
Open Screen Protocol
Day 1

Peter Thatcher (pthatcher@google.com)
Mark Foltz (mfoltz@google.com)
TPAC 2018

mailto:pthatcher@google.com

Day 1 - Outline

Open Screen Protocol Overview

Specifics for mDNS/DNS-SD

Specifics of QUIC

Specifics of CBOR

Specifics for how to do JPAKE

Presentation API messages

Remote Playback API messages

Second Screen CG History

● Nov 2013: Initial charter
● Nov 2013 - Dec 2014: Incubation of Presentation API
● Dec 2014: Presentation API transitioned to Second Screen Working Group
● Sept 2016: CG rechartered to focus on interoperability
● 2016-2017: Requirements, protocol alternatives, benchmarking plan
● Sept 2017: F2F at TPAC
● Jan-Feb 2018: SSWG rechartered. Phone conference, work plan
● May 2018: Berlin F2F
● October 2018: Here we are :-P

https://webscreens.github.io/cg-charter/

Presentation API

1. Controlling page (in a browser) requests presentation of a URL on a receiver
device (on a connected display).

2. Browser lists displays compatible with the URL; the user selects one to start
the presentation.

3. Controlling and receiving pages each receive a presentation connection.
4. The connection can be used to exchange messages between the two pages.
5. Either side may close the connection or terminate the presentation.

Remote Playback API

<audio> or <video> element can:

1. Watch for available remote displays
2. Request remote playback by calling video.remote.prompt()
3. Media commands are forwarded to the remote playback device

Community Group Rechartering & Scope

Address main feedback from TAG around interoperability

Controllers and receivers on same LAN

Presentation API: 2-UA mode (“flinging” URL)

Remote Playback API: Remote playback via a src=“...” URL

Extension ability for future use cases

Open Screen Protocol

Open Screen Protocol

Specify all network services & protocols needed to implement APIs

Can be deployed across a variety of devices and platforms

Re-use modern protocols and cryptography

Functional Requirements

1. Discovery of presentation receivers and controllers on a shared LAN
2. Implement Presentation API

a. Determine display compatibility with a URL
b. Creating a presentation and connection given a URL
c. Reconnecting to a presentation
d. Closing a connection
e. Terminating a presentation

3. Reliable, in-order message exchange
4. Authentication and confidentiality
5. Implement Remote Playback API for <audio> and <video> src=

Non-functional Aspects

Usability

Preserving privacy and security

Resource efficiency (battery, memory)

Implementation complexity on constrained devices

Extensibility and upgradeability

Open Screen Protocol - Stack

Application Protocol

Transport

Authentication

Discovery

Open Screen Protocol - Current Approach

Application Protocol

Transport

Authentication

Discovery

CBOR

QUIC (direct or via ICE)

TLS 1.3 via QUIC, J-PAKE

mDNS / DNS-SD

Evaluation & Benchmarking

For each technology/protocol,

● Write up proposal for how it could be used
● Evaluate against requirements (performance, security, implementation)
● Write up proposal for benchmarking performance in the lab

"Open Screen Lab"

What has been accomplished

● Requirements analysis, research into alternatives

● Consensus to specify "modern" protocol stack at Berlin F2F

○ Discovery, transport, protocol format

● Authentication approaches proposed

● Open source implementation announced & in progress

● V1 spec document started and in progress

● Benchmarking plan proposed

https://github.com/webscreens/openscreenprotocol/blob/gh-pages/j-pake.md
https://chromium.googlesource.com/openscreen/
https://webscreens.github.io/openscreenprotocol/
https://github.com/webscreens/openscreenprotocol/tree/gh-pages/benchmarks

Major work items remaining for “V1”

● Finalize details on mDNS usage
● QUIC connection handling
● CBOR based control protocol
● Remote Playback API support
● Specify authentication mechanisms

○ Integrate J-PAKE
○ Support public-key based authentication with TLS

● V1 spec document written :-)
○ And reviewed...

● Benchmarking, data collection

Forward-looking work

● Media streaming
● LAN traversal (ICE) support
● Backup/alternate discovery
● WebRTC / ORTC polyfill implementations
● Other "V2" features

Things to talk about

● mDNS/DNS-SD
● QUIC
● CBOR
● Protocol messages with CBOR, defined in CDDL
● JPAKE

mDNS/DNS-SD

Some details to iron out:

● Service name
● TXT metadata

Service Name

RFC 6763 Section 7 basically says it must be _X._udp.local with more rules for X.

How about _openscreen._udp.local?

FYI, this needs to be registered with IANA.

TXT Info

We can put string key/value pairs in the mDNS discovery.
We also have some device info we'd like to convey.

Two options:

A: Put device info in TXT info

B: Minimal things in TXT info; device info in CBOR over QUIC

Option A: info in TXT

● Protocol Version (ve = 1)
○ (for major protocol changes like not using QUIC or CBOR or JPAKE)

● Device ID (id = GUID)
● Device Friendly Name (fn = Living Room TV)
● Device Model Name (mn = LG 55UJ6300)
● Device Type? To show an icon
● Device capabilities (ca = bitfield)

○ receive audio, receive video, send audio, send video

Pro: We know the info before doing the QUIC handshake
Con: No authentication/encryption of this metadata

Option B: bare minimum; rest over QUIC

● Protocol Version (ve = 1)
● Device Fingerprint (fp = XXX) and Timestamp (ts = timestamp)

(To know if you should connect to get new metadata or not)

device-info-request = {

 request

}

device-info-response = {

 response

 1: device-info;

}

device-info = {
 0: text ; friendly-name
 1: text ; model-name
 ; ...
}

Pro: now encrypted/authenticated
Con: 1 more RTT when connecting to new device
Note: may need to share this the first time before authentication

QUIC

Some things to iron out:

● How many QUIC connections?
○ If a QUIC server can accept many QUIC connections and demux them
○ If we need more than one for more than one tab/profile

● When/how should QUIC connections be kept alive?
● How messages map to QUIC streams

How many QUIC connections

One QUIC connection per (client, server) pair

There isn’t a reason to make more than one.

