
Multi-Screen
Window Placement
TPAC 2020 - Second Screen CG
Incubation overview & update
msw@google.com

Draft Spec/Explainer/Issues: github.com/webscreens/window-placement
Chromium OT M86-M88: ChromeStatus entry, origin trials tokens, meta bug

https://github.com/webscreens/window-placement
http://chromestatus.com/feature/5252960583942144
https://developers.chrome.com/origintrials/#/view_trial/1411878483180650497
http://crbug.com/897300

Updating the web platform for multi-screen

Existing web platform APIs Modern Reality

Singular screen info / access Multiple screens connected

Sync APIs with lackluster
permission controls

Want capable applications with
good privacy & security protections

Poor API shapes/ergonomics Need new APIs & play nice with old

Current Proposal

Initial information Just the current window.screen New multi-screen boolean

Change handling Sites must poll for changes Events fire on screen changes

Additional information No :-/ Request other screens and
additional per-screen info

Cross-screen fullscreen Users must manually drag windows,
then trigger fullscreen...

Sites can specify a screen
or swap to another screen

Cross-screen windows Users must manually drag windows
(bounds clamped to current screen*)

Sites can specify cross-screen coordinates
for window.open()/moveTo()/...

Updating web APIs for multi-screen

Get a Chromium Origin Trial (M86-M88) token and test it today!

https://developers.chrome.com/origintrials/#/view_trial/1411878483180650497

av
ai

lH
ei

g
h

t

av
ai

lT
op

Web Platform Anatomy: Screens

width
availWidth

Standardized:
(CSSOM View)

h
ei

g
h

t

orientation
 colorDepth
 pixelDepth

Common:
(MDN)

left

to
p

availLeft Proposal:
window.screen.isExtended
window.screen.onchange

window.getScreens()
> { screens[], currentScreen, onchange }
screens[i].id
screens[i].isPrimary
screens[i].IsInternal
screens[i].devicePixelRatio
screens[i].pointerTypes

More developer requests and platform gaps:
● Screen name, hdr, wcg, etc.
● ...

https://drafts.csswg.org/cssom-view/#the-screen-interface
https://developer.mozilla.org/en-US/docs/Web/API/Screen
https://github.com/webscreens/window-placement

Web Platform Anatomy: Window Placement

screenLeft

sc
re

en
To

pStandardized:
Per-screen coordinates(?)
(definition unclear, impls differ)

innerWidth

outerWidth

in
n

er
H

ei
gh

t

o
u

te
rH

ei
gh

t

Proposed:
Cross-screen coordinates (already in some impls)

Supports cross-screen placement with existing:
● moveTo|By(), open(), screenLeft|Top

Alternative to cross-screen coordinates:
● Screen args for moveTo/open, or new APIs

More developer requests and platform gaps:
● Events on move, like resize
● Open() fullscreen windows
● Open() w/outer bounds
● Maximize, minimize, restore
● ...

screenLeft

sc
re

en
To

p
moveTo|By(x, y)
resizeTo|By(x, y)
open(url, name, features)
(features includes left, top, width, height)

Related: Element.requestFullscreen({screen: bestScreen});

Ongoing API Shape Changes

First Origin Trial Proposed Update

Are multiple screens
connected?

Window.isMultiScreen()
Unclear permission requirement.

window.screen.isExtended
No permission required*.

Multi-screen info via
Window.getScreens()

Async access to a static snapshots.
Dictionary spec drifts from Screen.

Need to await new info in event handlers.

Async access to live Screens interface.
Exposes Screen-inheriting objects.

Sync access to new info in event handlers.

Info change events Window.onscreenschange
Conflates all events.

EventTarget is not gated by a permission.

Screen.onchange & Screens.onchange
Per-screen & multi-screen events.

EventTargets gated by permission.

Naming, etc. screens[i].primary,
screens[i].touchSupport, ...

screens[i].isPrimary,
screens[i].pointerTypes, ...

Your feedback is vital! File issues against our proposal and prototype implementation.

https://github.com/webscreens/window-placement/issues
https://bugs.chromium.org/p/chromium/issues/detail?id=897300

Demo
window-placement.glitch.me
web.dev/multi-screen-window-placement

michaelwasserman.github.io/window-placement-demo

https://web.dev/multi-screen-window-placement/
https://window-placement.glitch.me/
http://web.dev/multi-screen-window-placement
http://michaelwasserman.github.io/window-placement-demo
https://michaelwasserman.github.io/window-placement-demo/
https://window-placement.glitch.me/

Demo

https://docs.google.com/file/d/1eTcUDuSpSoOGHa8vv4mouQ6sh0STcn9D/preview

Thank you!

