn-holders]
https://www.w3.org/TR/vc-data-model/#dfn-subjects]

Recap: Credential Subject

https://www.w3.org/TR/vc-data-model/#credential-subject

https://www.w3.org/TR/vc-data-model/#credential-subject

Recap: Verifiable Presentation

https://www.w3.org/TR/vc-data-model/#presentations-0

https://www.w3.org/TR/vc-data-model/#presentations-0

● A VP can be created by anyone which can be different from the
Subject of the VCs in the presentation.

● VC Data Model defines a proof in the VP but it does not define further
semantics other than the proof of the VP can be used to verify the VP
was not tampered with and to verify the authorship.

● Authorship means that the VP was generated by the Holder of the VP.
It does not ensure that the Holder is the intended Holder of the
presented VCs.

● Verifier would typically need to perform extra steps to ensure that the
Holder is the intended Holder of the presented VCs.

○ Trivial if VC is bound to a Subject and the Holder of the VP is the same as the
Subject, and Subject and Holder are identified by DIDs.

Holder Binding

Holder Binding: what a lot of people do today …
{
 "@context":[...],
 "type":[
 "VerifiablePresentation",
 "CredentialManagerPresentation"
],
 "holder":"did:example:subject",
 "verifiableCredential":[{
 "@context":[...],
 "type":["VerifiableCredential",
 "UniversityDegreeCredential"],
 "issuer":"https://example.edu/issuers/565049",
 "issuanceDate":"2010-01-01T00:00:00Z",
 "credentialSubject":{
 "id":"did:example:subject",
 "degree":{
 "type":"BachelorDegree",
 "name":"Bachelor of Science and Arts"
 }
 },
 "proof":{ ... }
 }],
 "proof":{
 "type":"JsonWebSignature2020",
 "created":"2019-12-11T03:50:55Z",
 "jws":"ey...",
 "proofPurpose":"authentication",
 "verificationMethod":"did:example:subject#key-1"
 }
}

“holder” is non-normative and
optional, unclear who is “holder”
when omitted

“credentialSubject.id” is optional

IF (holder.id ==
credentialSubject.id AND
hasAuthnMethod(resolve(holder.id),
vp.proof.verificationMethod) AND
isValid(vp.proof)) THEN
 Print “Holder Binding validated”

Holder Binding: holder + VP don’t solve the issue …

Holder Binding

● Currently, there is no normative definition of Holder Binding and the
holder property.

● Related Issues
○ Explicit reference should be added about binding the VC to the holder (#789)
○ "bound"/"binding" terminology is a significantly stronger relationship than is actually

present between VCs and their Subjects *or* Holders (#821)
○ Add extension mechanism to allow different methods for VP-to-VC / holder binding

to next version of standard to allow verification of rightfulness of presentation (#882)
○ Making explicit the binding of the holder to a VC (#923)

→ What the community seems to want is to enable the Verifier to
validate that the VP was presented by the intended Holder.

https://github.com/w3c/vc-data-model/issues/789
https://github.com/w3c/vc-data-model/issues/821
https://github.com/w3c/vc-data-model/issues/882
https://github.com/w3c/vc-data-model/issues/923

● More complicated if a different binding method was used

○ VC-based Holder Binding where the VP contains relationship-VCs to bind the
Subject identifiers to the Holder.

○ DID-based Holder Binding which is similar to VC-based Holder Binding but the
relationship established through DID Document, e.g., alsoKnownAs.

○ Delegation-based Holder Binding where the Subject of the VC delegates the
capability to present the VCs to another Holder.

○ Signature IDs (or linked secret)-based Holder Binding for ZKP-based VCs.
■ BBS+, AnonCreds etc.

○ Evidence-based Holder Binding where the Holder Binding is established through an
out-of-band agreement.

● Are there any other binding methods not listed above?

Holder Binding

Holder Binding

● Let’s try to define Holder Binding?

A method to validate that the intended Holder presented a set of VCs wrapped in a VP.

It binds the following together:

- Subject of the VC (even if vc.credentialSubject.id is undefined)
- Claims made about the Subject by the Issuer
- Holder of the VC (even if vp.holder.id is undefined)
- Proof in the VP
- Proof in the VC

● Is Holder Binding the right term? Other proposals?

● New VC-level property
credentialHolder property

○ Limited to VC only but binding
might happen at presentment time

● Reuse NIST 800-63-3
assurance level to solve issue

○ Does not provide an answer to the
intended Holder question

○ Evidence, VC proof → issuance
assurance level

○ VP proof → authentication
assurance level (does not solve
intended holder)

● Reuse termsOfUse property
○ Might be too generic
○ Semantic might be a bit misleading

Holder Binding: multiple proposals

● Reuse evidence property
○ Not available in VPs
○ Relates only to issuance

assurance level (identification)
○ Does not relate to

authentication context
● New VC/VP-level

holderBinding property
with registry

○ Acknowledges diversity of
holder binding approaches

○ Not a new proof type, just
defines how to bind
components to validate
intended Holder.

○ Allows max. flexibility

● Requirements
○ Allow the Verifier to validate that the VP was created by intended Holder.
○ Allow the Issuer to attenuate how the holder binding can be proven by the Holder.
○ Allow the Holder to choose how to prove the Holder binding.
○ Holder identifiers should be not required.
○ Credential subjects might have no identifier.
○ Crypto or binding agility.
○ No additional new mandatory properties for VCs and VPs.
○ Holder binding is an optional feature.
○ Support for multiple VC Subjects.

● Other requirements we should consider?

Holder Binding

Holder Binding
A method to validate that the intended Holder presented the VCs.

The holderBinding MAY be included in VCs and/or in VPs.

holderBinding
If present in the VP or VC, the value of the holderBinding property MUST include the following:

- type property, which expresses the Holder Binding method type. It is expected that the value will provide enough
information to determine the Holder Binding method between the VP and included VCs.

The precise contents of the Holder Binding information is determined by the specific holderBinding type definition,
and varies depending on the Holder Binding method. The Holder Binding information MAY also include information about
for which VC in the VP the Holder Binding applies. For example, this can be done by including a reference of the VC such
as the id of the VC.

Each Holder Binding method MUST define how Holder Binding for an input VP and one or more input VCs contained in
the VP can be deterministically validated. For example, a simple Holder Binding method might define that for a given input
VP Holder Binding could be verified based on checking that the holder property matches the credentialSubject.id
property in every verifiableCredential object in the VP.

