
An introduction to

Web of Things Framework

Monday, 20 April 2015

Munich, Germany

Dave Raggett, W3C

2/20

The Challenge

● We expect tens of billions of IoT devices within ten years

● But, the Internet of Things is beset with problems
● Product silos that don't interoperate with each other
● Plethora of approaches & incompatible platforms
● Companies seeking to create and control ecosystems

● Most will fail at this!

● Locking in data reduces the value of the IoT overall
● Blocks the network effect!

● This is painful for developers
● Hard to keep track of who is doing what
● Expensive to learn and port to different platforms
● Challenging to create services that span domains and platforms

3/20

The Web as the Solution

** Gateway defines IoT device abstraction layer

**

4/20

From Pages to Things

● The web of pages is founded upon
● IRIs for addressing
● HTTP for access
● HTML for pages and for discovery

● Search engines following the links in pages

● Web of Things by analogy with web of pages
● IRIs for addressing
● HTTP and other protocols for access

● No one protocol can satisfy all needs

● Thing Description Language (TDL)
● Semantics and data formats as basis for interoperability
● Relationships to other things as basis for discovery

5/20

Web of Things Framework

● Expose IoT platforms and devices through the
World Wide Web for a Web of Things

● “Things” as proxies for physical and abstract entities

● Modelled in terms of events, properties and actions
● What events does this thing generate?

● Someone has just rung the door bell
● Someone has just inserted a door key

● What properties does this thing have?
● Door is open or closed

● What actions can we invoke on this thing?
● Unlock the door

● Thing with on/off property as proxy for a light switch

● With bindings to scripting APIs and protocols

6/20

Web of Things Framework

● Standard way to retrieve “thing” descriptions
● Standard format for “thing” descriptions (e.g. JSON-LD)
● Owner, purpose, version, access control, terms & conditions,

relationships to other things, security best practices, . . .
● Giving data owners control over who can access their data

and for what purposes – contract between consumer & supplier

● Semantics and data formats for events, properties & actions
● Properties have discrete values, or smoothly changing values

that are interpolated between data points, e.g. for robotics
● Clock sync across controllers: 1-10 mS with NTP,

and microseconds with IEEE protocols

● Communication patterns
● Push, pull, pub-sub, and peer to peer

● Bindings to a range of protocols
● HTTP, Web Sockets, CoAP, MQTT, STOMP, XMPP, WebRTC

7/20

Interacting with a “Thing”

● Representational State Transfer (REST)
● HTTP GET to retrieve a thing's description
● HTTP GET to retrieve all properties of a thing
● HTTP PUT to update all properties of a thing
● HTTP PATCH to apply changes to some properties
● HTTP POST to invoke actions on a thing
● HTTP POST is also used to notify events

● To proxies or dependent things

● REST can be used with other protocols
● To send actions to thing within a firewall
● To distribute updates via pub-sub model

8/20

Servers at many scales

Servers are free to choose which scripting languages they support
Could precompile service behaviour for constrained devices

9/20

Example of a Home Hub

10/20

Relationships between Things

● “Thing” description includes the relationships to the
things that this thing depends upon
● Server uses this to retrieve descriptions of related things

as basis for deciding how to connect to them and expose
them to scripts that define this thing's behaviour

● Enables search engines to index the web of things
● Supports richer search queries based upon relationships
● Enables dependency management

● Perhaps analogous with Linux package management

● Decouples service behaviour from data protocols
● Simpler expression of service behaviour via

local names for things

11/20

End-User Service Creation

● Event-condition-action rules
● Trigger action upon event if condition is true
● High level events defined in terms of

lower level events
● Higher level actions defined in terms of

lower level actions
● Ordered and unordered sequences of actions
● Pre- and Post-conditions

● Simple to use graphical editing tools

● Vocal commands (as with Apple's Siri)
● “turn the heating down when I leave home”

12/20

Appeal of JSON-LD

● What makes JSON-LD attractive as basis for the thing description
language?

● W3C Recommendation from 16 Jan 2014
● http://www.w3.org/TR/json-ld/

● Combines simplicity of JSON with the power of the Linked Data
and the Semantic Web
● Out of band profiles and binary JSON formats for short packet protocols

● We would define a core profile for a vocabulary common to
all “thing” descriptions

● Implementers would be encouraged to re-use vocabularies for
specific application domains
● These could be defined by industry specific groups
● Need for better schema/vocabulary languages

http://www.w3.org/TR/json-ld/

13/20

Questions?