However, if a client does create more than one, they can be demuxed by
connection ID as long as the QUIC packets include the connection ID (they can be
omitted if there is only one connection per 5-tuple)

What about more than one tab/profile?

A browser can serve more than one tab/profile using one QUIC connection, but
may choose to use different network QUIC connections (and ports)

Incoming messages of presentation connection messages, remote playback
messages, etc, can be routed to the correct tab/profile based on IDs in messages.

The fact there is one QUIC connection underneath (or many) is an implementation
detail that doesn't affect the APIs or web apps. This is because none of the QUIC
Stream IDs are meaningful.

However, that may allow the remote endpoint to correlate profiles, in which case a
browser may choose to use separate QUIC connections (and ports) from different
profiles.

Can a server demux more than one client?

Yes.

If clients have different (ip, port), then the server can demux on that.

If a client uses the same (ip, port) for more than one connection, connection ID can
be used to demux.

When QUIC connections should be kept alive

Keeping connections alive allows the client to receive messages from the server.

But keeping connections alive may also use battery.

Recommendation: Keep a QUIC connection alive if you're a client that needs to receive messages (such
as presentation connection messages) or a server that needs to send them. Otherwise, close the QUIC
connection and reconnect when you need to (treat QUIC connections as ephemeral)

Also allow apps to keep connections alive if they have per-connection costs (auth)
TODO: Add an API for controlling connection timeout (default: none)

Maybe considering allowing clients to give servers a port they can reconnect to if desired.

How QUIC connections should be kept alive

If you're on a LAN, you technically could keep the QUIC connection state in
memory indefinitely. If the other side just disappears (unplugged; battery dies), you
wouldn't know.

So, it's nice to ping the remote side occasionally to make sure it's still there.

But how and how often?

How to send pings

● ICE
○ ICE already does regular pings, so if/when ICE is used with OSP, we won't want or need extra

pings.
○ But using ICE for on-LAN cases a lot of extra complexity for something very simple.

● QUIC
○ QUIC has built-in ping/pong frames.
○ But QUIC libraries won't necessarily expose the ability to send or receive them to apps

■ (Chromium's impl allows sending easily, but not receiving)

● OSP
○ We could send pings in QUIC stream as part of OSP
○ It's more to define, but we can also piggyback status info
○ Works even if we use something other than QUIC as the substrate someday

Recommendation: add a ping/status message to OSP

How often to send pings

More often: uses more network/battery

Less often: learn later that a device has gone away

ICE magic numbers are every 20-30 seconds

Recommendation:

● Send every 25s (unless other request/response traffic fulfills same need)
● Unless you're using ICE; then only when you need to send or recv fresh info

How to map messages to QUIC streams

QUIC streams are indefinitely long. Put in as many messages as you want.

Messages in a QUIC stream are ordered.

Messages in separate QUIC streams are not ordered relative to each other.

If you want messages out of order, use separate QUIC streams.

If you want messages in order, use one QUIC stream.

Recommendation: 1 group of ordered messages = 1 unidirectional QUIC stream

Recommendation 2: Ephemeral QUIC stream IDs (but reserve streams 1-10 for future)

CBOR

● How do we put multiple CBOR messages in a QUIC stream?
● How do we know the type of a CBOR message when it arrives?
● What kind of “keys” do we use?
● How do we encode time stamps/durations?
● Use of CDDL

Putting multiple CBOR messages in a QUIC stream

Length-prefixed messages can always work, but it uses up some bits per message.

It looks like CBOR doesn’t require it unless we use size = 0 (“rest of stream”).

We could just not do that and put CBOR messages “back to back”.

Recommendation 1: don’t use “rest of stream”

Recommendation 2: CBOR messages “back to back”;

Consider adding length-prefixing if it will make parsing easier (a parsing library
might not parse streams as well as fixed-size buffers).

Tagging CBOR messages

When reading the bytes coming in the QUIC stream, you need to tag the type of
message some how.

Option A: Use CBOR’s built-in tagging. Easy! But you're kinda supposed to
register with IANA to avoid collisions (easy for us, not so much for extensions).

Option B: Treat the QUIC stream as a CBOR array of (type, value). A little more
clumsy and inefficient, but avoids ID collision/IANA issue.

Option C: Use type-prefixing in the QUIC stream. More efficient than either and
doesn't require IANA registry. But can't define in CDDL.