Holder Binding (PROPOSAL)

{
 "holder": "did:key:1234:...",
 "holderBinding": [
 {
 "type": "HolderSubjectMatchingBinding2022",
 "someOtherHolderBindingProperties": "..."
 },
 {
 "type": "DelegationHolderBinding2022",
 "delegation": "https://my.holder-binding.abc/12345"
 },
 {
 "type": "SomeAgreementBasedHolderBinding2022",
 "moreHolderBindingProperties": "..."
 },
 {
 "type": "SomeIdCardBasedHolderBinding2022",
 "evenMoreHolderBindingProperties": "..."
 }
],
 ...
 "proof": {... }
}

Holder Binding (PROPOSAL)

Break
(15 mins)

217

Joint Session - RCH WG
(RCH WG, 105 mins)

218

Agenda

Introductions from the chairs (Markus & Phil)
Relationship with VCWG (Markus)
Comparative review of the input docs (Phil).
Live presentations from each of

Dave Longley
Aidan Hogan

https://lists.w3.org/Archives/Public/public-credentials/2021Mar/att-0220/RDFDatasetCanonicalization-2020-10-09.pdf
https://aidanhogan.com/docs/rdf-canonicalisation.pdf

A simple JSON-LD VC example
{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "id": "http://example.gov/credentials/3732",
 "type": ["VerifiableCredential", "UniversityDegreeCredential"],
 "issuer": "https://example.edu",
 "issuanceDate": "2010-01-01T19:23:24Z",
 "credentialSubject": {
 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
 "degree": {
 "type": "BachelorDegree",
 "name": "Bachelor of Science and Arts"
 }
 },
 "proof": {
 "type": "Ed25519Signature2020",
 "created": "2021-11-13T18:19:39Z",
 "verificationMethod": "https://example.edu/issuers/14#key-1",
 "proofPurpose": "assertionMethod",
 "proofValue": "z58DAdFfa9SkqZMVPxAQpic7ndSayn1PzZs6ZjWp1CktyGesjuTSwRdoWhAfGFCF5bppETSTojQCrfFPP2oumHKtz"
 }
}

Something gets canonicalized,
hashed, and signed here!

VCWG and RCHWG deliverables
VC WG RCH WG

Verifiable Credentials Data Model (VCDM) 2.0

Securing Verifiable Credentials (SVC) 1.0

VC Data Integrity 1.0
https://w3c.github.io/vc-data-integrity/

JsonWebSignature2020
Ed25519Signature2020
BbsBlsSignature2020
MerkleDisclosureProof2021
DataIntegrityProof

VC-JWT 1.0
https://w3c.github.io/vc-jwt/

RDF Dataset Canonicalization

RDF Dataset Hash

Dependency

https://w3c.github.io/vc-data-integrity/
https://w3c.github.io/vc-jwt/

RCHWG deliverables

RDF Dataset Hash

RDF Dataset Canonicalization

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#t
ype>
<http://www.w3.org/2000/10/swap/pim/contact#P
erson> .
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#f
ullName> "Eric Miller" .
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#m
ailbox> <mailto:em@w3.org> .
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#p
ersonalTitle> "Dr." .

z58DAdFfa9SkqZMVPxAQpic7ndSayn1Pz
Zs6ZjWp1CktyGesjuTSwRdoWhAfGFCF5b
ppETSTojQCrfFPP2oumHKtz

Verifiable Credentials Data Model (VCDM) 2.0

VC Data Integrity 1.0, and Cryptosuites

RDF Dataset Hash

RDF Dataset Canonicalization

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "id": "http://example.gov/credentials/3732",
 "type": ["VerifiableCredential", "UniversityDegreeCredential"],
 "issuer": "https://example.edu",
 "issuanceDate": "2010-01-01T19:23:24Z",
 "credentialSubject": {
 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
 "degree": {
 "type": "BachelorDegree",
 "name": "Bachelor of Science and Arts"
 }
 },
 "proof": {
 "type": "Ed25519Signature2020",
 "created": "2021-11-13T18:19:39Z",
 "verificationMethod": "https://example.edu/issuers/14#key-1",
 "proofPurpose": "assertionMethod",
 "proofValue": "z58DAdFfa9S..."
 }
}

● How to construct most of the VC JSON-LD document, and how to add the "proof" property to a VC/VP.

● What's inside the "proof" property.
● What exactly needs to get canonicalized and

hashed (RDF dataset, options, …).

● Given an RDF dataset (and other inputs?), create a canonicalized string (or list of strings?)

● How to apply a hash function to an RDF dataset
(or individual RDF statements?)

Let's try to fix this slide together!

RDF Dataset Canonicalization and
Hash, VCs, and URDNA2015
(Dave Longley, 10-15 mins)

224

RDF and Verifiable Credentials

225

RDF (Resource Description Framework):
● RDF is a way to model graphs of information
● A graph is made up of nodes called "subjects" with

links called "predicates" (aka "properties") to other
values or subjects

● A dataset is a collection of one or more graphs

Verifiable Credentials Data Model:
● Claims are subject-property-value relationships
● Matches RDF… a framework that gives people a

consistent, extensible way to:
○ Say anything about anything
○ Be globally unambiguous about it -thanks, Orie!

https://www.w3.org/TR/vc-data-model/#claims

What does "verifiable" mean and why?

226

What can we verify?
● The information in a credential hasn't changed

since the issuer issued it
● The issuer is the one who issued it

Why do we need it?
● VC design intentionally creates separation

between issuers and verifiers
● Increases holder privacy and expands the utility of

credentials
● Verifiers don't "phone home" to the issuer to verify
● We need to verify that a VC is authentic without

talking to the issuer

Cryptography FTW?

227

What do you "digitally sign"?
● Protection is over a specific set of bytes
● Different implementations may produce different

bytes for the same VC (or the same dataset)

Why not just keep a copy of the exact bytes that were
signed around all the time?

● Makes it easier on crypto implementers…
● Makes it harder on application developers!
● Failure to properly layer, now application

developers have to care about the details and
can't just get on with business as usual

Canonicalization and Hash FTW

228

Canonicalization
● Most digital signatures sign a hash of the data: the

hash is the bytes that are protected
● We can throw away the hash, because we trust

the same data will always hash to the same output
● Canonicalization can do same job one layer up,

ensuring implementations express data with the
same bytes

Hash
● Canonize, hash, and then sign…
● Add the signature to the original data and don't

keep duplicate intermediate forms around!

