Second Screen WG/CG
TPAC 2019 - Day 1

Peter Thatcher (pthatcher@google.com)
Mark Foltz (mfoltz@google.com)
Fukuoka September 2019

Day 1- Outline

Introductions, Agenda Bashing
Overview & Update on Group Work
Open Screen Protocol Spec Changes

OSP 1.0 Spec: Extensibility, Security,
Remote Playback

<Lunch>

OSP 1.0 Spec: Remote Playback
cont'd, Streaming

OSP V2 Feature Proposals

SSWG/Media & Entertainment IG
Joint Session

SSWG/CG Overview & Update

Second Screen CG History

Nov 2013: Initial charter

Nov 2013 - Dec 2014: Incubation of Presentation API

Dec 2014: Presentation API transitioned to Second Screen Working Group
Sept 2016: CG rechartered to focus on interoperability

2016-2017: Requirements, protocol alternatives, benchmarking plan
Jan-Feb 2018: SSWG rechartered. Phone conference, work plan

May 2018: Berlin F2F

October 2018: TPAC 2018

April 2019: 1.0 draft spec released

May 2019: Berlin F2F, many refinements to 1.0, added remoting/streaming
Sept 2019: Here we are :-)

Presentation API

1. Controlling page (in a browser) requests presentation of a URL on a receiver
device (on a connected display).

2. Browser lists displays compatible with the URL; the user selects one to start
the presentation.

3. Controlling and receiving pages each receive a presentation connection.

The connection can be used to exchange messages between the two pages.

5. Either side may close the connection or terminate the presentation.

B

Presentation API - In practice

Photowall

https://googlechromelabs.github.io/presentation-api-samples/photowall/

Remote Playback API

<audio> or <video> element can:

1. Watch for available remote displays
2. Request remote playback by calling video.remote.prompt()
3. Media state is synchronized with the remote playback device

¥/ Remote Playback ¥ Video Preload Casting to mfoltz-eureka

0:52 / 2:26
L ——]

[R——

Second Screen Community Group Scope

Address interoperability through protocol incubation

Controllers and receivers (or remote playback devices) on same LAN
Presentation API: 2-UA mode (“flinging” URL)

Remote Playback APIl: Remote playback of a src=*...” <audio> or <video>

Consider future use cases including streaming and cross-LAN connections

Open Screen Protocol

Functional Requirements

1. Discovery of receivers and controllers on a shared LAN

2. Implement Presentation API
a. Determine display compatibility with a URL
Creating a presentation and connection given a URL
Reconnecting to a presentation
Closing a connection
Terminating a presentation

3. Reliable, in-order message exchange
Authentication and confidentiality
5. Implement Remote Playback API for <audio> and <video> src=

© Q0

H

Non-functional Aspects

Usability

Preserving privacy and security

Resource efficiency (battery, memory)
Implementation complexity on constrained devices

Extensibility and upgradeability

Open Screen Protocol - Stack

Open Screen Protocol - Current Approach

CBOR (REC 7049)

QUIC (Draft RFC)

TLS 1.3 (REC 8446) with SPAKE2

mDNS (REC 6762) / DNS-SD (REC 6763)

Open Screen Protocol - Life of an Agent

1. Agent discovers other agents with mDNS

2. Agent connects with QUIC and and TLS

3. Agent can query remote agent name, capabilities,
status

4. To do anything else, agents authenticate with a
pairing code

5. Authenticated agents can do presentation, remote
playback, streaming

6. Agents can disconnect and reconnect through QUIC
without losing sessions

What has been accomplished

e Requirements analysis, research into alternatives
e Decision to pursue the current protocol stack

e Multiple authentication approaches investigated:

o Challenge/Response w/ HKDF
o J-PAKE
o Current spec uses SPAKE2

e V1 spec document has reached completion as a 1.0 draft

e Open Screen Protocol Library implements part of 1.0 spec

Major work items remaining to complete 1.0 spec

Pairing code (PSK) encoding into numeric value or QR code

Finish defining TLS 1.3 application profile

How to add and remove values to/from enums with backwards compatibility
Refinements to remote playback protocol