Recommendation: Use type-prefixing (Option C); maybe put a comment in CDDL

https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

Intro to CDDL
; This is a comment

person = {

 ; The key is a string; the value is a uint

 age: uint

 ; The key is an int; the value is a string; the whole thing is optional

 ? 1: string ; username

 ; The key is an string; the value is an array of strings

 favorite-foods: [* string]

}

; This is an enum; notice that “,” is optional above

color = &(blue=1, red=2, green=3)

; The “keys” are positions/index

coordinate = [x: uint, y: uint]

Tagging CBOR values (“key” type)

In CBOR, you can put values in an message/object/group in 3 ways:

Positional (like an array): Most efficient, least flexible

String keys (like JSON): Least efficient, most flexible

Int keys: Rather efficient, rather flexible, less readable in CDDL and on the wire

Recommendation: Use int keys with comments for the field name

Consider positional keys (arrays) for certain situations (streaming, tuples)

Encoding timestamps/durations

There are a few ways we can encode timestamps:

CBOR-defined timestamps: builtin, but can be encoded as floats

uint microseconds: not builtin, but just as easy, really, and we have more control
over the encoding

Recommendation: use microseconds unless there's a reason to use a different
timescale (such as with audio and video)

Protocol messages defined in CDDL

Messages for different purposes:

● Base messages/types (used by all the rest)
● Connection-level things (not tied to any API)
● Presentation API
● Remote Playback API
● Streaming

Base messages/types

● Request/response
● Common error codes and types

Request/response
; embedded/included/subclassed in each request

request = (

 0: request-id ; request-id

)

request-id = uint

response = (

 0: request-id ; request-id

)

Common error codes and types
result = (

 success: 1

 url-not-valid: 10

 invalid-presentation-id: 11

 timeout: 100

 transient-error: 101

 permanent-error: 102

 unknown-error: 199

)

microseconds = uint

microseconds-range = [

 start: microseconds

 end: microseconds

]

Connection-level things

● ping/pong/status
● maybe JPAKE handshake
● maybe ICE candidates

Ping/pong/status
status-request = {

 request

 ? 1: status ; status

}

status-response = {

 response

 ? 1: status ; status

}

status = {

 ; could be something like this:

 ; 0: microseconds ; system-clock

}

JPAKE

Coming tomorrow :)

Presentation API messages

● URL availability
● Initiate/terminate presentation
● Open/close presentation connection
● Send/receive presentation connection messages

Presentation URL Availability
presentation-url-availability-request = {

 request

 1: int ; watch-id

 2: microseconds ; watch-duration

 3: [* url] ; urls

}

url = text

; idea: use HTTP response codes?

url-availability = &(

 not-compatible: 0

 compatible: 1

 not-valid: 10

)

presentation-url-availability-response = {

 response

 1: [* url-availability] ; url-availabilities

}

; Send when availability changes as

; long as requester is interested

; Not broadcast!

presentation-url-availability-event = {

 1: int ; watch-id

 2: [* url] ; urls

 3: [* url-availability] ; url-availabilities

}

Presentation Initiation
presentation-initiation-request = {

 request

 1: presentation-id ; presentation-id

 2: url ; url

 3: text ; headers

 ; opens a connection at the same time

 4: connection-id ; connection-id

}

; text because of https://w3c.github.io/presentation-api/#dfn-presentation-identifier.

presentation-id = text

; Don't send response until URL is loaded

presentation-initiation-response = {

 response

 1: &result ; result

 ; TODO: Add optional HTTP response code?

}

https://w3c.github.io/presentation-api/#dfn-presentation-identifier

Presentation Termination
presentation-termination-request = {

 request

 1: presentation-id ; presentation-id

 ; idea: split up into

 ; 1 enum for (user, not)

 ; 1 enum for event type

 2: &(

 controller: 10

 user-via-controller: 11

) ; reason

}

presentation-termination-response = {

 response

 1: result ; result

}

presentation-termination-event = {

 1: presentation-id ; presentation-id

 2: &(

 receiver: 1

 user-via-receiver: 2

 controller: 10

 user-via-controller: 11

 new-replacing-current: 20

 idle-too-long: 30

) ; reason

}

Presentation Connection open/close
presentation-connection-open-request = {

 request

 1: presentation-id ; presentation-id

 2: connection-id ; connection-id

}

presentation-connection-close-request = {

 request

 1: connection-id ; connection-id

}

connection-id = uint

; connection-id scoped across presentations but

; not across device

; Receiver needs to keep map of

; (device, connection-id) => presentation-id

; to demux

presentation-connection-open-response = {

 response

 1: &result ; result

}

presentation-connection-close-response = {

 response

 1: &result ; result

}

presentation-connection-close-event = {

 1: connection-id ; connection-id

 2: &(close-method, navigation, page-gone, weird-error) ; reason

 ? 3: text ; error-message

}

Presentation Connection messages
presentation-connection-message = {

 1: connection-id ; connection-id

 2: bytes / text ; message

}

Remote Playback API messages

● Remote playback availability
● Start/stop remote playback
● Remote playback controls (pause, volume, etc.)
● Remote playback status

Remote Playback Availability
remote-playback-availability-request = {

 request

 1: int ; watch-id

 ; To renew interest, resend request

 2: microseconds ; watch-duration

 3: [* url] ; urls

}

url = text

; Idea: use HTTP response codes?

url-availability = &(

 not-compatible: 0

 compatible: 1

 not-valid: 10

)

Question: should we unify with presentation URL availability?

remote-playback-availability-response = {

 response

 url-availabilities: [* url-availability]

}

; Send when availability changes as

; long as requester is interested

; Not broadcast!

remote-playback-availability-event = {

 1: int ; watch-id

 2: [* url] ; urls

 3: [* url-availability] ; url-availabilities

}

Needs impl feedback about whether URL

availability is sufficient for the use case.