More details are given in: http://www.w3.org/2015/04/wot-framework.pdf

http://www.w3.org/2015/04/wot-framework.pdf

Thing Descriptions

● Door ● Light switch
{
 “@events” : {
 “bell”: null,
 “key”: {
 “valid” : “boolean”
 }
 },
 “@properties” : {
 “is_open” : “boolean”
 },
 “@actions” : {
 “unlock” : null
 }
}

{
 “@properties” : {
 “on” : {
 “value” : “boolean”,
 “writable” : true
 }
 },
}

TDL's default JSON-LD context defines bindings of core vocabulary to IRIs
Data models may be defined explicitly or by reference to an external definition

Questions for discussion:
 How to define events in terms of property changes?
 How to specify which protocols and encodings are supported?

Thing as Agent

● Thing description ● It's behaviour

{
 @context : {
 @base=”http://….
 },
 “@dependencies” : {
 “door” : “door12”,
 “light” : “switch12”
 }
}

// invoked when service starts

function start () {
 door.observe(“key”, unlock);
}

function unlock(key) {
 If (key.valid) {
 door.unlock();
 light.on = true;
 }
}

This “thing” is an agent with no events, properties or actions.

It unlocks the door and turns on the light when a valid key is presented.

n.b. @base defines a base IRI for resolving relative IRIs

Miscellany

● For validation and specification of vocabularies
● JSON-Schema
● RDF-Schema
● OWL

● For efficient transfer of structured data
● JSON (defined by RFC7159, ECMA 404)

● MessagePack, Universal Binary JSON, etc.

● Google's Protocol Buffers
● XML with EXI

● Bindings to protocols need to cover encodings
● /.well-known/protocols for retrieving server's protocol support?

● Actions on things are asynchronous and may return results

http://json-schema.org/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/standards/techs/owl#w3c_all
http://json.org/
http://msgpack.org/
http://ubjson.org/
https://developers.google.com/protocol-buffers/
http://www.w3.org/XML/EXI/

Thingsonomies

● The purpose of a “thing” can be defined
formally in respect to an ontology

● The purpose can be defined informally using
free text, e.g. as one or more tags chosen by
the maintainer

● Co-occurrence of tags across many “things”
performs an informal expression of semantics
● In same way as folksonomies for images or blog

posts

Thing Descriptions

● Thing descriptions may be static and shared by many “things”
● These things can define their description by reference

● Some kinds of things may involve descriptions that change
over time, e.g. a new owner, or a new physical location for a
sensor, …
● Events signalling changes to metadata?
● Thing memories that record changes over a thing's lifetime

● Bindings to protocols may involve self tagged data
● Analogous to “unions” in programming languages

● The properties of a “thing” may include data blobs that have a
meaning and a content-type
● Photo of someone and encoded as image/jpeg

Semantics for Smart Appliances

● Semantic Sensor Network Ontology
● W3C SSN Incubator Group report
● SSN Ontology

● Sensor Model Language (SensorML)
● Developed by Open Geospatial Consortium

● Sensor Markup Language
● JSON & XML/EXI – IETF draft-jennings-core-senml

● TNO's smart appliance ontology for ETSI M2M
● Developed on behalf of European Commission

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.opengeospatial.org/standards/sensorml
http://datatracker.ietf.org/doc/draft-jennings-core-senml/?include_text=1
https://sites.google.com/site/smartappliancesproject/home

IETF CoRE WG

● CoRE WG with focus on resource oriented applications for
constrained IP networks, and responsible for CoAP protocol
● See tracker page and CoAP website
● CoAP is based on REST and similar to HTTP

● GET, PUT, POST, DELETE, OBSERVE methods

● CoAP is a good fit for the Web of Things

● Resource discovery
● Unicast or multicast queries

● Link format (RFC6690) analogous to HTTP Link header
● Which itself is modelled on HTML's LINK element
● JSON link format under consideration

● GET /.well-known/core returns list of resources

● Notifications with push and pub-sub
● Interested parties register with GET
● Notifications are sent with OBSERVE method

https://datatracker.ietf.org/wg/core/charter/
https://tools.ietf.org/wg/core/trac/wiki
http://coap.technology/
http://tools.ietf.org/html/rfc6690
https://www.ietf.org/archive/id/draft-ietf-core-links-json-02.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