Refinements to streaming and remoting protocols

Define suspend/resume behavior for network protocols

Support for HDR media (depending on discussion in Media WG)

Major work items remaining for wide review

e Finish TAG Explainer
e Resolve and merge PRs for "v1-spec" issues
e Document on custom schemes (like cast:, hbbtv:) finished

Implementation: OSP Library

Landed! Future Work

. Full mDNS support SPAKEZ2 implementation

\ Full QUIC support . .
| Capabilities, agent-info
Platform abstraction layer

i Remote Playback protocol
i CBOR support via CDDL codegen

. Presentation API support Streaming/remoting protocols

i Demos in C++ and Go

Open Screen Protocol "v2" Proposals

Support for GenericCue/DataCue during Remote Playback
Multi-device timing/media synchronization

Attestation

Data frames use cases

Backup/alternate discovery

Wake-on-LAN scenarios

LAN traversal (ICE) support

"Pings"

Other v2 features

Review of OSP changes since Berlin

First some names!

. Open Screen Software / device that implements OSP
— Protocol Agent

Advertising Agent MDNS responder / QUIC server

Listening Agent MDNS listener / QUIC client
PSK Presenter Shows the PSK (pairing code) during auth
PSK Consumer Receives the PSK from the user

Advertiser/Listener independent from Presenter/Consumer!

More names!

Controller

Presentation Controller / Remote Playback user agent

Receiver

Presentation Receiver / Remote Playback Device

Media Sender

Sends audio/video frames

Media Receiver

Receives audio/video frames

Controller/Receiver independent from Media Sender/Receiver

All are independent of Advertiser/Listener and PSK Presenter/Consumer

Changes to QUIC, CBOR, & TLS

QUIC connection IDs are zero-length.

No length prefixing for CBOR messages.

Use CDDL comments to note message type keys in the spec.

Use QUIC varints to encode message type keys.
remote-playback-state uses a one-byte message type key.

For TLS, require EC certs, and ignore most extensions.

Clear rules for when a new type key is needed and when a type can be
extended without a new type key

Changes to Agents & Capabilities

Agents now advertise "capabilities" based on what messages they understand.

Standard capabilities use numbers 1-1000.

Added receives-audio and receives-video capabilities.

Agents advertise their preferred locale in agent-info.

If an agent changes its metadata, they can send an agent-info-event.

Agents keep a counter to create unigue IDs for protocol messages.

If they reset the counter (e.g. on reboot) they need to update their state-token.
Agents can_advertise extended (non-standardized) capabilities.

Extended capabilities and messages should be reqgistered in GitHub.

Changes to Remote Playback & Presentation

e Added changed-texi-tracks to allow the controller to update text tracks.

e Added add-text-tracks to allow the controller to add text tracks.

e Added algorithm for when to send remote-playback-state messages from
receiver to controller.

e Remote Playback ID is a now GUID (to allow reconnection in the future).

e presentation-connection-close-request and -response replaced by -event.

e presentation-change-event added so controllers can count connections.

Changes to Authentication

Agents use auth-capabilities to decide who inputs the pairing code (PSK).
Agents exchange psk-min-bits-of-entropy to decide length of PSK.

Agents advertise a token through mDNS to validate incoming auth requests.
Added UX guidance for displaying and inputting the PSK.

Agents must never display a truncated display (friendly) name from mDNS.
Agents use SPAKE?Z2 to verify the PSK.

PSK must be the same if QR code or numeric PIN

Changes to Streaming

Kept data frames

Added session negotiation (offer/request for encodings)
Added stats reporting

Added support for media playback remoting

Added support for supports-rotation

Other spec changes

e Allthe terminology changes discussed eatrlier :-)
e Links between protocol capabilities and APl conformance
classes

e Can now autolink protocol messages like agent-info to
definitions

OSP 1.0 Issues to Discuss

Remaining OSP 1.0 Things to Review / Discuss

1. Security & Authentication Things
Review the details of TLS 1.3 usage (Issues #130, #135)
Review the security Ul guidelines for name display and PSK exchange (#118)
Review the auth-initiation-token (#£185)
. Review SPAKE2
2. Remote Playback Things
a. Review the remote playback update algorithm (#158)
b. How to exchange capabilities for HDR rendering (#194)
c. Do we need any changes for multiple controllers? (#149)
3. Streaming Things
a. Review sessions, stats
b. Review media remoting
c. Bidirectional streaming / stream requests (#176)