Start/stop remote playback
remote-playback-start-request = {

 request

 1: remote-playback-id ; remote-playback-id

 2: [* url] ; urls

 ? 3: [* url] ; text-track-urls

 4: remote-playback-controls ; controls

}

remote-playback-stop-request = {

 request

 1: remote-playback-id ; remote-playback-id

}

remote-playback-id = uint

MISSING: <source> extended mime type, media query (replace url here)

remote-playback-start-response = {

 response

 1: &result ; result

 ? 2: remote-playback-state ; state

}

remote-playback-stop-response = {

 response

 1: &result ; result

}

remote-playback-stop-event = {

 1: remote-playback-id ; remote-playback-id

 ; TODO: reasons

}

Remote playback controls

Things we need to support changing:

● set src

● set preload (none, metadata, auto): optional to implement

● play

● pause

● set currentTime (seek)

● set playbackRate (slow-mo, fast-forward, rewind): optional to implement

● set loop (play at start when end is reached)

● set volume (0.0-1.0)

● set muted

● set poster image (when no data available): optional to implement

● enable/disable audio tracks, video tracks: optional to implement

● enable/disable text tracks

● add/remove text track cues: optional to implement

Remote playback controls
remote-playback-modify-request = {

 request

 1: remote-playback-id ; remote-playback-id

 2: remote-playback-controls ; controls

)

remote-playback-controls = {

 ? 1: url ; source

 ? 2: bool ; preload

 ? 3: bool ; loop

 ? 4: bool ; paused

 ? 5: bool ; muted

 ? 6: float ; volume

 ? 7: media-time ; seek

 ? 8: media-time ; fast-seek

 ? 9: float ; playback-rate

 ? 10: url ; poster

 ? 11: [* bool] ; audio-tracks-enabled

 ? 12: uint ; enabled-video-track-index

 ? 13: [* text-track-mode] ; text-tracks-mode

}

text-track-mode = &(disabled / showing / hidden)

remote-playback-modify-response = {

 response

 1: &result ; result

 ? 2: remote-playback-state ; state

}

remote-playback-text-track-add-cue = {

 1: remote-playback-id ; remote-playback-id

 2: text ; track-id

 3: cue ; text-track-queue

}

remote-playback-text-track-remove-cue = {

 1: remote-playback-id ; remote-playback-id

 2: text ; track-id

 3: cue ; text-track-queue

}

text-track-queue = {

 1: text ; id

 2: media-time-range ; range

 3: any ; payload

}

Remote playback state updates
; TODO: frequency to update current-time

; HtmlMediaElement does every 250ms?

remote-playback-state-event = {

 1: remote-playback-id ; remote-playback-id

 2: remote-playback-state ; state

}

media-error = [

 code: &(...)

 message: text

]

media-track-state = {

 1: text ; label

 2: text ; language

 ; MISSING: for text tracks: cues and activeCues

}

remote-playback-state = {

 ? 1: url ; current-source

 ? 2: &(...) ; network-state

 ? 3: &(...) ; ready-state

 ? 4: (rate: bool, preload: bool, poster-image: bool) ; supports

 ? 5: bool ; paused

 ? 6: bool ; ended

 ? 7: microseconds ; timeline-offset

 ? 8: media-time ; current-time

 ? 9: media-duration ; duration

 ? 10: [* media-time-range] ; buffered-time-ranges

 ? 11: [* media-time-range] ; played-time-ranges

 ? 12: [* media-time-range] ; seekable-time-ranges

 ? 13: video-resolution ; resolution

 ? 14: float ; volume

 ? 15: bool ; muted

 ? 16: float : playbackRate

 ? 17: media-error : error

 ? 18: bool ; seeking

 ? 19: bool ; stalled

 ? 20: [* media-track-state] audio-tracks

 ? 21: [* media-track-state] video-tracks

 ? 22: [* media-track-state] data-tracks

}

Remote playback types
media-time = [

 value: uint

 scale: uint

]

media-duration = media-time / unknown / forever

unknown = 0;

forever = 1

media-time-range = [

 start: media-time,

 end: media-time

]

Message ordering

Generally:

1. Requests that go together have their own group
(presentation API, remote playback API)

2. Responses can be out of order, except responses that have update events
(then put them all in one group)

3. Some things are special (audio/video frames, presentation connection messages)

Questions to answer

● Go with DNS-SD services _openscreen._udp.local?

● Which TXT metadata? version, device ID, friendly name, model name, type,

capabilities

● When to keep QUIC connections alive? To receive?

● How to keep alive? With OSP-level status every 25s?

● How to map to QUIC streams? CBOR back-to-back when ordered messages needed?

● Use CDDL?

● Use CBOR tags or out-of-band tags?

● Use mostly string keys in CBOR (others when bits are precious)?

● Use JPAKE after TLS, in TLS, or not at all?

● Use the Presentation API message as proposed?

● Use the Remote Playback API messages as proposed?

Open Screen Protocol
Day 2

Peter Thatcher (pthatcher@google.com)
Mark Foltz (mfoltz@google.com)
TPAC 2018

mailto:pthatcher@google.com

Day 2 - Outline

Open Screen Library

Security and Privacy

Off-LAN support with ICE

Support for media streaming

2019 goals and planning

Open Screen Library

● Objectives
● Architecture
● Roadmap
● Status and next steps
● Contributing

https://chromium.googlesource.com/openscreen/

https://chromium.googlesource.com/openscreen/

Open Screen Library: Objectives

1. Free and open source (Chromium license)

2. Self contained; embeddable; OS abstraction layer

3. Small footprint (binary and memory size); YAGNI principle

4. Presentation: controller/receiver, Remote Playback: local/remote

5. Embedder is responsible for rendering HTML5 and media

6. Extensible with new features / protocols

Open Screen Library: Architecture

Presentation Controller
Presentation Receiver

Embedder
APIs

Remote Playback* Screen Publisher
Screen ListenerProtocol Connections Authentication*

Protocol QUIC ConnectionsCBOR
Control Protocol*

Service
Implementations

Platform API
& base libs

QUIC Client
QUIC Server mDNSResponder

Chromium QUIC

Event loop,errors,
strings, IP addresses

Sockets, select(),
logging, ...