Thanks! Questions? Comments?

Possible discussion topics:
● Integration with related APIs/proposals
● Coordinate system standardization
● Cross-screen fullscreen window behavior
● Naming/shaping the current API :-)
● Looking ahead: Possible future proposals

Integration with related APIs/proposals
Window Segments Enumeration API

● Exposes bounds for each content region of a single window that spans multiple (?) Screens
○ partial interface Window { sequence<DOMRect> getWindowSegments(); };

● If one Screen can yield multiple segments, should per-Screen segments be exposed? (issue #7)
○ Expose which screens have segments/folds before a window is placed there?
○ Add partial interface Screen { readonly attribute FrozenArray<DOMRect> segments; };?

Screen Fold API
● Exposes the angle and orientation of a fold in a single (?) Screen

○ partial interface Screen { [SameObject] readonly attribute ScreenFold fold; };
● Support for: One fold between two Screens? Off-center folds? Multiple folds per Screen? (issue #38)

○ Add partial interface ScreenFold { readonly attribute FrozenArray <Screen> screens; };? More?
○ Add partial interface ScreenFold { readonly attribute long position; };?
○ Use partial interface Screen { [SameObject] readonly attribute FrozenArray<ScreenFold> folds; };?

Visual Viewport API
● Exposes information about the scaling and scrolling of content within a Window

See related Multi-Screen Window Placement issues #21, #35, #36
Naive principle: A multi-screen API should expose all Screen interface info for each available Screen.
For example: if Screen.hdr was added, one should expect this to work: (await getScreens()).screens[i].hdr;

https://github.com/webscreens/window-segments
https://github.com/webscreens/window-segments/issues/7
https://w3c.github.io/screen-fold/
https://github.com/w3c/screen-fold/issues/38
https://github.com/WICG/visual-viewport/
https://github.com/webscreens/window-placement/issues/21
https://github.com/webscreens/window-placement/issues/35
https://github.com/webscreens/window-placement/issues/36
https://github.com/w3c/csswg-drafts/issues/4471

Cross-screen window coordinates
New placement APIs not needed

Per-screen window coordinates
New placement APIs needed

Maximize Privacy UA lies, e.g. { Window.screenLeft|Top,Screen.Width|Height == 0,
Window.outerWidth|Height,Screen.width|height == Window.innerWidth|Height}

Window placement isn’t really feasible; fingerprinting is minimized...

Toggle with
permission?

UA lies w/o permission; gives actual coordinates w/permission
ScreenLeft|Top & outerWidth|Height change w/permission… unprecedented?

Maximize
Transparency

UA gives actual coordinates, other multi-screen info gated by permission
windows on separate screens can collude, e.g. win1.screen.width != win2.screen.width

Sites w/o permission can sometimes infer
multi-screen geometry with one window.

(e.g. screenLeft > screen.width)

Sites w/o permission can’t infer
multi-screen geometry with one window.
Sites w/o permission can’t always discern if

two windows are on the same display.

Coordinate system standardization
Spec is unclear about multi-screen environments; let’s consider options…

https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#using-cross-screen-coordinates-or-per-screen-coordinates

Cross-screen fullscreen window behavior
Chromium uses the underlying window for fullscreen (browser/popup/web application).
So, the cross-screen fullscreen prototype moves the underlying window to the target screen.

Users may perceive that the window has “disappeared” while an element is fullscreen.

Is this purely an implementation detail? Should the Fullscreen API prescribe behavior?