Trade offs

229

Cons
● Crypto implementers have to do a bit more work
● There's more security surface to get right

Pros (it's worth it!)
● Let application developers be application

developers; use existing tools and paradigms
without fear or specialization

● Decentralized innovation: experiment on your own
without having to ask issuers to upgrade their
systems and issue new formats with new
signatures

● Transform the data (e.g., use CBOR-LD
semantic-compression to fit a VC in a QR code!)

What needs canonizing and hashing?

230

Canonize anything that can be expressed differently:
● Subject identifiers; may be intentionally

ambiguous for selective disclosure
● Expression of the data as bytes (order, syntax)

Decisions to be made:
● A canonicalization algorithm for deciding

identifiers in the graph data
● A serialization format for canonicalized data that

can be hashed using standard cryptographic
hashes

URDNA2015 - Universal RDF Dataset Normalization Algorithm

231

Based on URGNA2012, which was a single RDF graph
canonicalization algorithm:

● Support for datasets and has a W3C CCG spec
● URDNA2015 has a correctness proof by Virginia

Tech Professor of Mathematics Rachel Arnold,
verified by Mirabolic Consulting (Princeton PhDs)

● Implementations in: JavaScript, Java, Rust, C++,
Go, Python, Ruby, and C#

Design:
● Fit-for-purpose for RDF datasets; uses RDF

relationships instead of graph abstractions
● Reuses existing primitives, N-Quads (an RDF

serialization) and SHA-256 (a widely implemented
cryptographic hash algorithm)

https://w3c-ccg.github.io/rdf-dataset-canonicalization/spec/index.html

Questions?

232

RDF Dataset Canonicalization and
Hash, VCs, and URDNA2015
(Aidan Hogan, 10-15 mins)

233

Slides in PPT and PDF

234

● PDF: http://aidanhogan.com/rdfcanon/2022-09-16-rdf-canonicalisation.pdf
● PPTX: http://aidanhogan.com/rdfcanon/2022-09-16-rdf-canonicalisation.pptx
● Slides are also copied below into Google Slides, but formatting may not be

ideal

http://aidanhogan.com/rdfcanon/2022-09-16-rdf-canonicalisation.pdf
http://aidanhogan.com/rdfcanon/2022-09-16-rdf-canonicalisation.pptx

Blank nodes are common in real-world data …

Aidan Hogan, Marcelo Arenas, Alejandro Mallea and Axel Polleres
"Everything You Always Wanted to Know About Blank Nodes".
Journal of Web Semantics 27: pp. 42–69, 2014

http://aidanhogan.com/docs/blank_nodes_jws.pdf
http://aidanhogan.com/docs/blank_nodes_jws.pdf

BLANK NODES:
WHAT’S THE PROBLEM?

Are two RDF graphs isomorphic?

Are two RDF graphs isomorphic?

USE-CASES FOR CANONICAL LABELLING

Consistent Skolemisation

Hashing/signing graphs

Finding duplicate documents

NAÏVE CANONICAL LABELLING SCHEME

(Naïve) Canonical labels for blank nodes

But wait … what happens if ... ?

Or another case …

Or another case …

Or another case …

Fixpoint does not distinguish all blank nodes!

CANONICAL LABELLING SCHEME:
ALWAYS DISTINGUISH ALL BLANK NODES

Brendan D. McKay. "Practical graph isomorphism". Congressus Numerantium 30: pp. 45–87, 1981.

Start with a (non-distinguished) colouring …

Let’s distinguish a node …

Let’s distinguish a node …

Colouring is no longer a fixpoint!

Rerun colouring to fixpoint

Rerun colouring to fixpoint

Rerun colouring to fixpoint

Rerun colouring to fixpoint

Fixpoint reached: still not finished!

So again let’s distinguish another …

… and rerun colouring to fixpoint

… and rerun colouring to fixpoint

… and rerun colouring to fixpoint

… and rerun colouring to fixpoint

… and rerun colouring to fixpoint

… and rerun colouring to fixpoint

Now all blank nodes are distinguished!

Blank node labels computed from colour

Let’s go back: first, why pick _:a and _:c?

Okay so: why _:a …

Adapt ideas from the Nauty algorithm
(for standard graph isomorphism)

Adapt ideas from the Nauty algorithm
(for standard graph isomorphism)

Check all leafs for minimum graph

What happened?

What happened?

What happened?

Automorphisms cause repetitions

Can optimise for
this!

EVALUATION

Evaluation: Real-world Graphs

Evaluation: Nasty Synthetic Graphs

EQUI-CANONICALISATION

Equivalence of RDF graphs

Equivalence of RDF graphs

● Canonicalisation algorithm for simple equivalence
1. Lean both RDF graphs

2. Label them (as before)

CONCLUSIONS

Potential Inputs

● Publications:
○ Aidan Hogan. "SKOLEMISING BLANK NODES WHILE PRESERVING ISOMORPHISM ". In the

Proceedings of the 24th International World Wide Web Conference (WWW), Florence,
Italy, May 18–22, 2015.

○ Aidan Hogan. "CANONICAL FORMS FOR ISOMORPHIC AND EQUIVALENT RDF GRAPHS: ALGORITHMS
FOR LEANING AND LABELLING BLANK NODES ". In ACM Transactions on the Web 11(4):
22:1-22:62, 2017.

● Reference Implementations:
○ Blabel (Java), Aidan Hogan: https://blabel.github.io/
○ Canonical RDF (node.js*), Ivan Herman: https://zenodo.org/record/3154323
○ Gonum/RDF (Go), Dan Kortschak:

https://pkg.go.dev/gonum.org/v1/gonum@v0.11.0/graph/formats/rdf

● Verification using Coq Framework (ongoing)

* Corrected from Python

https://aidanhogan.com/docs/skolems_blank_nodes_www.pdf
https://aidanhogan.com/docs/rdf-canonicalisation.pdf
https://aidanhogan.com/docs/rdf-canonicalisation.pdf
https://blabel.github.io/
https://zenodo.org/record/3154323
https://pkg.go.dev/gonum.org/v1/gonum@v0.11.0/graph/formats/rdf

Conclusions
● Algorithm is proven to be sound and complete

○ Ongoing: Automated verification in Coq (type theory)
○ Based heavily on graph isomorphism literature

