
Second Screen CG
Berlin F2F
May 17-18, 2018
Mark A. Foltz mfoltz@google.com
Brandon Tolsch btolsch@google.com

mailto:mfoltz@google.com
mailto:btolsch@google.com

Outline: Day 1

● Agenda review
● Open Screen overview
● Discovery

○ Review of Chrome data
○ Mandatory vs. optional mechanisms

● Transport
○ QUIC Data Channels

● Authentication
○ J-PAKE
○ Public key based

https://docs.google.com/document/d/1p6VSnG46FwHKZgM80Xf7gFekKV_HGeGFwDnEfitipDY/edit?usp=sharing

Outline: Day 2

● Control protocol, serialization
○ CBOR vs. Protocol Messages

● HbbTV/ATSC compatibility
● Open Screen Protocol Library
● Future use cases and APIs
● Planning

Open Screen Protocol
Background & Status

Second Screen CG History

● Nov 2013: Initial charter
● Nov 2013 - Dec 2014: Incubation of Presentation API
● Dec 2014: Presentation API transitioned to Second Screen Working Group
● Sept 2016: CG rechartered to focus on interoperability
● 2016-2017: Requirements, protocol alternatives, benchmarking plan
● Sept 2017: F2F at TPAC
● Jan-Feb 2018: SSWG rechartered. Phone conference, work plan
● May 2018: This meeting :-)

https://webscreens.github.io/cg-charter/

Presentation API

1. Controlling page (in a browser) requests presentation of a URL on a
receiver device (on a connected display).

2. Browser lists displays compatible with the URL; the user selects one to
start the presentation.

3. Controlling and receiving pages each receive a presentation connection.
4. The connection can be used to exchange messages between the two

pages.
5. Either side may close the connection or terminate the presentation.

Presentation API: 2-UA Mode

PLAY
PAUSE

...

https://www.youtube.com/tv

https://www.youtube.com/tv

Presentation API: 1-UA Mode

https://www.youtube.com/tv

https://www.youtube.com/tv

Remote Playback API

<audio> or <video> element can:

1. Watch for available remote displays
2. Request remote playback by calling video.remote.prompt()
3. Media commands are forwarded to the remote playback device

Sample Code & Demos

1-UA:

https://googlechrome.github.io/samples/presentation-api/

https://googlechromelabs.github.io/presentation-api-samples/photowall/

2-UA: https://googlechrome.github.io/samples/presentation-api/cast.html

Remote Playback API:
https://beaufortfrancois.github.io/sandbox/media/remote-playback.html

https://googlechrome.github.io/samples/presentation-api/
https://googlechromelabs.github.io/presentation-api-samples/photowall/
https://googlechrome.github.io/samples/presentation-api/cast.html
https://beaufortfrancois.github.io/sandbox/media/remote-playback.html

Implementation Status: Chrome

Desktop Android

Presentation Controller
(2-UA)

M51
May 2016

M48
Jan 2016

Presentation Receiver
(1-UA)

M59
June 2017

Remote Playback API M56
Feb 2017

Community Group Rechartering & Scope

Address main feedback from TAG around interoperability

Controllers and receivers on same LAN

Presentation API: 2-UA mode ("flinging" URL)

Remote Playback API: Remote playback via src= URL

Extension ability for future use cases

Community Group Out Of Scope

Media codecs

Streaming use cases: 1-UA mode for Presentations, MSE for remote playback

Network traversal / guest mode

Interoperability with proprietary protocols (DLNA, Google Cast, etc.)