4. Extensions (#1/5)

o0 T o

Security & Authentication

Discussion: TLS 1.3 & Extensions

PR #212 describes how agents can use TLS:

Mandatory

Optional

Ciphers

AES-128-GCM / SHA-256

AES-256-GCM / SHA-384
CHACHA20 / SHA-256

Signature Algorithms

secp256r1/ SHA-256

secp384r1/ SHA-384
secp521r1/ SHA-512

Extensions

signature_algorithms
supported_groups
key_share
server_name

All others are ignored.

TLS 1.3: Which ciphers?

e No public benchmarks with the same hardware across all three ciphers.
e ARMVS8 is the first generation with AES-NI available (hardware acceleration)

e CHACHAZ20 is generally very fast for chips without AES-NI

ARMvV7 32-bit ARMv8a 64-bit Intel / AMD
AES-128-GCM 7 7?7 7?7
AES-256-GCM 7?7 7?7 7?7
CHACHA20 7 7?7 7?7

PROPOSED ACTION: Run a benchmark test (openssl -speed) and use it

to fill in this table.

TLS 1.3: Which ciphers?

ARMvV7 32-bit

ARMv8a 64-bit

Intel / AMD

AES-128-GCM

7?7

7?7

7?7

AES-256-GCM

7

7?7

7?7

CHACHA20

7?7

7?7

7?7

- Ensure that there are efficient options for hardware with & without AES-NI.
- Allow battery powered devices to prefer CHACHA20 if they don't have AES-NI.

TLS 1.3: Which signature algorithms?

e Currently secp256r1is mandatory, other ECDSA are recommended
e EdDSA is not allowed, but has some advantages
e No public benchmarks with the same hardware across all algorithms :~(

"Bits" | ARMv7 32-bit ARMv8a 64-bit | Intel / AMD
ECDSA secp256r1 128 ?7?? ?7?? 7?7
ECDSA secp384r1 192 ?7? ?7? 7
ECDSA secp521r1 256 7 7 7?
EdDSA 25519 128 ?7?? ?7?? ?7??
EdDSA 448 224 7?7 7?7 7?7

TLS 1.3: Which signature algorithms?

6 . Single Signature ,IAlgo cost with differelnt message sizes .
; ; : - - ECDSA sign
: : ! == ECDSA_verify
: A e EdDSA _sign
5 h‘_ ,,,,,,,,,,,,, e i R P e RS DA R SRS P PO W (=5 EdDSA_verify 4
-'= Schnorr_sign
Schnorr_verify
- - Single_BLS_sign
Bty ; i : Single_BLS_verify |]
blake2b512

Source

Time per byte (microsecond)

5 ; : :
102 10° 104 10° 10° 107
Message Size

TLS 1.3: Which signature algorithms?

PROPOSED ACTION: Run a benchmark test (openssl -speed) and use it
to fill in this table.

"Bits" ARMvV7 32-bit ARMv8a 64-bit | Intel / AMD
ECDSA secp256r1 128 7?7 7?7 7?7
ECDSA secp384r1 192 7?7 7?7 7?7
ECDSA secp521r1 256 7?7 7?7 7?7
EdDSA 25519 128 7?7 7?7 7?7
EdDSA 448 224 7?7 7?7 7?7

Note: benchmark both signing and verification.

TLS 1.3: Do we need session resumption?

According to Victor Vasiliev: "If you can get rid of session resumption, get rid of
session resumption”.

It requires secure storage.
It's only good for O-RTT data, which we don't need.

Q: Do we have consensus to eliminate session resumption?

TLS 1.3: Do we need the Cookie extension?