● Algorithm is exponential in the worst-case
○ Efficient for “real world graphs” of moderate size (in memory)
○ Relatively efficient for regular graphs (e.g., 16-cliques in <1 sec)
○ Inefficient for exotic/constructed worst cases (e.g., Miyazaki)

● Algorithm has been (independently) implemented
○ Two independent implementations (with some help from me)
○ Automorphism optimisation tricky, but not necessary

● Some details would need to be fixed
○ Hashing algorithm used
○ Function to combine hashes (ordered and unordered)
○ Total ordering of elements (IRIs, literals, triples, graphs)
○ Behaviour in case of hash collisions
○ Extension to RDF datasets (should not be difficult)
○ Dataset canonicalisation (should not be difficult)

Lunch
(60 mins)

287

Delegated and Multi-Party Credentials
(Gabe Cohen, Orie Steele 40 mins)

288

Credentials Today

289

Normally….
● 1 issuer
● 1 subject

Exhibit A:
● Tootsie man = issuer
● Mr. Owl = subject

How many
licks does it
take, hooty?

One…two…*crunch*
...three!

Correct, here's
your
lick-certificate

Credentials Tomorrow: Delegated Edition

290

Normally….
● 1 issuer
● 1 subject

Exhibit A:
● Tootsie man = issuer
● Mr. Owl = delegate subject
● Mr. Owl's offspring = primary subject

How many
licks does it
take, Mr.
Strigiforme?

I have been sent as a delegate for a
prominent lollipop connoisseur, who
happens to be underage and my
offspring, and as such not well
suited to receive a credential, so I
will accept it on their behalf. The
answer they have provided me with
is … "*crunch*....three"

I'm sure you'll keep
this credential safe
until they're old
enough to use social
media responsibly

Credentials Tomorrow: Multiparty Edition

291

Normally….
● 1 issuer
● 1 subject

Exhibit A:
● Tootsie man = issuer
● Mr. Owl (left) = subject 1
● Mr. Owl (right) = subject 2

How many
licks does it
take,
nightbird?

We are a conjoined set of twins that
has a single mouth and has solved
this puzzle collaborative. The
answer is…
one…two…*crunch*...three!

Congrats on your
credential…s?

Prior Art: Delegated Credentials

292

- zcap with Data Integrity Proofs
- ucan with Json Web Tokens
- dpop with Json Web Tokens
- transferable non fungible tokens with …
- non transferable non fungible tokens with …

https://w3c-ccg.github.io/zcap-spec/
https://nft.storage/docs/how-to/ucan/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop
https://en.wikipedia.org/wiki/Non-fungible_token
https://www.coindesk.com/learn/what-are-soulbound-tokens-the-non-transferrable-nft-explained/

Delegated Credentials

293

Multiparty Part 1: Multiple Subjects

294

Examples:
● Marriage certificates
● Vaccinated Traveler with Service Dog

(vaccination evidence for both dog and human?)
● (Delegated?) Parent / child relationships
● Relationships with legal or medical necessity (e.g.

spouse in a coma, parent with dementia)

Questions:
● Isn’t subject vs holder already confusion enough?
● Should credentials with multiple subjects even be

allowed?
● What alternatives are there?

Multiparty Part 1: Multiple Subjects

295

Multiparty Part 2: Multiple Issuers

296

Examples:
● NFTs from a smart contract

(contract address vs minter address?)
● Co-tweets
● Parent's claims about their children
● Treaties, nuclear launch codes
● Co-signing for a loan

Questions:
● Should credentials with multiple issuers

even be allowed?
● What alternatives are there?

Multiparty Part 2: Multiple Issuers

297

What’s Next?

298

● Welcome proposals on all three:
● Delegated Credentials (vc-data-model #930)
● Multi-Subject Credentials (vc-data-model #931)
● Multi-Issuer Credentials (vc-data-model #932)

● Open Questions
● How are multiple issuers, multiple subjects represented in

JWTs? Data Integrity Proofs?
● How does this complicate selective disclosure / ZKP

schemes?

https://github.com/w3c/vc-data-model/issues/930
https://github.com/w3c/vc-data-model/issues/931
https://github.com/w3c/vc-data-model/issues/932

Intro to SD-JWT
(Kristina Yasuda, 40 mins)

299

Selective Disclosure for JWTs

● The purpose of this presentation
○ Introduce the concept
○ Make a preliminary decision on how SD-JWT VC and VP would look like

● An IETF draft adopted by OAuth WG
● Solves the problem that VC-JWTs were not selectively disclosable
● Use-Cases emerging

Why?

Existing SD schemes SD-JWT

Complexity Complex (for most of mortals) As simple as possible

Algorithms Advanced cryptography Standard cryptography with salted hashes

Format Binary formats (ISO mDL) JSON & JWT

Security Hard to audit Easy to understand & verify

Salted Hash Approach

Idea:
● Issuer hashes each claim value together with a random salt

○ "John" → hash(salt, "John") → "PvU7cWjuHUq6w-i9XFpQZhjT-uprQL3GH3mKsAJl0e0"

● Issuer-signed credential only contains digests
○ "given_name": "PvU7cWjuHUq6w-i9XFpQZhjT-uprQL3GH3mKsAJl0e0"

● Holder selectively releases salt + plain-text value
○ "given_name" = hash("eluV5Og3gSNII8EYnsxA_A", "John")

● Verifier checks by calculating hashes & issuer’s signature

Overview: Salted
Hash Approach

303

SD-JWT
hashed claim values

Issuer

Verifier

End-User
(Holder)

✓ signed
by Issuer

Issuance

Presentation

● Issuer hashes each claim value together with a random salt
 -> "John" → hash(salt, "John") → "PvU7cWjuHUq6w-i9XFpQZhjT-uprQL3GH3mKsAJl0e0"

● Issuer-signed credential only contains digests
-> "given_name": "PvU7cWjuHUq6w-i9XFpQZhjT-uprQL3GH3mKsAJl0e0"

Issuance (1/2)

● Issuer sends a mapping of plain-text claim values and unique salts
-> given_name": "[\"eluV5Og3gSNII8EYnsxA_A\", \"John\"]

Issuance (2/2)

SD-JWT
hashed claim values

Issuer

Verifier

End-User
(Holder)

✓ signed
by Issuer

Issuance

Presentation

Salt/Value Container (SVC)
mapping of plain-text claim values and
unique salts used in hashing

● Holder selectively releases salt + plain-text value
-> "given_name" = hash("eluV5Og3gSNII8EYnsxA_A", "John")