Open Screen Protocol

Open Screen Protocol

Specify all network services & protocols needed to implement APIs

Can be deployed across a variety of devices and platforms

Re-use modern protocols and cryptography

Functional Requirements

1. Discovery of presentation receivers and controllers on a shared LAN
2. Implement Presentation API

a. Determine display compatibility with a URL
b. Creating a presentation and connection given a URL
c. Reconnecting to a presentation
d. Closing a connection
e. Terminating a presentation

3. Reliable and in-order message exchange
4. Authentication and confidentiality
5. Implement Remote Playback API for <audio> and <video> src=

Non-functional Aspects

Usability

Privacy-preserving and secure

Resource efficient (battery, memory)

Implementation complexity on constrained devices

Extensibility and upgradeability

Open Screen Protocol - Stack

Application Protocol

Transport

Authentication

Discovery

Open Screen Protocol - Alternatives

Application Protocol

Transport

Authentication

Discovery

Custom binary, CBOR, Protocol Messages, JSON

TCP, WebSockets
QUIC, RTCDataChannel, QUIC DataChannel

TLS 1.3 (via QUIC or wss)
S-PAKE, J-PAKE

mDNS, DIAL, SSDP

Open Screen Protocol - "Modern"/"V1"

Application Protocol

Transport

Authentication

Discovery

Custom binary, CBOR, Protocol Messages, JSON

TCP, WebSockets
QUIC, RTCDataChannel, QUIC DataChannel

TLS 1.3 (via QUIC or wss:)
S-PAKE, J-PAKE

mDNS, DIAL, SSDP

Open Screen Protocol - WebSockets

Application Protocol

Transport

Authentication

Discovery

Custom binary, CBOR, Protocol Messages, JSON

TCP, WebSockets
QUIC, RTCDataChannel, QUIC DataChannel

TLS 1.3 (via QUIC or wss:)
S-PAKE, J-PAKE

mDNS, DIAL, SSDP

Evaluation & Benchmarking

For each technology/protocol,

● Write up proposal for how it could be used
● Evaluate against requirements (performance, security, implementation)
● Write up proposal for benchmarking performance in the lab

"Open Screen Lab"

What has been accomplished

● Requirements for Presentation API and hardware specs
● Evaluations of

○ mDNS
○ SSDP/DIAL
○ QUIC
○ RTCDataChannel

● Control protocol for Presentation API ("custom binary")
● Benchmarking plans for discovery and transport

Major work items remaining for "V1"

● Discovery mechanisms - required vs. alternative
● QUIC DataChannel

○ Mapping control protocol
○ ICE integration

● Control protocol
○ Consensus on serialization
○ Update control protocol

● Authentication mechanisms
○ Integrate J-PAKE
○ Support PKI-based authentication with TLS

Discovery

Discovery Topics

● Requirements, goals
● mDNS overview
● SSDP overview
● Implementation feedback & Chrome data
● GitHub issues
● Recommendations & next steps

Discovery: Requirements and Goals

● Allow Open Screen devices to discover each other on the LAN
● Publish enough data to bootstrap connections

○ IP, port, friendly name

● Responsive to receiver addition and removal
● Power efficient and scalable
● Secure: prevent device compromise

mDNS - Query & Response

mDNS - Disconnection

mDNS Listener mDNS Responder

SSDP: Advertisement

SSDP: Advertisement

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age = 1800 [response lifetime]
NTS: ssdp:alive
SERVER: OS/version product/version
USN: XXX-XXX-XXX-XXX [UUID for device]
NT: urn:openscreen-org:service:openscreenreceiver:1
FRIENDLY-NAME.openscreen.org: TXkgUHJlc2VudGF0aW9uIERpc3BsYXk= [My
Presentation Display]
RECEIVER.openscreen.org: 192.168.1.100:3000

SSDP: Query/Response

Note that DIAL (used in Chrome) only supports query/response.

SSDP: Disconnection

Discovery: Problems!

● Firewalls by OS and security software

● Routers/middleboxes configurations

● Other software/services block ports

● Enterprise policies

● ???

Chromecast Dual Discovery

SSDP
M-SEARCH

UUID

UUID

_googlecast._tcp.local

Dual Discovery: Windows

Dual Discovery: Mac

Dual Discovery: ChromeOS

Dual Discovery: Summary

mDNS only DIAL only Dual

Windows 91 90 100

Mac 96 91 100

ChromeOS 95 87 100

How many would you find if you found 100 by dual discovery?