HelloRetryRequest is sent by the TLS server when it couldn't generate keys from
the ClientHello.

Cookies allow the server to send a hash of the original ClientHello which is
replayed with the HelloRetryRequest.

But normally this shouldn't happen since we will mandate a compatible set of
cryptographic parameters. Cookies will just add complexity to the client.

Q: Do we have consensus to not require the Cookie extension?

Authentication and User Interface Guidelines

We don't want to mandate Ul; PR #197 and PR #202 added guidelines.

1. Render information that hasn't been verified (pre-auth) differently.

2. Ifthe agent needs to be re-authenticated ("suspicious") then display it
differently.

3. Make the PSK display and input hard to spoof.

Make the user take action to input the PSK.

5. Meet accessibility guidelines when showing & inputting the PSK.

B

Authentication and User Interface Guidelines

X
Cast desktop
mfoltz-cc-v3
D Available
tguilbert-eureka
D Available
/" mfoltz-cc-audio
{L Needs pairing
G ot Note: This is a concept.
N : . 8 ;
Avallable Final version will look very
—, mfoltztest2 different.
N Available
Sources ¥

Authentication and User Interface Guidelines

1. Render information that hasn't been verified (pre-auth) differently.

2. Ifthe agent needs to be re-authenticated ("suspicious") then display it
differently.

3. Make the PSK display and input hard to spoof.

4. Make the user take action to input the PSK.

5. Meet accessibility guidelines when showing & inputting the PSK.

Q: Are these sufficient based on what we know now?

Authentication: auth-initiation-token

What if anyone could send auth-spake2-need-psk to your agent? Then a pairing
code would pop up. That's annoying!

We added a short, random token advertised through mDNS. This token has to be
provided to request authentication (PR #182, PR #189).

Authentication: auth-initiation-token

We use the "at" field in mDNS.

. TXT = {

J

94— 4t=0123abcd —
}

auth-spake2-need-psk = {
©0: 0123abcd ; token I >
}

Q: Do we agree this works to prevent misuse of authentication?

Authentication: What PAKE to use?

Current spec uses SPAKE2. (PR #178)

Challenge/response (proposal #2) requires a memory-hard HKDF (hash)

function
o Exceeds memory requirements for target devices (> 128MB)

J-PAKE (proposal #1) requires more complex messages, and is not
implemented in BoringSSL/OpenSSL.

SPAKE2 was recommended by Google experts & fits requirements
However, standardization of SPAKE2 is not complete (but neither is J-PAKE)
By way, we have a_PR to make important properties more explicit

Do we have consensus to move forward with SPAKE2?

Remote Playback Protocol

Remote Playback: Done since Berlin

e Added/refined Remote playback update algorithm
e Table for defaults/required added

e Remoting PR landed (remote playback via streaming)
o Should we review the message structure of "streaming session attached to remote playback?"
We never had consensus on that.
remote-playback-start-request = {

? 6: {streaming-session-start-request-params} ; remoting

}

remote-playback-start-response = {

? 2: {streaming-session-start-response-params} ; remoting

}

Remote Playback: Not Done since Berlin

e Minor things to do
o Add extended mime types to remote playback (HTMLSourceElement.type) and Add CSS media
query to remote playback (HTMLSourceElement.media)
m PR for discussion: should these go in the availability request as well? Would support be
based on these attributes?
o Use MediaCapabilities/CSS colorspace values
m PR for discussion: is that the right reference?

e |ssue #146: Recommended HTTP headers: any idea what these should be?
e [ssue #194: Capabilities for HDR rendering and Display (in 2 slides)
e |[ssue #149: Multiple controllers of remote playback (next slide)

Remote Playback multiple controllers

e Would require some API changes
o Something like RemotePlayback.reconnect.
o Could also overload RemotePlayback.prompt() but that seems confusing and different than
Presentation API
e Questions
o Should it require the same URL like the Presentation API does?
o Ifthe not and the URLs differ, should it push over the new one?