● Verifier checks by calculating hashes & issuer’s signature

Presentation

SD-JWT
hashed claim values

Issuer

Verifier

End-User
(Holder)

✓ signed
by Issuer

Issuance

Presentation

Salt/Value Container (SVC)
mapping of plain-text claim values and
unique salts used in hashing

SD-JWT-Release
plain-text claim values and unique salts of
selectively disclosed claims

sent as-is selectively disclosed

SD-JWT
hashed claim values

✓ signed
by Issuer

✓ optionally
signed by holder

Deep-dive of the
Basics

307

SD-JWT-Release
plain-text claim values and unique salts of
selectively disclosed claims

SD-JWT
hashed claim values

Salt/Value Container (SVC)
mapping of plain-text claim values and unique
salts used in hashing

Deep-dive on SD-JWT
Issuer

Verifier

End-User
(Holder)

sent as-is selectively disclosed

✓ signed
by Issuer

SD-JWT
hashed claim values

✓ signed
by Issuer

✓ optionally
signed by holder

Issuance

Presentation

Example: SD-JWT
Issuer creates & sends to holder:
{
 "iss": "https://example.com/issuer",
 "sub_jwk": { # optional: public key of holder
 "kty": "RSA",
 "n": "pm4bOHBg-oYhAyP(...)7ihcw",
 "e": "AQAB"
 },
 "iat": 1516239022,
 "exp": 1516247022,
 "sd_hash_alg": "sha-256",
 "sd_digests": {
 "sub": "z4xgEco94diTaSruISPiE7o_wtmcOfnH_8R7X9Pa578",
 "given_name": "PvU7cWjuHUq6w-i9XFpQZhjT-uprQL3GH3mKsAJl0e0",
 "family_name": "H-Relr4cEBMlenyK1gvyx16QVpnt4MEclT5tP0aTLFU",
 "email": "ET2A1JQLF85ZpBulh6UFstGrSfR4B3KM-bjQVllhxqY",
 "phone_number": "SJnciB2DIRVA5cXBrdKoH6n45788mZyUn2rnv74uMVU",
 "address": "0FldqLfGnERPPVDC17od9xb4w3iRJTEQbW_Yk9AmnDw",
 "birthdate": "-L0kMgIbLXe3OEkKTUGwz_QKhjehDeofKGwoPrxLuo4"
 }
}

Digests of all the claims issued to the
holder by the Issuer
(currently defined to be a top level
JWT claim)

SD-JWT-Release
plain-text claim values and unique salts of
selectively disclosed claims

SD-JWT
hashed claim values

Salt/Value Container (SVC)
mapping of plain-text claim values and unique
salts used in hashing

Deep-dive on SVC
Issuer

Verifier

End-User
(Holder)

sent as-is selectively disclosed

✓ signed
by Issuer

SD-JWT
hashed claim values

✓ signed
by Issuer

✓ optionally
signed by holder

Issuance

Presentation

Example: Salt/Value Container

Issuer creates & sends to holder together with SD-JWT:
{
 "sd_release": {
 "sub": "[\"2GLC42sKQveCfGfryNRN9w\", \"6c5c0a49-b589-431d-bae7-219122a9ec2c\"]",
 "given_name": "[\"eluV5Og3gSNII8EYnsxA_A\", \"John\"]",
 "family_name": "[\"6Ij7tM-a5iVPGboS5tmvVA\", \"Doe\"]",
 "email": "[\"eI8ZWm9QnKPpNPeNenHdhQ\", \"johndoe@example.com\"]",
 "phone_number": "[\"Qg_O64zqAxe412a108iroA\", \"+1-202-555-0101\"]",
 "address": "[\"AJx-095VPrpTtN4QMOqROA\", {\"street_address\": \"123 Main St\", \"locality\":
\"Anytown\", \"region\": \"Anystate\", \"country\": \"US\"}]",
 "birthdate": "[\"Pc33JM2LchcU_lHggv_ufQ\", \"1940-01-01\"]"
 }
}

��JSON strings?!

salt

JSON string literals…
● …ensure all parties hash the same values
● …obsolete canonicalization even for complex claim values
● …with extremely simple implementation

claim value

Mapping of salts and claim values of all the
claims issued by the Issuer
(Currently defined as an array passed as a
string)

SD-JWT-Release
plain-text claim values and unique salts of
selectively disclosed claims

SD-JWT
hashed claim values

Salt/Value Container (SVC)
mapping of plain-text claim values and unique
salts used in hashing

Deep-dive on SD-JWT-Release
Issuer

Verifier

End-User
(Holder)

sent as-is selectively disclosed

✓ signed
by Issuer

SD-JWT
hashed claim values

✓ signed
by Issuer

✓ optionally
signed by holder

Issuance

Presentation

Example: SD-JWT-Release
Holder creates from SVC & sends to verifier together with SD-JWT:
{
 "nonce": "XZOUco1u_gEPknxS78sWWg",
 "aud": "https://example.com/verifier",
 "sd_release": {
 "given_name": "[\"eluV5Og3gSNII8EYnsxA_A\", \"John\"]",
 "family_name": "[\"6Ij7tM-a5iVPGboS5tmvVA\", \"Doe\"]"
 }
}

Verifier checks:
● SD-JWT is valid (signature, etc.)
● SD-JWT-Release is valid (if signed: signature, nonce, etc.)
● digests in SD-JWT match hashes of released claims

Then: Extract plain-text values from released claims Foot-gun: Verifier MUST
calculate and check digests
before using claims!

salt claim value
Salts and claim values of the claims that
the Holder is releasing to the Verifier

Deep-dive of the
Advanced Concepts

314

Granularity of
hashing in SD-JWT

{
 "address": {
 "street_address": "123 Main St",
 "locality": "Anytown",
 "region": "Anystate",
 "country": "US"
 }
}

{
 "sd_digests": {
 "address": "0FldqLfGnERPPVDC17od9xb4w…",
 }
}

{
 "sd_digests": {
 "address": {
 "street_address": "O7_Isd6CmZqcSobPVpMgmJwB41hPUHHG8jg5LJ8YzfY",
 "locality": "w-zTF6ljkQLTvVyp_JNyD3t5Waj-B2vb0AXH1q8OsjI",
 "region": "nTvoKpGA6YQwEZipVBIM4WVH9KWEnwiqsRjEhrxhQz4",
 "country": "u-O1yDQqDTTqOgUBSjWilgkMLzg_QOTELMfZrRT5e6k"
 }
 }
}

orone digest per claim digest per component of the claim

Works with
Complex Objects!