Also, should we support multiple fullscreen elements from a single document?

https://fullscreen.spec.whatwg.org/
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#support-multiple-fullscreen-elements-from-a-single-document

Naming/shaping the current API :-)
Screen.isExtended
Screen.onchange
Window.getScreens()

interface Screens : EventTarget {
 readonly attribute FrozenArray<ScreenAugmented> screens;
 readonly attribute ScreenAugmented currentScreen;
 attribute EventHandler onchange;
};

interface ScreenAugmented : Screen {
 readonly attribute long left;
 readonly attribute long top;
 readonly attribute long availLeft; // On Screen...
 readonly attribute long availTop; // On Screen...
 readonly attribute boolean isPrimary;
 readonly attribute boolean isInternal;
 readonly attribute float devicePixelRatio;
 readonly attribute DOMString id;
 readonly attribute FrozenArray<PointerType> pointerTypes;
};

Looking ahead: Possible future proposals
Here are some developer requests and platform gaps not (yet) addressed by this proposal.

Window placement:
● Events on move, like resize (exploration)
● Open() fullscreen windows (#7)
● Open() w/outer bounds
● Maximize, minimize, restore, focus (#3)
● Moving/swapping fullscreen screens (#5)
● Z-ordering… :-/ (#10)
● More ergonomic and powerful APIs… (#8, explorations: A, B)
● Parent/child and modal window relationships? (exploration)
● Other properties (exploration)

Screen information:
● Name
● HDR support
● WCG support
● Other info (exploration)

https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#surface-events-on-window-bounds-state-or-display-mode-changes
https://github.com/webscreens/window-placement/issues/7
https://github.com/webscreens/window-placement/issues/3
https://github.com/webscreens/window-placement/issues/5
https://github.com/webscreens/window-placement/issues/10
https://github.com/webscreens/window-placement/issues/8
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#new-window-placement-methods-or-overloads-of-existing-methods
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#extend-apis-to-control-window-state-display-modes-etc
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#support-dependent-or-child-window-types
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#new-window-properties-to-consider-exposing
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#new-screeninfo-properties-to-consider-as-use-cases-arise

Chromium Implementation Anatomy

Browser

RenderFrameHost (&View&Widget)
ScreenEnumerationImpl Mojo service impl

UpdateVisualProperties & ScreenInfo legacy IPC

PermissionControllerImpl (per-frame), Activation
exclusive access FullscreenController

WebContentsImpl::RequestSetBounds
WebContentsImpl::ShowCreatedWindow

Browser::AddNewContents, navigation, initial_bounds

unit/browser/interactive_ui tests, UMA

views::Widget bounds init clamping & WindowSizer
display::Screen[Ash|Base|Mac|Ozone|Win|X11]

ui/display::Display & display.mojom

Renderer

RenderFrame (&View&Widget)
GlobalScreenEnumeration Mojo client

UpdateVisualProperties & ScreenInfo legacy IPC

permission.mojom, *_descriptor.idl, *_util.cc
Blink-side FullscreenController

[Local]DomWindow & Screen JS interface impls
ChromeClient::SetWindowRectWithAdjustment

IDLs: screen, window, fullscreen & *_options

Web platform tests, UseCounter

Subframe FeaturePolicy, permission delegation
Execution context lifetimes, promises, async fun

Sounds easy! Let’s just...
● Share use cases and explain value, refine API shapes, gather feedback and interest
● Intent to Prototype + basic dev-trial implementation

○ Plumb Browser’s screen info to Blink via Mojo; expose via IDL
○ Extend fullscreen IDL for a requested screen, plumb to Browser
○ Retrofit scattered and buggy window bounds clamping in Blink/Views

● Write a demo PWA, keep it up to date with API changes and highlighted use cases
● Add permission prompt, checks, page info bubble & WebUI settings entries

○ Determine permission text, icons, one permission or two...
○ Weigh partner requests against privacy objectives
○ Plumb source RenderFrameHost/permissions through new window creation, etc.

● Continually refine API scope, shape, and implementation details
○ Investigate/fix per-platform bugs (e.g. workspace transitions on Mac, per-screen scaling on Win)
○ Add per-platform support (e.g. internal display detection)
○ Explore subframe feature policy capabilities and implications
○ Extend browser/wpt tests for multi-screen (w/o multi-screen hardware), etc.
○ Scratch head over window.open()’s lack of outerWidth & outerHeight support…
○ Work around transient user gesture expirations during permission prompts
○ Implement metrics somewhere in the stack of requests and outcomes

● Coordinate with W3C TAG review, partners, related proposals
○ Address feedback, improve explainer materials, organize alternatives and V2 explorations

● Soon: Intent to Experiment + Origin Trial! -> Refine, Intent to Ship, Launch&Land, Standardize

Thanks!