Dual Discovery: Conclusions

1. Across platforms, mDNS is more likely to find a given device.
2. About 5% of failures can be attributed to network issues.
3. Windows has a failure rate of 10% for both mDNS and DIAL.
4. Adding DIAL improves reliability by 5-10%.

Discovery: Recommendations

1. Across platforms, mDNS is more likely to find a given device.
2. About 5% of failures can be attributed to network issues.
3. Windows has a failure rate of 10% for both mDNS and DIAL.
4. Adding DIAL improves reliability by 5-10%.

mDNS should be mandatory for controllers and receivers.

SSDP should be specified as an alternative, but not moved forward as part of the core
protocol.

Evaluate additional discovery mechanisms (including SSDP) for the future.

GitHub issues

Issue #81: [SSDP] Update implementation information

Issue #57: [SSDP] Update proposed use of SSDP to specifically prevent SSDP
amplification attacks

Issue #21: Investigate mechanisms to pre-filter devices by Presentation URL
Postpone to v2?

https://github.com/webscreens/openscreenprotocol/issues/81
https://github.com/webscreens/openscreenprotocol/issues/57
https://github.com/webscreens/openscreenprotocol/issues/21

Transport

Transport topics

● Requirements, QUIC overview
● QUIC DataChannel background
● Application protocol mapping
● QUIC DataChannel bootstrapping and authentication
● ORTC API
● GitHub issues
● Proposals, next steps

QUIC Overview

● Reliable, connection-oriented byte streams over UDP
● Multiple streams can be sent without head-of-line blocking
● Streams support message based or streaming payloads (media)
● Supports pluggable authentication handshake
● Supports alternative congestion control (BBR)
● Supports 0-RTT TLS 1.3 session resumption

https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
https://tools.ietf.org/html/draft-ietf-tls-tls13-28#section-2.3

QUIC Connections

Connection 1

Connection 3

Controller
192.168.0.7:1234

Receiver
192.168.0.127:4321

Connection 1

Connection 3

Each connection uses a separate crypto handshake.
This assumes port sharing which may not be in v1.
https://github.com/quicwg/base-drafts/issues/714

https://github.com/quicwg/base-drafts/issues/714

QUIC Streams

Connection 3

Controlling UA
192.168.0.7:1234

Receiving UA
192.168.0.127:4321

Connection 3

Stream 5

Stream 15

Stream 25

Very lightweight; can be 0 to 2^62 bytes and spread among packets.

QUIC protocol mapping (multi connection)

Control channel between controlling and
receiving user agent

QUIC connection

Control channel command/response QUIC stream (id for ordering)

PresentationConnection between
controlling page and presentation

Separate QUIC connection

PresentationConnection message QUIC stream (id for ordering)

QUIC protocol mapping (single connection)

Control channel between controlling and
receiving user agent

Fixed QUIC stream id

Control channel command/response Separate QUIC stream

PresentationConnection between
controlling page and presentation

Separate QUIC stream

PresentationConnection message Uses existing stream for connection

QUIC Congestion Control (BBR)

blog.apnic.net

QUIC Handshake (1 RTT)

QUIC Handshake (0 RTT)

QUIC DataChannel

QUIC

UDP

192.168.0.7:1234

UDP

192.168.0.8:4321

QUIC DataChannel - ICE

QUIC
ICETransport

192.168.0.7:1234
ICETransport
10.0.0.1:4321

UDP UDP

STUN Server

ICE State Machine

NEW

CHECKING

CONNECTED COMPLETED CLOSED

FAILED

DISCONNECTED

STUN Binding

STUN
Server

Request {
 address: 192.168.0.7:1234
 username: "abcdefgh"
 signature: 0x1a2b3c4d
}

Response {
 public_address: 69.147.64.34:3434
 username: "abcdefgh"
 signature: 0x2b3c4d5e
}