HDR

Related MediaCapabilities issues:

e w3c/media-capabilities#118

o enum HdrCapability {
“HDR10”,
“HDR10P1lus”,
“DolbyVision”,
“HLG”,

}

o Or more complex things. There's a lively discussion!

e w3c/media-capabilities#119
o The above plus width + height, which we already cover

Question: Should we do something now or wait until this settles?

Streaming

Streaming: Done since Berlin

Merged big streaming PR that finished session start stats
Remoting PR landed (remote playback via streaming)
Re-added data frames synced with audio and video

Add video rotation capability

Streaming: Note Done since Berlin

e Per-codec max resolution (limited by sender)
(Related to something on next slides, so let's go there....)

Streaming new issues

® |[ssue #223: Codec switching when remoting (next slide)
® |[ssue #176: Bidirectional streaming / stream request (in 2 slides)

Remoting changing codec

Problem: currently the session is started like this:

o Sender: "l can send you codec A or B"
o Receiver: "l would like codec B"

But if the source stream switches to codec A, the sender has to transcode
Might be better as:

o Receiver (via capabilities): "l can receive A w/profile X, A w/ profile Y, B up to resolution Z, or C"
o Sender: "l can send you logical stream M"
o Receiver: "l would like logical stream M"

Now the sender chooses which codec at any time, rather than the receiver.
However, we need more complex capabilities

Alternative: every time the codec switches, the sender sends a message to the
receiver asking it to pick again (yuck)

Bidirectional streaming / stream request

If | want to receive media from you (like a TV pulling up a video doorbell feed), what
do I do?

We could add a "please stream me media" message which simply causes the
sender to send a streaming-session-start-request message
(streaming-session-want-to-receive?).

For bidirectional streaming, we could do either of:

A. Start two unidirectional sessions
B. Attach a streaming-session-want-to-receive to a
streaming-session-start-request.

Extensions and Capabilities

Capabilities & Extensions

Agents discover what each other can do through capabilities.

gh

agent-info = {

}

0:

1
2
3:
4

text ; display-name

: text ; model-name

: [* agent-capability] ; capabilities ——
text ; state-token

: [* text] ; locales

B

l

Capabilities & Extensions

We defined some standard capabilities, which map onto messages in the spec.

Agents can only send messages the other will understand.

. agent-capability = &(.
— receive-audio: 1 —

receive-video: 2

receive-presentation: 3

control-presentation: 4

receive-remote-playback: 5

control-remote-playback: 6

receive-streaming: 7

send-streaming: 8

)

(Still discussing meaning of receive-audio and receive-video; Issue #200)

Capabilities & Extensions

PR #183 adds a way for agents to add "extended" capabilities with IDs >= 1000

—
agent-info = { ‘
2: [1, 5, 7, 1001] ; capabilities m—
}

Extended capabilities can add new messages and fields to existing messages.

B

l

This allows vendor specific protocols to be supported (like device setup).

Capabilities & Extensions

We added a public reqistry all capability IDs to avoid conflicts.

Open Screen Protocol Capabilities

| Id | Name | Description | Message Type IDs

e Rttt et e o
| 1 | “receive-audio® | Audio Receiver | 22

| 2 | “receive-video" | video Receiver | 23

| 3 | “receive-presentation’ | Presentation API Receiver | 14,16,104,106,109,113
| 4 | “control-presentation’ | Presentation API Controller | 15,16,103,105,107,108,
| 5 | “receive-remote-playback™ | Remote Playback Receiver | 17,145,117,.119

| 6 | “control-remote-playback™ | Remote Playback Controller | 18,20,21,114,116,118

| 7 | "receive-streaming’ | Streaming Receiver | 24

| 8 | “send-streaming’ | Streaming Sender |

Capabilities & Extensions

If you want to register an extension send a PR. (Eventually we'll use IANA.)

| Id | Name | Organization | Description | Message Type IDs [

| -=mmee T | e R e e | e i |
| 1000 | “frobinate-xyzzy" | FrobozzCo | Adds xyzzy capability | 49-51, 8193-8199 |

Q: Do we have consensus that this is a good model for extensions?