Example of OpenID for Identity
Assurance
For full example, see the spec

{
 "sd_digests": {
 "verified_claims": {
 "verification": {
 "trust_framework": "w1mP4oPc_J9thBex0TaQi1vgxFmruQJxZYLFnkNFMaI",
 "time": "Pu3i0CWrPVLJW-LT30yF1bFBPP15B6-uKk3PnGDflv8",
 "verification_process": "8HqIXRmczsdYOZzGcLqI5-l9xN5QbK2XDtXmdfH7z-4",
 "evidence": [{
 "type": "TnLuqGGQm6jfeOoa5uX1diKANUPuh-zHrpBFdX9MR-g",
 "method": "SagmakoSu-X-XUPIC3EgdrEEwIWxRWXX4-i68X9TyEo",
 "time": "ld2c5oYDRtQcfU6PzogPkx_95WYqhqIJNVRMnfcsicY",
 "document": {
 "type": "ufWjDaAa54MnHeji2ZUUHDdnpZ9zx6CUG6uR28VMtsQ",
 "issuer": {
 "name": "a4GMucU7Zb060r0Svd7huY6Qho1bIf3v1U5BvPR8q6Y",
 "country": "135k9M0m2SCnYRuOfHuYScYVS2q3eeY7IItgyRsaBT8"
 },
 "number": "cUvOxLUp8RV7TTVliEiu-TQIel-LsE8E-XfUgfqk5gk",
 "date_of_issuance": "NIs8olJnJOv4J1qIEBKuTs2sEFs4fgGJhNqM6xdQt7E",
 "date_of_expiry": "HTR37vLtANT6MWk-9dBqekFpCvaTG7zNf1ze56rnV64"
 }
 }]
 },
 "claims": {
 "given_name": "NB9XH_yJKqKOhXDmXkZKpMCkRbOmOTd8bqJFYDJYQnQ",
 "family_name": "hAUbJ66ZYL9VJLbjsDpmSs2e9Ff_Ohim_WR4bwZyvoQ",
 "birthdate": "6XOR4k56BgWk5tnNismbmEHvoGX7RRfy6Z8HENl96cU",
 "place_of_birth": {
 "country": "CLTlhuy13WWc3_ISon1kEypFwvCmfhLSpGUMCyAUg68",
 "locality": "AQoX8ixGpz-ipweEGlC-2umqwyQdhjIeiUB_TKWcE2E"
 },
 "nationalities": "nfoc__QKlMUHodmxwlY-Kp-6ewgX3CdK7Ia0RJHIXVo",
 "address": "ngnO4uQeOktM7YdFD8x82doS7WJnlZnq-rQE_RfuBSI"
 }
 },
 "birth_middle_name": "FeFSwd9drypEPtWVgIZ42N9j_yostt1Ds5PBpxT3Rng",
 "salutation": "57CMhvASQMNuzuQ0a_B1_VX5XdH73TcuPxyWGiorj5g",
 "msisdn": "leKbB0ro6q3jrVraCqt443uaGZVZisD3iGrKuKE2mqM"
 }
}

Running Code:
4 independent implementations!

● Python: https://github.com/oauthstuff/draft-selective-disclosure-jwt
● Kotlin: https://github.com/IDunion/SD-JWT-Kotlin
● Rust: https://github.com/kushaldas/sd_jwt
● TypeScript: https://github.com/christianpaquin/sd-jwt

Produce SD-JWT and SVC

sdjwt = SDJWT(
 user_claims,
 issuer,
 ISSUER_KEY,
 HOLDER_KEY,
 claims_structure,
 blinded_claim_names,
 iat,
 exp,
)

● Reference implementation in python:
~500 LoC.

● Evolves with the spec.
● Examples in the spec generated from

the code.

Use-Case: W3C VC-Data-Model
JWT-VC (= SD-JWT) Option 3 in Issue #908

{

"sub":"urn:ietf:params:oauth:jwk-thumbprint:sha-256:NzbLsXh8uDCcd-6MNwXF4W_7no
WXFZAfHkxZsRGC9Xs",
 "jti": "http://example.edu/credentials/3732",
 "iss": "https://example.com/keys/foo.jwk",
 "nbf": 1541493724,
 "iat": 1541493724,
 "exp": 1573029723,
 "cnf": {
 "jwk": { << Holder Binding Key>> }
 },
 "vc": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "type": [
 "VerifiableCredential",
 "UniversityDegreeCredential"
],
 "credentialSubject": {
 "first_name": "Jane",
 "last_name": "Doe"
 }
 },
 "sd_digests": {
 "vc": {
 "credentialSubject": {
 "email": "ET2A1JQLF85ZpBulh6UFstGrSfR4B3KM-bjQVllhxqY",
 "phone_number": "SJnciB2DIRVA5cXBrdKoH6n45788mZyUn2rnv74uMVU",
 "address": "0FldqLfGnERPPVDC17od9xb4w3iRJTEQbW_Yk9AmnDw",
 "birthdate": "-L0kMgIbLXe3OEkKTUGwz_QKhjehDeofKGwoPrxLuo4"
 }
 }
 }
}

JWT-VP (= SD-JWT-Release) - should be straightforward

{
 "iss": "did:example:ebfeb1f712ebc6f1c276e12ec21",
 "aud": "s6BhdRkqt3",
 "nbf": 1560415047,
 "iat": 1560415047,
 "exp": 1573029723,
 "nonce": "660!6345FSer",
 "vp": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1"
],
 "type": [
 "VerifiablePresentation"
],
 "verifiableCredential": ["eyJhb...npyXw"]
 },
 "sd_release": {
 "given_name": "[\"6Ij7tM-a5iVPGboS5tmvVA\", \"John\"]",
 "family_name": "[\"eI8ZWm9QnKPpNPeNenHdhQ\", \"Doe\"]"
 }
}

A verifiable credential MUST have a
credentialSubject property.
-> Can `credentialSubject` be empty?

https://github.com/w3c/vc-data-model/issues/908
https://www.w3.org/TR/vc-data-model/#dfn-verifiable-credentials
https://www.w3.org/TR/vc-data-model/#dfn-property