STUN Binding

STUN
Server Request {

 address: 192.168.0.17:5678
 username: "yuiooppf"
 signature: 0x1a2b3c4d
}

Response {
 public_address: 13.33.140.238:9928
 username: "yuiooppf"
 signature: 0x2b3c4d5e
}

STUN Binding

STUN
Server

public_address:
13.33.140.238:9928

public_address:
69.147.64.34:3434

QUIC DataChannel ICE Bootstrapping (LAN)

Controller
(192.168.0.7)

Receiver
(192.168.0.17)

Di
sc

ov
er

y NEW

Co
nn

ec
tio

n

NEW

{
 ip: 192.168.0.7
 protocol: "udp",
 port: 12345,
 type: "host",
}

{
 ip: 192.168.0.17
 protocol: "udp",
 port: 54321,
 type: "host",
}

CHECKING CHECKING

QUIC DataChannel ICE Bootstrapping (LAN)

Controller
(192.168.0.7)

Receiver
(192.168.0.17)

Di
sc

ov
er

y NEW

Co
nn

ec
tio

n

NEW

{
 ip: 192.168.0.7
 protocol: "udp",
 port: 12345,
 type: "host",
}

{
 ip: 192.168.0.17
 protocol: "udp",
 port: 54321,
 type: "host",
}

CHECKING CHECKING

CONNECTED

QUIC
HANDSHAKE

QUIC
HANDSHAKE

CONNECTED
consent checks

Q: do we need dummy STUN server for this to work?

QUIC DataChannel authentication

● Each side obtains (or generates) an RTCCertificate
● Passes the certificate fingerprint to the other party by secure signaling
● The fingerprint is passed into the data channel after ICE connects to

initiate TLS handshake
● Can extract keying material from QUIC connection for separate auth step

ORTC

https://draft.ortc.org/#quic-transport*

ORTC

const ice = new RTCIceTransport(new RTCIceGatherer({/* ICE options */}));

const localCert = RTCCertificate.generateCertificate(/* algorithm */);
/* Send local certificate fingerprint via signaling */

const quic = new RTCQuicTransport(ice, [localCert]);

quic.onstatechange = _ => {
 if (quic.state == 'connected') {
 const stream = quic.createStream();
 stream.waitForWritable.then(_ => write(...));
 stream.waitForReadable.then(_ => readInto(...));
 stream.finish();
 }
};

/* Await remote certificate fingerprint from signaling */
quic.start({role = "auto", fingerprints = ["deadbeef"]});

Implementation Status

Basic implementation in Chromium: net/third_party/quic/quartc

Supports BBR

Crypto is stubbed out

QuartcPacketTransport will only be implemented by ORTC (ref)

https://cs.chromium.org/chromium/src/net/third_party/quic/quartc/
https://bugs.chromium.org/p/webrtc/issues/detail?id=8385

GitHub issues

Issue #84: [QUIC] Investigate and propose use of DataChannel framing on top of QUIC

Issue #83: [DataChannel] Investigate use of DataChannel without all of WebRTC

Issue #73: [DataChannel] Define bootstrap mechanism for RTCDataChannel

Issue #82: [QUIC] Find out timeline for TLS 1.3

https://github.com/webscreens/openscreenprotocol/issues/84
https://github.com/webscreens/openscreenprotocol/issues/83
https://github.com/webscreens/openscreenprotocol/issues/73
https://github.com/webscreens/openscreenprotocol/issues/82

Proposals

Proposal: QUIC DataChannel as the V1 transport.

Specify two modes: DataChannel over UDP or ICE with host
candidates.

Integrate ICE + STUN / TURN for network traversal in V2.

Work Items (WebRTC/ORTC)

Work with WebRTC on:

● Use of ICE in a LAN-only scenario
● Possible implementation of Open Screen Protocol with ORTC
● Demuxing with other protocols (RTP, RTCP, DTLS, ICE)
● Implementation status

Work Items (QUIC)

Work with QUIC implementers on:

● Connection multiplexing
● Message ordering with stream IDs
● Server parameters
● Use of 0-RTT connections and BBR on LANs
● Pluggable authentication (J-PAKE?)