QUIC Platform,
BoringSSL

Crypto,
Key Handling

* To be implemented

APIs Services

Demo!

https://drive.google.com/open?id=17rdnVmt6thobWtmVZMG37PiKOp_kWGat

https://drive.google.com/open?id=17rdnVmt6thobWtmVZMG37PiKOp_kWGat

Open Screen Library: Presentation Controller
class openscreen::presentation::Controller {
 ScreenWatch RegisterScreenWatch(const std::string& url, ScreenObserver* observer);

 ConnectRequest StartPresentation(const std::string& url, const std::string& screen_id,
 RequestDelegate* delegate, Connection::Delegate* conn_delegate);

 ConnectRequest ReconnectPresentation(const std::string& presentation_id, const std::string& screen_id,
 RequestDelegate* delegate, Connection::Delegate* conn_delegate);

 void OnPresentationTerminated(const std::string& presentation_id, TerminationReason reason);
};

RequestDelegate receives the result of the request (including a new Connection).

Connection::Delegate receives callbacks from the new Connection.

Open Screen Library: Screen Publisher
class openscreen::ScreenPublisher {
 virtual bool Start() = 0;
 virtual bool StartAndSuspend() = 0;
 virtual bool Stop() = 0;
 virtual bool Suspend() = 0;
 virtual bool Resume() = 0;

 virtual void UpdateFriendlyName(const std::string& friendly_name) = 0;
 State state();
 ScreenPublisherError last_error() const { return last_error_; }
};

Services can be controlled by the embedder (for efficiency/power).

Separate Observer object gets callbacks with metrics, errors, and state changes.

Open Screen Library: CDDL code generation

request = (
 request-id: request-id
)

presentation-url-availability-request = {
 request
 urls: [* url]
}

Open Screen Library: Platform API

UdpSocketPtr CreateUdpSocketIPv4();
UdpSocketPtr CreateUdpSocketIPv6();

void DestroyUdpSocket(UdpSocketPtr socket);

bool BindUdpSocket(UdpSocketPtr socket,
 const IPEndpoint& endpoint,
 int32_t ifindex);

bool JoinUdpMulticastGroup(UdpSocketPtr socket,
 const IPAddress& address,
 int32_t ifindex);

Open Screen Library: Platform API

UdpSocketPtr CreateUdpSocketIPv4();
UdpSocketPtr CreateUdpSocketIPv6();

void DestroyUdpSocket(UdpSocketPtr socket);

bool BindUdpSocket(UdpSocketPtr socket,
 const IPEndpoint& endpoint,
 int32_t ifindex);

bool JoinUdpMulticastGroup(UdpSocketPtr socket,
 const IPAddress& address,
 int32_t ifindex);

int64_t ReceiveUdp(UdpSocketPtr socket,
 void* data,
 int64_t length,
 IPEndpoint* src,
 IPEndpoint* original_destination);

int64_t SendUdp(UdpSocketPtr socket,
 const void* data,
 int64_t length,
 const IPEndpoint& dest);

Open Screen Library: CDDL code generation
ssize_t EncodePresentationUrlAvailabilityRequest(const PresentationUrlAvailabilityRequest& data, uint8_t* buffer, size_t length) {
 CBOR_RETURN_ON_ERROR(cbor_encoder_create_map(&encoder0, &encoder1, 2));
 CBOR_RETURN_ON_ERROR(cbor_encode_text_string(&encoder1, "request-id", sizeof("request-id") - 1));
 CBOR_RETURN_ON_ERROR(cbor_encode_uint(&encoder1, data.request_id));
 CBOR_RETURN_ON_ERROR(cbor_encode_text_string(&encoder1, "urls", sizeof("urls") - 1));
 CBOR_RETURN_ON_ERROR(cbor_encoder_create_array(&encoder1, &encoder2, data.urls.size()));
 for (const auto& x : data.urls) {
 if (!IsValidUtf8(x)) {
 return -CborErrorInvalidUtf8TextString;
 }
 CBOR_RETURN_ON_ERROR(cbor_encode_text_string(&encoder2, x.c_str(), x.size()));
 }
 CBOR_RETURN_ON_ERROR(cbor_encoder_close_container(&encoder1, &encoder2));
 CBOR_RETURN_ON_ERROR(cbor_encoder_close_container(&encoder0, &encoder1));
 ...

Open Screen Library: Roadmap

Jan 2018: Kickoff

Feb 2018: Hello World

June 2018: Embedder APIs

August 2018: Platform APIs,
Control protocol

Oct 2018: Authentication

Nov 2018: Benchmarking, E2E
testing

2019: V2 features: ICE,
streaming

Open Screen Library: Status and Next Steps

● CDDL-based code generation for parse/serialize
○ Will handle all messages proposed here

● Support for Mac OS X development (currently Linux-only)
● Bring up end to end on Raspberry Pi
● Close to end to end demo design choices will determine:

○ CBOR message framing
○ QUIC connection handling
○ Authentication handshake

Open Screen Library: Contributing

Closer to enabling external contributions.

Finalizing infrastructure (continuous build, try jobs, submit queue).

Get the code: https://chromium.googlesource.com/openscreen/

https://chromium.googlesource.com/openscreen/

Open Screen Protocol: Privacy & Security

Questions to consider:

● What information handled by Open Screen Protocol should be protected?
● What are threat models to consider?
● Which threats can be addressed by protocol design?
● What are additional kinds of mitigations?