Open Screen Protocol 1.0 wrap-up

State of the Repository: 1/ "vi-spec” issues

Remote Playback Protocol 6
Streaming Protocol 3
Security 5
Other 2

(Plus issues identified here at TPAC)

Propose merging PRs for all issues except HDR, then fixing
TODOs, then closing meta issue and calling OSP 1.0 done!
(And scrubbing old/obsolete issues that are not "v2")

Open Screen Protocol V2 Features

Open Screen Protocol V2 Features

Support for DataCue

Attestation

Data Frames use cases

Alternative Discovery

Multi-device timing (to be discussed in joint session)

Support for GenericCue / DataCue

We have AudioFrame, VideoFrame, and DataFrame all synced. How about
first-class support for TextFrame?

Would be like a DataFrame but with a payload which would match the form of
DataCue/TextTrackCue. ie either:

A. .data of byte

B. .value of{
key: String
data: String | Number | Array | ArrayBuffer | Object
locale: String

}

Attestation

Attestation

Attestation is how an agent finds out information about another agent, attested by a
trusted party. What are interesting things to attest?

Manufacturer and model name (to show in the Ul)
Serial number (to avoid counterfeit devices)
OS/software version

Compliance with certain standards (i.e., HDCP)
Audio, video, or other capabilities

Attestation

In general attestation is done through certificates.
The agent wanting to attest hands over a certificate signed by the trusted party.

The agent requesting authentication inspects the certificate and verifies the
signature (or chain of signatures).

Note that these certificates can be baked into the device, generated on demand, or
fetched from a server.

These certificates are not related to the agent certs for transport auth.

One model for attestation

An agent can ask another agent for attestable attributes.

agent-attestation-request = {

. request
L

I

1: [1, 2, 3, 5] ; attributes
2: string ; nonce

}

agent-attestation-response = {
response
1: int ; attribute
2: string ; signed nonce
3: string ; certificates

}

The agent responds by signing the request and providing the certificate(s).

—

Attestation

There is a lot to figure out here:

How is this done currently? Some precedents with EME, WebAuthN.

How do we bind attestation to devices using hardware backed certificates?
Do we want to link this to OSP authentication? (Maybe skip pairing codes.)

Do we expose this to applications? That has fingerprinting and privacy implications.

PROPOSED ACTION: Start a companion note separately with use cases,
requirements, and draft framework.

Alternative Discovery

What if mDNS doesn't work?

| could have my WiFi turned off.
It could be a managed network (separate networks, client isolation).
It could be a display in a public place, hotels, or a friend's house.

We've discussed ICE (REC 8445) as a solution for connectivity. How do we get it
started?

To connect to an agent you need:

1. A way to trigger ICE on the other agent.
2. A way to exchange ICE candidates.

3. A way to get the other agent's auth-initiation-token.

Alternative Discovery Proposal

Define an Open Screen Beacon format.

The beacon should be hard to guess; maybe it's a one-time token.
Beacon could be obtained through BTLE, NFC or a QR code.
The beacon should include the hostname of a service we can use for signaling.

The agent who wants to connect should pass the beacon to this service with some
candidates. The service will communicate with the other agent and relay
candidates back to the original agent.

Once ICE is connected, OSP can proceed as usual.

Alternative Discovery Proposal

Define a beacon format.

Q: Does this sound like a good direction for enabling alternative discovery?

PROPOSED ACTION: Write this up outside of the community group repository
along with an explainer.

Media & Entertainment |G Joint Session

Second Screen WG/CG
TPAC 2019 - Day 2

Peter Thatcher (pthatcher@google.com)
Mark Foltz (mfoltz@google.com)
Fukuoka September 2019

Day 2 - Outline

Agenda Bashing

Remaining Day 1 Topics

New API Features

OSP Wide Review, TAG Explainer

SSWG Rechartering

Remote Playback API

Remote Playback "disconnected state”

GitHub

Remote buffer state for Remote
Playback + MSE

Remote Playback + MSE

e Receiver buffer may be too small

= The sender UA can limit the transmission to the receiver
e Bitrate may be higher than network bandwidth