Authentication

Authentication Topics

● Requirements & threats
● J-PAKE authentication (no prior key exchange)
● Public-key based authentication
● Open questions and next steps

https://tools.ietf.org/html/rfc8236

Requirements & Threats

● Protect integrity of the user's display selection
● Ensure presentation connections are between appropriate parties
● Ensure confidentiality and integrity of presentation URLs, ids, & messages

Threats

● Passive network observer (on-LAN, off-LAN, WAN)
● Active network attacker (injection, replay, spoofing)
● Side channels (timing attacks, telescopes?)

Additional threats to consider

● Malicious or insecure content
○ Cross-origin presentation connections
○ Phishing via presentations

● Mis-configured routers/ISPs
● Compromised displays/user agents
● Device change of ownership or theft

Recommend a white paper analyzing all threats in more detail and proposing mitigations.
Also document what specific data on the wire should be protected.

J-PAKE key exchange

Requires a shared password (no prior public key exchange required).

https://github.com/webscreens/openscreenprotocol/blob/gh-pages/j-pake.md

https://www.lightbluetouchpaper.org/2008/05/29/j-pake/

https://github.com/webscreens/openscreenprotocol/blob/gh-pages/j-pake.md
https://www.lightbluetouchpaper.org/2008/05/29/j-pake/

J-PAKE: Round 1

Controller (Alice) Receiver (Bob)

round_1 {
 g1: bytes;
 g2: bytes;
 zkp_x1: bytes;
 zkp_x2: bytes;
}

~1KB

J-PAKE: Round 2

Controller (Alice) Receiver (Bob)

round_1 {
 g1: bytes;
 g2: bytes;
 zkp_x1: bytes;
 zkp_x2: bytes;
}

round_2 {
 g3: bytes;
 g4: bytes;
 B: bytes;
 zkp_g3: bytes;
 zkp_g4: bytes;
 zkp_x4: bytes;
}

J-PAKE: Round 3

Controller (Alice) Receiver (Bob)

round_1 {
 g1: bytes;
 g2: bytes;
 zkp_x1: bytes;
 zkp_x2: bytes;
}

round_2 {
 g3: bytes;
 g4: bytes;
 B: bytes;
 zkp_g3: bytes;
 zkp_g4: bytes;
 zkp_x4: bytes;
} round_3 {

 A: bytes;
 zkp_x2: bytes;
}

Ka = (B - (g4 x [x2*s])) x [x2] Kb = (A - (g2 x [x4*s])) x [x4]

J-PAKE next steps

Propose passcode requirements, possible UI, and key derivation function.

Define J-PAKE key exchange messages as part of control protocol.

Determine whether J-PAKE can be used for recurring authentication.

J-PAKE initial connection

1. QUIC connection with self-signed keys.
2. J-PAKE to derive shared secret.
3. J-PAKE secret verification.
4. Extract keying info from QUIC connection and verify with shared secret.

J-PAKE key exchange

1. Complete prior steps to create a J-PAKE authenticated connection.
2. Server (presentation display) generates a long lived signing certificate.

a. For TLS 1.3 compatibility it uses this same cert for all connections.

3. Server sends public key to client (controlling UA).
a. It may have signatures attached, e.g. from display manufacturer.

4. Client generates a long lived signing certificate.
a. Tied to the public key fingerprint for the server cert.

5. Client sends public key of its cert to server.

PKI based authentication

1. Server advertises its signing certificate fingerprint via discovery.
2. Server and client create a short lived (~48H) certificate for TLS handshake.
3. TLS certs are signed by long lived certificates exchanged earlier.
4. Client verifies server cert was signed by server signing cert.
5. Server verifies client cert was signed by client signing cert.