Other options for SD-JWT-VC

319

{

"sub":"urn:ietf:params:oauth:jwk-thumbprint:sha-256:NzbLsXh8uDCcd-6MNwXF4W_7no
WXFZAfHkxZsRGC9Xs",
 "jti": "http://example.edu/credentials/3732",
 "iss": "https://example.com/keys/foo.jwk",
 "nbf": 1541493724,
 "iat": 1541493724,
 "exp": 1573029723,
 "cnf": {
 "jwk": { << Holder Binding Key>> }
 },
 "vc": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "type": [
 "VerifiableCredential",
 "UniversityDegreeCredential"
],
 "credentialSubject": {
 "first_name": "Jane",
 "last_name": "Doe",
 "sd_digests": {
 "email": "ET2A1JQLF85ZpBulh6UFstGrSfR4B3KM-bjQVllhxqY",
 "phone_number": "SJnciB2DIRVA5cXBrdKoH6n45788mZyUn2rnv74uMVU",
 "address": "0FldqLfGnERPPVDC17od9xb4w3iRJTEQbW_Yk9AmnDw",
 "birthdate": "-L0kMgIbLXe3OEkKTUGwz_QKhjehDeofKGwoPrxLuo4"
 }
 }
 }
}

{

"sub":"urn:ietf:params:oauth:jwk-thumbprint:sha-256:NzbLsXh8uDCcd-6MNwXF4W_7no
WXFZAfHkxZsRGC9Xs",
 "jti": "http://example.edu/credentials/3732",
 "iss": "https://example.com/keys/foo.jwk",
 "nbf": 1541493724,
 "iat": 1541493724,
 "exp": 1573029723,
 "cnf": {
 "jwk": { << Holder Binding Key>> }
 },
 "vc": {
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://www.w3.org/2018/credentials/examples/v1"
],
 "type": [
 "VerifiableCredential",
 "UniversityDegreeCredential"
],
 "credentialSubject": {
 "first_name": "Jane",
 "last_name": "Doe"
 }
 },
 "sd_digests": {
 "email": "ET2A1JQLF85ZpBulh6UFstGrSfR4B3KM-bjQVllhxqY",
 "phone_number": "SJnciB2DIRVA5cXBrdKoH6n45788mZyUn2rnv74uMVU",
 "address": "0FldqLfGnERPPVDC17od9xb4w3iRJTEQbW_Yk9AmnDw",
 "birthdate": "-L0kMgIbLXe3OEkKTUGwz_QKhjehDeofKGwoPrxLuo4"
 }
}

JWT-VC (= SD-JWT) Option 2 in Issue #908 JWT-VC (= SD-JWT) Option 1 in Issue #908

https://github.com/w3c/vc-data-model/issues/908
https://github.com/w3c/vc-data-model/issues/908

Questions to the group

● A verifiable credential MUST have a credentialSubject property.
○ -> Can `credentialSubject` be empty?

● In which section should SD-JWT be described?
● Implications for @context..?

https://www.w3.org/TR/vc-data-model/#dfn-verifiable-credentials
https://www.w3.org/TR/vc-data-model/#dfn-property

VC Test Suites
(Manu Sporny, 40 mins)

321

Verifiable Credential Testing Options

VC TEST SUITE 2.0
Radical

… review all the mistakes we have made over the years.

LETS GOOOOO!*

* Historical accuracy note: This phrase did not mean the same thing in the 1980s.

TEST SUITE

1.0

Lessons learned

TEST SUITE

1.1

Lessons learned

REQUIREMENTS

2.0

Improvement goals

OPTIONS

2.0

Ecosystem survey

TAINTED LOVE
That time Christine used lisp for testing…

1.0

PRE-1.0
TEST SUITE

● Command-line driven Python script ported to Racket (lisp)
● Implementers had to install Racket (lisp) and run the test suite
● It was as bad as it sounds
● No one knew how to maintain the test suite; because: lisp

1.0 REC TEST SUITE

For Candidate Recommendation, we
rewrote the test suite in Javascript:

● All tests listed in an input manifest.
● Driver read each test, issued a VC, then

verified it.
● Results logged to output file.
● Report generated from output file.

The results:

● 11 implementations; not bad
● We survived REC and 1.0

https://w3c.github.io/vc-test-suite/implementations/#conformance-testing-results

1.0 TEST SUITE
LESSONS
LEARNED

● Don't pick a test suite environment that
reduces the number of people that can
contribute.

● We explored Docker, but then decided to not
use it for the same reason as above - not
enough expertise. Command-line interface
seemed good enough.

● Once implementers got a "good" result, most
of them never came back.

● The implementation report is out of date for
most implementations by years.

● This is not sustainable for the ecosystem.

DON'T STOP BELIEVIN'
Hold on to that feelin'...

1.1

1.1 TEST SUITE
LESSONS
LEARNED

● We were not allowed to change large
normative items, so the test suite didn't
change much.

● We picked up two more implementations, but
many of the implementation reports remain
out of date.

● We survived REC and 1.1

BUST A MOVE
If you want it, you got it

2.0

2.0 REQUIREMENTS

● Test all "MUST" normative statements in specifications.

● Run +/- tests for each normative statement.

● Test data model

● Test Data Integrity, JWT-VC, SD-JWT specifications.

● Loose coupling between implementations and test suite.

● Run tests against implementations on weekly/nightly basis.

2.0 OPTIONS

● Keep test suite as-is (static), run against command line

"issuer" and "verifier" implementations?

● Dockerize command line implementations?

● Use an HTTP interface for implementations?

● Some other type of interface?

● Examples: vc-test-suite, JWS-Test-Suite, Traceability, Verifier

https://w3c.github.io/vc-test-suite/implementations/#basic-documents
https://identity.foundation/JWS-Test-Suite/#implementations
https://w3c-ccg.github.io/traceability-interop/reports/interoperability/
https://w3c-ccg.github.io/vc-api-verifier-test-suite/#Verify%20Credential%20-%20Data%20Integrity

DISCUSS

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

msporny@digitalbazaar.com
https://www.linkedin.com/in/manusporny

Please keep this slide for attribution

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Break
(15 mins)

336

Internationalization / Multilingual
(Shigeya Suzuki, 30 mins)

337

Topics

{{ I want to talk/discuss about requirements, not how, now }}

● Why we need multilingual support?
● EXAMPLE1 in VCDM 1.1
● Construct of multiple language strings
● Default language and Language priority as a credential
● Externalization of mapping

338

Multilingual Support Needed

● In credentials used across borders, bilingual notation may be useful or even
required.