Considerations: https://www.w3.org/TR/security-privacy-questionnaire/

https://www.w3.org/TR/security-privacy-questionnaire/

Personally Identifiable Information & High Value Data

● Presentation URLs and IDs
● Presentation messages
● Remote playback URLs
● Streaming media content
● Private keys and J-PAKE passwords

This information is a priority to protect.

However, presentation connection data may be advertised (kiosk/sign)

Device specific data

● Device GUIDs, model names, friendly names
● Device capabilities
● Compatibility with presentation URLs/remote playback URLs
● Public keys

Network exposes device identifiers on the LAN (via MAC addresses).

Protocol can be used to query for device capabilities.

Device data reveals identity, capabilities of device.

Friendly name may be PII.

Threat model: Passive attacker

● Gains access to LAN (compromised WiFi security, compromised client or router)
● Able to observe but not modify network traffic.
● Learns device data advertised via mDNS
● Observes connections and can distinguish parties involved

Mitigation: Minimize data exposed prior to
establishment of an encrypted transport.

Note: Passive attacks are possible on the
handshake and encrypted stream.

In addition to proper crypto implementation,
implications for key rotation.

Threat model: Active attacker

● Gains access to LAN (compromised WiFi
security, client, or router)

● Able to modify/inject network traffic

Attack #1: Impersonation ("MITM") of receiver

Attack #2: Impersonation of controller

Attack #3: Denial of service

Attack #1: Impersonation of receiver

Mitigations:

● Out of band verification of receiver
identity by human (password, QR code)

● Third party assertion of identity (e.g., key
signing)

● Flag less trusted metadata in the
controller UI

● Detect impersonation attempts: (MAC,
key FP, IP:port, name) collisions

● Lose trust on change of identity

Attack #2: Impersonation of controller

Protocol allows controllers to resume
connections to existing presentations/remote
playbacks.

Mitigations:

● Require a client certificate for controllers
in TLS handshake

● Harden or extend IDs used to reconnect
to presentations/remote playbacks.

● Don't expose user data without a
certificate and a valid ID

Attack #3: Denial of Service

● Attempts to block mDNS by publishing fake records.
● Attempts to deny connections to a receiver by repeatedly

attempting new connections/handshakes.

Mitigations:

● mDNS suggests DNSSEC to allow filtering of
mDNS responses.

● Hard limits on number of connection
attempts per 5-tuple.

Needs more investigation, but may be infeasible
to prevent fully on a LAN.

Other mitigations (beyond protocol design)

● Platform/OS security
○ Hardware backed crypto
○ Verified boot

● Rendering engine security
○ Sandboxing untrusted code/content
○ Origin isolation

● Software updates
○ Keeping security relevant libraries patched

● Developer education, user interface guidelines
● Key management and control

Next steps

● Complete Security & Privacy questionnaire and include in V1 spec.
● Continue to research TLS and J-PAKE best practices.
● Consider how we might evolve security architecture.
● Additional reviews (internal & W3C).
● Feedback from application developers.

https://www.w3.org/TR/security-privacy-questionnaire/
https://github.com/webscreens/openscreenprotocol/issues/13

Things left to discuss for OSP

● Review of where we're at from yesterday
● JPAKE
● ICE
● Streaming
● WebRTC polyfill

Where we're at from yesterday

● Got most of the basics of the protocol figured out (with resolutions)
○ Unresolved: length-prefixing vs. "back to back"
○ Unresolved: type-prefixing vs. CBOR tagging
○ Still need to talk about JPAKE

● Got most of Presentation API figured out (w/o specific resolutions)
○ TODO: the various reason enums

● Got most (?) or Remote Playback API figured out (w/o specific resolutions)
○ Unresolved: <source> extended mime types, media queries
○ Unresolved: receiver sending text track cues back to controller

JPAKE

Discussion pushed to today from yesterday

3 options:

A: JPAKE after TLS
B: JPAKE replaces TLS
C: non-JPAKE after TLS

JPAKE after TLS, 2-RTT variant, first RTT
jpake-handshake-start-request = {

 request

 1: bytes ; signer-id (fingerprint)

 ; Start round 1; maybe include g, p, q

 ; x1 is random in (0, q-1)

 ; gx1 = g^x1 mod p

 4: bignum ; gx1

 5: zero-knowledge-proof ; proof-of-x1

 ; x2 is random in (1, q-1)

 ; gx2 = g^x2 mod p

 6: bignum ; gx2

 7: zero-knowledge-proof ; proof-of-x2

}

jpake-handshake-start-response = {

 request

 1: bytes ; signer-id (fingerprint)

 ; finish round 1

 ; x3 is random in (0, q-1)

 ; gx3 = g^x3 mod p
 4: bignum ; gx3

 5: zero-knowledge-proof ; proof-of-x3

 ; x4 is random in (1, q-1)

 ; gx3 = g^x4 mod p
 6: bignum ; gx4

 7: zero-knowledge-proof ; proof-of-x4

 ; start round2

 ; b = g^((x1+x2+x3)*x4*shared_secret)

 8: bignum ; b

 ; x4s = x4 * shared_secret

 9: zero-knowledge-proof ; proof-of-x4s

}

JPAKE after TLS, 2-RTT variant, second RTT
jpake-handshake-finish-request = {

 request

 ; finish round 2

 ; a = g^((x1+x3+x4)*x2*shared_secret)

 1: bignum ; a

 ; x2s = x2 * shared_secret

 2: zero-knowledge-proof ; proof-of-x2s

 ; start round 3

 ; sha256(sha256(key))

 3: bytes ; double-hashed-key

}

jpake-handshake-finish-response = {

 response

 ; finish round 3

 ; sha256(key)

 3: bytes ; hashed-key

}

JPAKE zero knowledge proof
; See RFC 8235 section 2.2

zero-knowledge-proof = {

 ; v is random in (0, q-1)

 ; gv = g^v mod p

 0: bignum ; gv

 ; r = v - proven_value * challenge mod q

 ; challenge is sha1(g || g^v || g^proven_value || signer ID)

 ; (where || is string concatenation)

 ; (see crypto/jpake/jpake.c)

 1: bignum ; r

}

Option B: JPAKE replaces TLS handshake

Something like IETF draft-cragie-tls-ecjpake.

