The Data Model stRDF and the Query Language stSPARQL

Presenter: Kostis Kyzirakos

Joint work with Manolis Koubarakis and Konstantina Bereta

Database Architectures group Centrum Wiskunde & Informatica monetal

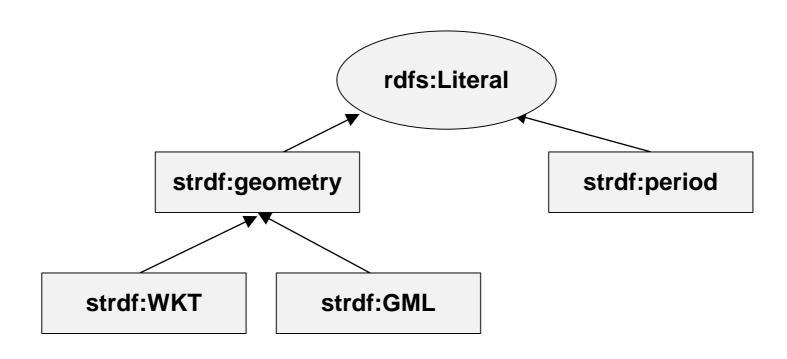
Netherlands

University of Athens School of Science Faculty of Informatics and Telecommunications

Motivation

How do we represent spatial and temporal metadata in the Semantic Web (aka Web of data, Linked data)?

Example:


- The vision of the Semantic Sensor Web: annotate sensor data and services to enable discovery, integration, interoperability etc. (Sheth et al. 2008, SemsorGrid4Env)
- Sensor annotations involve thematic, spatial and temporal metadata. Examples:
 - The sensor measures temperature. (thematic)
 - The sensor is located in the location represented by point (A, B). (spatial)
 - The sensor measured 30°C on 26/01/2010 at 03:00pm. (temporal)

Motivation

How about using RDF?

Good idea. But RDF can **represent only thematic metadata** properly. What can we do about spatial and temporal metadata?

The stRDF Data Model

The Data Model stRDF

- stRDF stands for spatial/temporal RDF.
- It is an extension of the W3C standard RDF for the representation of geospatial data that may change over time.
- stRDF extends RDF with:

[ESWC 2010, | ISWC 2012 1

- Spatial literals encoded in OGC standards Well-Known Text or GML
 - New datatypes for spatial literals (strdf:WKT, strdf:GML and strdf:geometry)

[ESWC 2013]

- Temporal literals can be either periods or instants
 - New datatype for temporal literals (strdf:period)
 - Placed as the fourth component of a triple to denote valid time

stRDF: An example


```
clc:region1 clc:hasLandCover clc:Forest .
    "[2006-08-25T11:00:00+02,2007-08-25T11:00:00+02)"^^strdf:period .
noa:ba1 rdf:type noa:BurntArea
    "[2007-08-25T11:00:00+02,2009-08-25T11:00:00+02)"^^strdf:period .
clc:region1 clc:hasLandCover clc:AgriculturalArea
    "[2009-08-25T11:00:00+02, "UC")"^^strdf:period .
```

stSPARQL: An example

Find all areas that were forests in 2006 and got burned later within 10kms of a city

```
select ?BA ?BAGEO
 where {
             rdf:type noa:Region ;
             geo:geometry ?RGEO ;
             noa:hasCorineLandCoverUse ?F ?t1
         ?F
             rdfs:subClassOf clc:Forests
                rdf:type dbpedia:City ;
         ?CITY
                geo:geometry ?CGEO .
Temporal
                rdf:type noa:BurntArea ?t2
          BA
```

constant and extension function

```
Access)
geo:geometry ?BAGEO
```

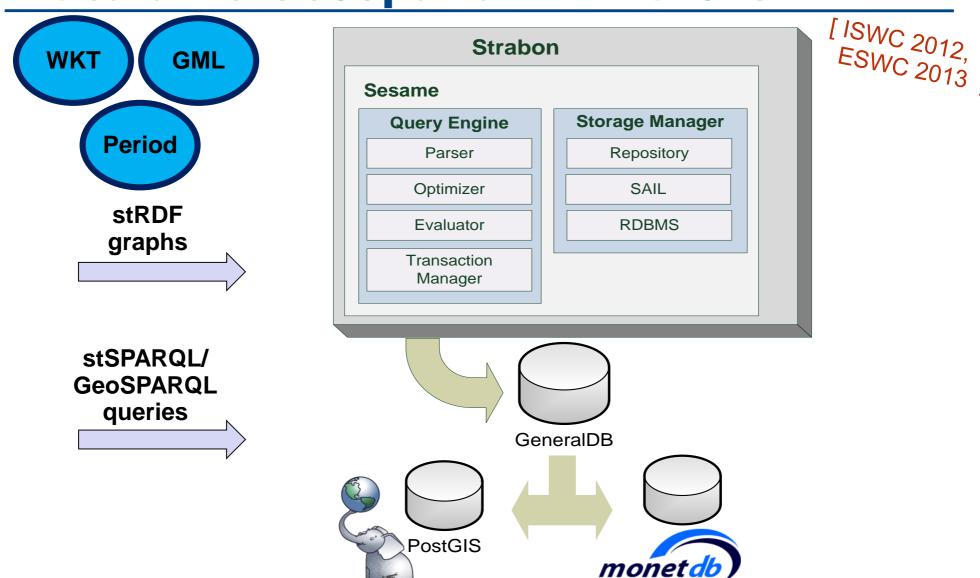
```
ilter(geof:sfIntersect(?RGEO,?BAGEO)
      geof:Distance(?BAGEO,?CGEO,uom:km)<10)</pre>
```

```
filter( strdf:during(?t1, "[2006-01-01:00:00:01,
2006-01-01:23:59:59]"^^strdf:period)) &&
 strdf:before(?t1, ?t2) }
```

Spatial

Feature

Functions


(OGC Simple

stSPARQL: More details

- We start from SPARQL 1.1.
- We add a SPARQL extension function for each function defined in the OGC standard OpenGIS Simple Feature Access Part 2: SQL option (ISO 19125) for adding geospatial data to relational DBMSs and SQL.
- We add a set of temporal functions (superset of Allen's functions) as SPARQL extension functions
- Spatial and temporal predicates can be used in the SELECT and FILTER clause of a SPARQL query
- Allow quad patterns in the WHERE clause to refer to valid time of a triple

Strabon:

A Scalable Geospatial RDF Store

http://bit.ly/Strabon