= HTMLMediaElement.buffered and readyState can be used
e Alternatively: new API

= Pull request on GitHub

Code example

const video = document.querySelector ('#my-video') ;
video.src = window.URL.createObjectURL (mediaSource) ;
video.remote.addEventListener ('remotingstatechanged', onRemotingStateChanged) ;

function onRemotingStateChanged() ({

switch (video.remote.remotingBufferState) ({
case 'insufficient-data':
lowerResolution() ;
break;
case 'too-much-data':
pauseBufferingSegments () ;

break;

Web IDL

partial interface RemotePlayback {
readonly attribute RemotingBufferState remotingBufferState;

attribute EventHandler onremotingbufferstatechanged;

};

enum RemotingBufferState {
"insufficent-data",
"enough-data",
"too-much-data",

"not-remoting"

Proposal: One prompt for Presentation
and Remote Playback APIs

Issue on GitHub

State of the current APls

Two separate methods to start sessions:

e PresentationRequest.start()
e RemotePlayback.prompt()

Each shows a potentially different list of receiver devices to choose from, so user
may need to open two different device selection dialogs to find a device

Example code

const presentation =
new PresentationRequest('https://example.com/myvideo.html') ;
const remote = document.querySelector ('#my-video') .remote;

const device = await navigator.secondScreen.prompt (presentation, remote) ;

if ((device.supportsPresentation && myPagePrefersPresentation()) ||
!device.supportsRemotePlayback) {
const connection = await device.startPresentation(); // Doesn't prompt
} else {
device.startRemotePlayback(); // Doesn't prompt

Web IDL

interface SecondScreen {
Promise<SecondScreenDevice> prompt (PresentationRequest presentationRequest,

RemotePlayback remotePlayback) ;
}i

interface SecondScreenDevice {
readonly attribute boolean supportsPresentation;

readonly attribute boolean supportsRemotePlayback;

Promise<PresentationConnection> startPresentation() ;

Promise<void> startRemotePlayback () ;

};

Proposal: Presentation receiver friendly
name

PRs on GitHub: controller side, receiver side

Example code

@ Example Domain x| + - o x

€ C @ example.com A :

Sender page

Connected to Living Room TV

const request = new PresentationRequest('https://example.com/receiver.html') ;
const connection = request.start();
connection.addEventHandler ('connect', () => {

document.querySelector ('#status') .innerText = "Connected to ${connection.receiverName} ;

}):

Web IDL

// Controlling user agent:
partial interface PresentationConnection {
readonly attribute USVString receiverName;

};

// Receiving user agent:

partial interface PresentationReceiver ({
readonly attribute USVString friendlyName;

}i

Streaming API

Maybe we don't need one

We could just support this:

const element = ...; // Some HtmlMediaElement
element.srcObject = mediaStream;
element.remote.start();

With remoting, that's the same as streaming a MediaStream. Would a different
streaming API provide any advantages?

OSP 1.0 Wide Review

Open Screen Protocol Wide Review

TAG "Explainer"

Homework: please review PR so we can publish with the 1.0 spec.

Open Screen Protocol Wide Review

Who should be asked to review?

TAG
WebAppSec
PING

Accessibility (WAI?)

SSWG Rechartering

Recharter Draft

e Draft
e Diff of material changes
e Added to scope

o Presentation of part of an HTML document
o Remote Playback features for OSP
o Presentation/Remote Playback integrations

e Out of scope
o Network protocols (?)

o Codecs
o Input methods

Rechartering: Decision making

e Draft

e Option 1. Extend charter for 2 years with no protocols, to allow
implementations of OSP to be finished.

e Option 2: Extend charter for 1 year to see if we can finish implementations,
then decide on protocols.

e Option 3: Extend charter for 6 months to gather feedback on standardizing
protocols, then recharter again.