It’s not clear whether it can happen or not, though. There are issues.

If it does happen, we can do this:

1. First connection uses JPAKE has handshake

2. Using first connection, swap TLS certificates and cache them

3. Subsequent connections use TLS with cached certificates

Option C: challenge/response after TLS

JPAKE does shared secret → keys + mutual authentication

TLS produces keys

Challenge/response after TLS does shared secret → mutual authentication

So, TLS + challenge/response does shared secret → keys + mutual authentication

Option C: "challenge/response" after TLS

authentication-request = {

 request

 1: bytes ; challenge

}

authentication-response = {

 response

 ; fingerprints to avoid reflection/MITM attacks

 ; sha256(challenge || password

 ; || challenger-fp || responder-fp)

 ; where || is string concatenation

 1: bytes ; authentication

}

JPAKE options comparison

JPAKE replaces TLS
● hardest to spec and implement

● easiest to get wrong

● 2-RTT first connection

JPAKE after TLS
● easier to spec and implement

● harder to get wrong

● 3-RTT first connection

"challenge/response" after TLS
● very easy to implement

● hard to get wrong (assuming we get security review that the scheme works)

● 2-RTT first connection

JPAKE recommendations/resolution

Recommendations:

● Don't do "JPAKE replace TLS"

● Consider dropping JPAKE for challenge/response

● If we don't want to drop JPAKE, do "JPAKE after TLS"

Quick intro ICE :-)
● Converts a messaging/signaling channel into a p2p data

channel by trying lots of network paths called “ICE

candidate pairs”

● To do its work, ICE must have a way to exchange two kinds

of information:
○ ICE session parameters (basically a session ID and password)

○ ICE candidates (basically IP+port combos)

● Some things to know:
○ STUN is a way to get your public IP+port on the other side of a NAT

○ TURN is a way to relay data through a server

○ STUN and TURN servers don't need to be shared by endpoints.

They can be different servers that don't know about each other.

○ Either side can initiate ICE, but if both initiate at the same time, you can actually just respond with the same

session parameters as your request and it will keep working (because role conflicts can be resolved within ICE

itself).

ICE messages https://github.com/webscreens/openscreenprotocol/issues/73

ice-session-start-request = {

 request

 1: uint ; generation

 2: string ; username-fragment

 3: string ; password

 4: &(controlling=1, controlled=2) ; role

 5: [* string] ; options

}

ice-session-start-response = {

 response

 1: string ; username-fragment

 2: string ; password

 3: [* string] ; options

}

ice-candidate-added = {

 0: uint ; id

 1: (bytes .size 4) / (bytes .size 16) ; ip

 2: uint ; port

 3: &(host, server-reflexive, turn, tcp, tls) ; type

 4: uint ; priority

}

ice-candidates-removed = {

 0: uint ; generation

 1: [* uint] ; candidate-ids

}

https://github.com/webscreens/openscreenprotocol/issues/73

ICE in Web API

Option A: RTCIceTransport

1. App gets RTCIceTransport via its
own signaling/discovery

2. App passes it to new Remote
Playback or Presentation API

3. Browser creates QUIC
connection over IceTransport

4. Browser takes it from there

Option B: RTCQuicTransport

1. App gets RTCQuicTransport via its own
signaling/discovery (maybe c2s)

2. App passes it to new Remote Playback
or Presentation API

3. Browser takes it from there

Streaming messages

● Get receiver capabilities
● Offer/request streams
● Send audio/video/data
● Request video key frame
● Send stats

Media Streaming Flow

get capabilities

capabilities

offer

request

media

key frame requests, stats

terminate

Sender Receiver

Audio Frames
; Using array structure and integer keys to save bytes

audio-frame = [

 encoding-id: uint ; gives implicit clockrate/timescale, duration, and codec

 start-time: uint ; in terms of clockrate/timescale

 ; end-time = start-time + duration

 payload: bytes ; interpreted according to codec type

 ? optional: {

 ; Maybe add this in the future? ? 0: uint ; frame-id or sequence-number

 ? 1: uint ; duration defaults to encoding's value

 ? 2: media-time ; system-time for synchronization

 }

]

Video Frames
video-frame = {

 0: uint ; encoding-id: gives implicit clockrate/timescale, duration, and codec

 1: uint ; frame-id ; because durations are often unknown; decode order, not presentation order

 2: uint ; start-time in terms of encoding clockrate/timescale

 3: any ; payload codec-specific, typically bytes

 ; Missing means depends on (frame-id - 1)

 ; Is present and empty ([]), then it's a key frame

 ? 4: [* uint] ; depends-on frame IDs ; needs encoding id for SVC

 ? 5: uint ; duration

 ; end-time = start-time + duration

 ; defaults to encoding's value

 ? 6: video-rotation ; rotation; default to encodings's value

 ? 7: media-time ; system-time for synchronization

}

TODO: can we have the rule for missing be "some frame" that the codec can handle, not just "-1"?

