
OCF 1.0 Candidate Release
Summary, Analysis, and Update from OIC1.1

Michael McCool
Intel

Osaka, W3C Web of Things F2F, 12 May 2017

Outline

 OCF 1.0 Draft Candidate Specification now publically available

 Summary of Changes
 Major Change 1: Introspection and Data Models

 Using OpenAPI (Swagger 2.0)

 Major Change 2: Enhanced Security

 Preliminary ER Model
 Need to converge on common notation and tooling with oneM2M, IoTschema, WoT ontology work

 Need to formalize and encode as an RDF model

 Need to validate with OCF

 WoT/OCF Interoperability Demonstration/Test Case
 Smart Home Demo

2

https://openconnectivity.org/resources/specifications/draft-candidate-specifications

Summary of Changes from OIC 1.1

 Introspection

 Swagger 2.0 (OpenAPI) available from /oic/res/introspection

 Meant to augment, not replace, other introspection capabilities (eg /oic/res) and data models

 Enhanced security

 Alignment with IETF ACE and AllJoyn

 Better specification of uses of certificates

 Better management of onboarding and offboarding processes

 Mandatory access control

 System management (eg firmware updates)

3/37

Major Change 1: Introspection and Data Models

See pages 132-134, Section 11.8 of OCF Core Specification

 The intended usage of the Introspection Device Data is to enable “dynamic clients”.

 Dynamically generate a generic “browser” UI

 Dynamically create translations of the hosted Resources to another eco-system.

 Other usages of Introspection

 Generate client code.

 Designed to augment the existing data already “on the wire”.

 Existing mechanisms (eg /oic/res) need to be used to get a full overview of what is implemented in the Device.

 For example, the Introspection Device Data does not convey information about which properties are
observable, since that is already conveyed with the “p” property on the links in “/oic/res”

4/37

RAML vs. OpenAPI/Swagger

 Both designed for Web APIs, not IoT.

 Neither handles Observables (Events), for instance

 RAML is based on YAML (but CAN be encoded in JSON)

 Swagger uses JSON-Schema (but CAN also use YAML)

 However… choice to use Swagger for OCF introspection seems to be driven by some technical issues with
encoding certain types in YAML as CBOR

 OCF 1.0 specifies Swagger 2.0 for introspection, but implies upgrade to Swagger 3.0 in later revision

 For detailed comparisons (in the context of Web APIs), see:

 http://modeling-languages.com/modeling-web-api-comparing/

 http://nordicapis.com/top-specification-formats-for-rest-apis/

5/37

http://modeling-languages.com/modeling-web-api-comparing/
http://nordicapis.com/top-specification-formats-for-rest-apis/

6/25

RAML vs. OpenAPI/Swagger

RAML
get:

description: ...
queryParameters:

units:
displayName: Units
enum: ["C","F","K"]

responses:
200:

body:
application/json:

schema: Temperature
example: |

{
"rt": ["oic.r.temperature"],
"id": "unique_example_id",
"temperature": 20.0,
"units": "C",
"range": [0.0,100.0]

}

OpenAPI/Swagger
{
"/res": {

"get": {
"description": “…",
"produces": [

"application/json"
],
"responses": {

"200": {
"description": “...",
"schema": {

"type": "array",
"items": {
"$ref": "#/definitions/res"

}
}

}
}

}
}

}

6

Major Change 2: Enhanced Security

Details are here…

7/37

 Property access

 Mandatory device state

 Software update

 Off-boarding

 ACE Resource matching

 CSR Resource

 Certificate format

 Use Directory Name Roles

 Role Certificates

 Mandatory ACLs

 ACE Subject Matching

 Randomized Identifier Onboarding

 SVR Arrays CRUD Query Behavior

https://openconnectivity.org/draftspecs/OCF_1.0_Security_CRs.zip

Other Changes

 AllJoyn Bridge

 How to map to legacy AllJoyn devices (mappings of ASR resources)

 Smart Home Device Specification

 Set of conventions and data models especially for “Smart Home” devices

8/37

OCF ER Model

Omitted/Incomplete/Wrong:

 Mappings from abstract
mechanisms to concrete
mechanisms

 Collections, links, scenes

 Introspection

 New in OCF1.0,
introspection resource is
available to retrieve
OpenAPI data model

9/37

10/37

Issues with OCF ER Model

 Aggregate links should use 0..1 notation etc. rather than aggregation diamonds

 Both for consistency and because it is easier to understand and lay out

 Relationships need to be labelled and categorized

 Links are incorrectly modelled right now
 Actually have several additional fields besides URL href in OCF links: anchor, relationship, etc.

 These are also currently not captured in the WoT ontology (which only has an href and a mediatype, and the latter is not given in an OCF link)

 Certain other aspects not modelled yet or not modelled well

 Relationships between abstract CRUD-N mechanisms and concrete protocols (protocol bindings)

 Client-Server “roles”

 Scenes

 Interfaces

 OCF model is actually based on CoRE
 What are extensions specific to OCF, what are derived from CoRE? Should a version of the model also be upstreamed to CoRE?

11/37

OCF Links

{

“href”: “/switch”,

“rel”: “contains”,

“anchor”: “/a/room”,

“rt”: “oic.r.switch.binary”,

“if”: “oic.if.a”,

“bif”: “oic.if.baseline”

}

12

Target

Relation

Context

Parameters

WoT Links

{

"href" : "coap://mytemp.example.com:5683/temp",

"mediaType": "application/json"

}

13

Target

Media Type

Next Steps with OCF Model

 Converge Notation with oneM2M, IoTschema, etc.
 UML-like notation seems to be common

 Is there a formal definition anywhere?

 Formalize using RDF and define OCF ontology
 Same notation, but with RDF behind the scenes defining an ontology

 Validate with OCF
 Get feedback from OCF on accuracy of model

 Perhaps even upstream and make it part of OCF specification…

 Perhaps do something similar (validation, upstreaming) with a model for CoRE

 Mirror work done with oneM2M
 Match OCF concepts with those in WoT ontology and define mappings from one to the other

14/37

OCF/WoT Interop Demonstrator Planning

Need to demonstrate WoT system interoperating with OCF devices

 Select set of Simple OCF Devices to Use as a Test case
 Smart Home demo good start, but…

 Need something even simpler that can run with or without specialized hardware

 Does not test certain things that are important, for example Collections, Links, Scenes, etc.

 Generate a Thing Description for the OCF Device(s)
 First round: Manual generation

 Second round: Automatic generation (if possible) from more specific Device models (eg from RAML/Swagger)

 Demonstrate Interoperability
 Requires implementing some kind of protocol binding in a concrete implementation

 Easiest place to start is with node-Iotivity and wot-node

15/37

OCF Smart Home

 Demonstrates multiple aspects
and implementations of OCF:
Iotivity-node, Iotivity-
constrained, etc.

 Requires special hardware to
run

 Should however be possible to
convert to SW emulation (using
QEMU for Zephyr component)

https://github.com/01org/Smart
Home-Demo

16/37

https://github.com/01org/SmartHome-Demo

Smart Home Demo Enhancements

 Convert demo to run in SW emulation

 Give option for sensors and actuators to be replaced with socket data sources

 Create “sensor emulations” to drive sensors and “actuator displays” to display actuator state

 Eg Node.js process that presents a web interface

 Upstream to OCF… enhances testing and demo capabilities

 Tweak demo to test things needed for WoT, trim extras

 Add set up that supports multiple lights that can be treated as a collection, used with Scenes, etc.

 Remove or make optional non-essential components (eg graphical UI)

17/37