○ Education related Certificates
○ Certificates required when traveling

● Improper use of local language embedding cause a problem.
I.e., United Airlines’ app does not accept my SHC based vaccination record,
because my name encoded in HL7/FHIR record is in Japanese

○ Part of the reason is HL7/FHIR’s lack of multilingual support
○ There is similar but different encoding problem for the certificates for expats in Japan

■ Expat’s name is encoded in Katana and placed into patient’s first/last name, their English
name is placed in a special section (no standards exists for this…)

339

Firstly… Issues in VC 1.1

“Example 1” shown
multilingual example, but
there are no discussions on
the notation either in
normative or non-normative
way.

340

Representation in the Data Model

● The least thing we need is have a normative rules for multilingual strings,
similar to the VCDM 1.1 EXAMPLE 1

○ But we may also need “direction” -> use of BCP47 as JSON-LD does?
○ And the EXAMPLE1 style structure might not the best way to do
○ Do we want to allow only one style of construct ?

● In addition to above we may want to have
○ Externalization of such mappings from credential object to reduce size of credential objects,

while supporting a lot of languages.
○ Translation of property name may also useful, and possibly externalized

341

Mapping String Construct Styles and
Performance / Programmability

342

"credentialSubject": {
 "id": "did:example:xxx",
 "alumniOf": {
 "id": "did:example:xxx",
 "name": [{
 "value": "Example University",
 "lang": "en"
 }, {
 "value": "Exemple d'Université",
 "lang": "fr"
 }]
 }

 },

"credentialSubject": {
 "id": "did:example:xxx",
 "alumniOf": {
 "id": "did:example:xxx",
 "name": [

 “en”: "Example University",
 “fr”: "Exemple d'Université"
 }
 }},

"credentialSubject": {
 "id": "did:example:xxx",
 "alumniOf": {
 "id": "did:example:xxx",

 “multilingual”: {
 “en”: {

 “name”: "Example University"
},
“fr”: {

 “name”: "Exemple d'Université"
},

 }
 }
 }},

Language tags, Default language and List of
languages as a property

343

● Use of BCP47 for language tags

● List of language keys as a property may be useful depends on the construct
used

● Specifying a language or order of languages is can be used as a hint

Externalization

344

“Key_language”: “en”,

“External_language_string”:
“https://example_univ.edu/cert/basse.json#
XXYYZZ”,

"credentialSubject": {
 "id": "did:example:xxx",
 "alumniOf": {
 "id": "did:example:xxx",
 "name":"Example University",
 },

{
 “key_language”: “en”,
 “Languages”: [“fr”],

 "Example University": {
 “fr”: "Exemple d'Université"
}

Questions

345

● “JSON-LD compatible JSON”?
● JSON-LD language map

○ Requires ‘@language’ etc….

Next steps

346

● Consult with Internationalization/multilingual experts
● Drafting PR + discuss on:

○ Mapping
○ Externalization

JSON Schema and the VC Data Model
(Gabe Cohen, 30 mins)

347

Why JSON Schemas in VCs?
As an issuer, I want…

● A consistent vocabulary for my credentials
● Strict validations for the presence of required fields, and field-level validations (e.g. is that a valid

email?)
● To have a consistently identifiable document that can be easily replicated, promoting widespread use

and adoption
● Fast static validation; highly cacheable!

As a holder, I want…
● To know that my credentials will be accepted! (they are of the right shape, have the necessary data

elements)

As a verifier, I want…
● To define a limited set of authoritative data-shapes that I accept
● Clear authorship for the schema that backs a credential I receive (e.g. is this the DMV's drivers license

scheme, or Frank's from down the block?)
● Fast static validation; highly cacheable!

348

Background

349

Who is
using this,
and how?

Background

● In 2019, Workday came to the CCG and presented a scheme for using JSON Schemas
with Verifiable Credentials

○ With the help of Orie and other community members, we got a Draft Community Group Report out:
https://w3c-ccg.github.io/vc-json-schemas/v1/index.html

○ It defines….
■ Metadata to include in schemas (identifiers, versioning, authorship information)
■ A method to version schemas based on semantic versioning / schemaver

■ Some recommendations for identification using DID-relative URIs
(e.g.did:work:MDP8AsFhHzhwUvGNuYkX7T;id=06e126d1-fa44-4882-a243-1e326fbe21db;version=1.1)

● Gained moderate usage via a number of community members!
● In late 2021, I wanted to improve the spec, and see how it could gain more

utility – https://w3c-ccg.github.io/vc-json-schemas/v2/index.html

350

https://w3c-ccg.github.io/vc-json-schemas/v1/index.html
https://w3c-ccg.github.io/vc-json-schemas/v2/index.html

Background

● Where are we?
○ A draft that needs some work,

but has most of the right parts
there.

○ Proven implementations in > 2
libraries (that I know of…)

351

Uptake & Usage

Precedent
● Multiple SSI companies (Workday, Block, IBM, Transmute, Disco.xyz, Kilt, Traceability Vocab,

Spruce, and more!) already using the CCG draft / JSON Schemas to back creds
● Many DIF specs make use of JSON Schemas with great success (Presentation Exchange,

Credential Manifest, more…)

Widespread Support
● JSON-Schema has a number of IETF drafts
● Large number of x-language libraries that are well-maintained, web tools, code generation, and

more

Plays nicely with JSON-LD
● Best of both worlds: LD for broader semantic interoperability, JSON-Schema for strict validation
● How I think of it: JSON-LD defines the “world” – JSON Schema creates thoughtful subsets
● No need to use both. Some will want to use one, the other, or both.

352

https://github.com/discoxyz/disco-schemas
https://docs.kilt.io/docs/concepts/credentials/ctypes
https://w3c-ccg.github.io/traceability-vocab/openapi/#get-/schemas/common/AgricultureActivity.yml
https://json-schema.org/specification.html
https://json-schema.org/implementations.html

What's Next?

● Questions, considerations concerns?
● How does this get into VCDMV2?

353

GPT-3
Agrees

Editorial Work Mode
(Brent Zundel, 10 mins)

354

● Issues
○ Triage and label issues
○ Make concrete suggestions to help move toward consensus

● PRs
○ Substantive changes should reflect WG consensus and have time for review before they are

merged
○ Editorial changes should have the approval of at least one more editor

■ But may be reverted if concerns are raised

Editorial Work Mode

355

End of Day 2

356