TODO: do we need a field for "a future frame will depend on this one"?

TODO: examples of codec-specific payloads; change to bytes if we can't think of one

Data Frames
data-frame = [

 encoding-id: uint

 payload: any ; format-specific, typically bytes

 ? metadata : {

 ? 0: uint ; frame-id or sequence-number

 ? 1: uint ; timestamp in terms of encoding's clockrate/timescale

 ? 2: media-time ; system-time for synchronization

 }

]

TODO: Come up with examples of typical data that would go along with

audio/video (text tracks, mouse pointer, AR/VR)

Media Streaming Capabilities
(Learn what the other side can do)
streaming-capabilities-request {

 request

}

streaming-capabilities-response {

 response

 capabilities: streaming-capabilities

}

streaming-capabilities = {

 receive-audio: [* receive-audio-capability]

 receive-video: [* receive-video-capability]

 receive-data: [* receive-data-capability]

}

receive-audio-capability = {

 format: text ; codec/mimetype

 format-parameters: any ; codec-specific

}

receive-video-capability = {

 format: text ; codec/mimetype

 format-parameters: any ; codec-specific

 ? max-resolution: video-resolution

 ? max-frames-per-second: float

 ? max-pixels-per-second: float

 ; ... plenty of room for expansion

}

receive-data-capability = {

 format: text

 format-parameters: any ; format-specific

}

Streaming Offers
streaming-offer = {

 streams: [* media-stream]

 ? audio: [* audio-encoding-offer]

 ? video: [* video-encoding-offer]

 ? data: [* data-encoding-offer]

}

media-stream = {

 id: uint

 ? friendly-name: text

}

encoding-offer = {

 stream-id: uint

 encoding-id: uint

 format: text ; codec/mimetype

 format-parameters: any ; codec-specific

}

audio-encoding-offer = {

 encoding-offer

 channel-count: uint ; may vary by frame;

 sample-rate-hz: uint

 sample-count: uint ; may vary by frame

}

video-encoding-offer = {

 encoding-offer

 duration: uint ; may vary by frame

 clock-rate: uint ; probably want 90khz

 ; ... rotation, dependencies for SVC

}

data-encoding-offer = {

 encoding-offer

 clock-rate-hz: uint ; default is 1Mhz

}

Streaming Requests
streaming-request = {

 request

 audio: [* audio-encoding-request]

 video: [* video-encoding-request]

 data: [* data-encoding-request]

}

streaming-response = {

 response

}

audio-stream-request = {

 encoding-id: uint

 ? max-bits-per-second: uint ; default is unlimited

}

video-stream-request = {

 encoding-id: uint

 ? max-resolution: video-resolution ; default is capability

 ? max-frames-per-second: float ; default is capability

 ? max-bits-per-second: uint ; default is capability

}

data-stream-request = {

 encoding-id: uint

}

Key frame requests
A higher request ID invalidates all previous ones. If the last decode frame ID is set, the sender knows to

provide a key frame to get past that point (or make a delta frame from that point). If not set, send

anything.

video-key-frame-request = {

 encoding-id: uint

 request-id: uint

 ? last-decoded-frame-id: uint

}

Streaming Stats
streaming-stats-request = {

 request

 interval: microseconds

}

streaming-stats-response = {

 response

 result: &result

}

streaming-receiver-stats-event = {

 timestamp: microseconds

 audio: [* {

 encoding-id: uint

 ? received: microseconds

 ? lost: microseconds

 ? buffer-delay: microseconds

 ? decode-delay: microseconds

 ; ...

 }]

 video: [* {

 encoding-id: uint

 ? received: microseconds

 ? lost: microseconds

 ? buffer-delay: microseconds

 ? decode-delay: microseconds

 }]

}

streaming-sender-stats-event = {

 timestamp: microseconds

 audio: [* {

 encoding-id: uint

 ? sent: microseconds

 ? encode-delay: microseconds

 ; ...

 }]

 video: [* {

 encoding-id: uint

 ? encode-delay: microseconds

 ? sent-frames: uint

 ? dropped-frames: uint

 }]

}

RTC Polyfill: APIs we could use

What we could build on (assuming they get implemented):

● RTCIceTransport
● RTCQuicTransport

What we cannot build on (there are no web APIS):

● mDNS
● User dialog for receiver selection

RTC Polyfill: things we can do

What we could do:

● Use something for discovery instead of mDNS (and ICE for connectivity)
● Implement OSP in JS (CBOR, JPAKE, Presentation API messages, etc)

What we could not do:

● use mDNS for discovery
● Cause the browser's receiver selection dialog to pop up

WebRTC Polyfill: User experience

The user experience would be like this:

1. UX for selecting a receiver would show up in the page, not in the browser
2. Endpoints discoverable through (not mDNS) would show up in the UX

The big limitation is: how are devices on the local network discovered?

It would require the devices to register with some server-based discovery system

WebRTC Polyfill: Streaming

To do streaming, we would also need:

● audio/video capture
○ already there? or coming soon?

● encoders
○ not strictly needed, esp for audio (opus or vp8 in wasm/js!)
○ buried in RTCRtpSender/RTCRtpReceiver; WebRTC WG looking at ways to make it accessible

End of prepared slides

Data exposed cross origin
● Presentation URL and remote playback availability is exposed cross origin.
● Presentation messages are cross origin.

Open Screen Protocol does not convey proof of origin or restrict cross-origin.

Note these capabilities are inherent in the design of the relevant APIs.