Design Time

Remote Playback Capabilities

partial interface RemotePlayback {
Promise<RemotingCapabilitiesInfo> remotingInfo(
RemotingConfiguration configuration)

}

dictionary RemotingConfiguration : MediaConfiguration {

¥

dictionary RemotingCapabilitiesInfo : MediaCapabilitiesInfo {

s

Includes MediaCapabilities

dictionary VideoConfiguration {

]) dictionary MediaCapabilitiesInfo {
required DOMString contentType;

required boolean supported;

required unsigned long width; required boolean smooth;
required unsigned long height; required boolean powerEfficient;
required unsigned long long bitrate; }

required DOMString framerate;
boolean hasAlphaChannel;

¥

dictionary AudioConfiguration {
required DOMString contentType;
DOMString channels;
unsigned long long bitrate;
unsigned long samplerate;
boolean spatialRendering;

Where is the codec profile? Embedded
in the contentType :(.

Example

let remote = ...;
let info = await remote.remotingInfo({
video : {
contentType : 'vp8',
width : 640,

height : 480,
bitrate : 10000,
framerate : '30°

}

1)
if (info.supported) {

OSP CDDL

receive-video-capability = {
/] Already there!
O: format ; codec
? 1. video-resolution ; max-resolution
? 2: ratio ; max-frames-per-second
? 3: uint ; max-pixels-per-second
// New
? 10: max-bits-per-second

Explicit remoting signal
remote-playback-controls = {

? 1. text ; source-url / remoting

}

remote-playback-start-request = {

2: [* remote-playback-source] / remoting ; sources

}

remote-playback-state = {

? 2: text ; source-url / remoting

}

remotinﬂ =0

Color spaces

=
N & wa3.org/TR/css-color-4/#predefined

3

ce-independent Colors: Lab and

ifying Lab and LCH: the lab() and Ich()
ional notations

‘erting sRGB colors to Lab colors
‘erting Lab colors to sSRGB colors
‘erting Lab colors to LCH colors
‘erting LCH colors to Lab colors

iifying Grays: the ‘gray()’ functional
tion

'erting gray colors to sSRGB colors

led, Device-dependent Colors

ifying profiled colors: the ‘color()’
ion

Which one?

The ‘color()’ function represents the color specified by the first of its ¢
is, the first argument that isn’t an invalid color). If all of its argument
represents opaque black.

11.2. Predefined colorspaces: ‘srgb’, ‘image-p3’, ‘a98rgb’

The following colorspaces are predefined for use in the ‘color()’ funct
profile’ rule.

ISSUE 10 Decided at San Francisco to add a larger set of comn
ProPhoto RGB, and so on. Also coated and uncoated swop, etc, €

‘srgb’
The ‘srgb’ [SRGB] colorspace accepts three numeric parameter.

P
Lﬁ w3c.github.io/media-capabilities/#enumdef-screencolorgamut

INTENTS
I1ction

ing and Encoding Capabilities
Configurations

aConfiguration

aDecodingType

aEncodingType

< types

»Configuration

»Configuration
aCapabilitiesKeySystemConfiguration
Capabilities Information

ms

enum ScreenColorGamut {
"srgh”,
np3",
"rec2020",

i

The ScreenColorGamut represents
that the screen can display.

The ScreenColorGamut values are:

* srgb, it represents the [sRGB] col
* p3, it represents the DCI P3 Color

e rec2020, it represents the ITU-R |
gamut.

Remote playback reconnect

let remote = ...;

let token = ...;

await remote.prompt({allowReconnectWithToken: token});
. get disconnected or transfer to another machine ...

await remote.reconnect(token);

Remote playback reconnect IDL

partial interface RemotePlayback {
Promise<void> start(RemotePlaybackStartParameters params);
Promise<void> reconnect(DOMString token);

}

dictionary RemotePlaybackStartParameters {
DOMString allowReconnectWithToken;

}

DataCue in normal Remote Playback (not streaming)

text-track-cue = {

3: text ; text
4: data ; data
}

cue-data = {
1: text ; key
2: text / bytes / float ; value
3: text ; locale

DataCue in Remote Playback with streaming

text-frame ={
O: uint; encoding-id
? 1. uint ; sequence-number
? 2: uint ; start-time
? 3: uint ; duration
4: cue-data; cue-data // Part different from data-cue
? 5. media-time ; sync-time

End of TPAC 2019 slides