After certificate exchange

Controller Receiver Manufacturer
Cert

signs

Long-lived cert
FP=deadbeef

Short-lived cert

signs

Long-lived cert

Short-lived cert

signs

TLS 1.3

mDNS: deadbeef

Cert structure, lifetime, scope

● Selection of cipher suites and signature algorithms
○ Hardware crypto capabilities may come into play

● Identities associated with certificates
○ Display: serial number/code + friendly name + display model

● Per-PresentationConnection certificates?
● Certificate lifetime

○ Want to ensure they are reset on factory reset or user data deletion

● Client certificates and privacy
○ Want separate certificate store for private browsing

● Certificate revocation, requirements changes, transparency logs, etc.

PKI based authentication: Next steps

Full proposal on key exchange

Full proposal on certificate structure & scope

Comparative research from other IoT efforts (Nest, WoT, etc.)

Develop representative user interface for both J-PAKE and PKI based auth

Control Protocol & Serialization

Control Protocol Topics

● Overview of control protocol
● Current custom binary serialization
● CBOR alternative
● Protocol Buffers alternative
● Discussion & recommendation for serialization
● Extensions & roles
● GitHub issues

Protocol Overview

● Broad Message Types (Flavor): Command, Request, Response, Event
● Presentation API Message Types

○ Presentation Display Availability
○ Presentation Lifecycle
○ Presentation Connection Management
○ Presentation Application Messages
○ Receiver Status

Protocol Header

Protocol ID

Flags

Message Type

Sequence ID

Request ID

Flavor

Type

Subtype

{Presentation API, Remote Playback API}

Version

Protocol-specific, e.g. receiver status

Message Body
...

Versioning

● Versioning is done using major and minor version numbers (X.Y)
● Two implementations can talk if they support the same major version
● Minor versions may extend another minor version but remain backwards

compatible
● Discovery and connection process should negotiate version

○ TODO: Add this to the working specs for these processes.

Custom Binary Format

Message Header Availability Request Availability Response

CBOR Alternative

● Concise Binary Object Representation - RFC 7049
● Based on JSON data model
● Design Goals:

○ Allow for very small code size
○ Fairly small message size
○ Extensibility without version negotiation

● Open source implementations available in many languages
○ C, C++, C#, Java, Python, Ruby, Go, JavaScript, etc.
○ Still requires type-specific encode/decode to be done

https://tools.ietf.org/html/rfc7049

CBOR Samples
struct {
 int x;
 float y;
}

{ 7, 2.8f }

{ 30000, 2.8f }

struct {
 int alpha;
 int beta;
}

{ 1, 2 } { “alpha”: 1, “beta”: 2}

07 fa 40 33 33 33

19 75 30 fa 40 33 33 33

a2 65 61 6c 70 68 61 01 64 62 65 74 61 02
0-23 integer

float tag

IEEE 754

Same as above

Big-endian

uint16_t tag

map with 2 pairs

0-23 integer

0-23 integer

5 character string

4 character string

“alpha”

“beta”

23-byte strings can be encoded with single-byte tag

CBOR Optional Fields

Value-or-null:
{int}{null|float}{null|float}

A = (
 x: int,
 ? y: float,
 ? z: float,
)

Omission:
{int}{int} or {int}

Also works for JSON map-style encoding

B = (
 x: int,
 ? y: int,
)

Protocol Buffer Alternative

● Google’s serialization scheme (similar to XML and JSON)
● Open source implementation also available in many languages

○ proto2: Java, Python, Objective-C, C++
○ proto3: adds Go, Ruby, C#

● Uses code generation for encode/decode to typed messages
message Header {
 required ProtocolId protocol = 1;
 optional int32 flags = 2;
 required int32 message_length = 3;
 required MessageType message_type = 4;
 required int64 sequence_id = 5;
 optional int64 request_id = 6;
}

message ProtocolId {
 enum Type {
 PRESENTATION_API = 0;
 REMOTE_PLAYBACK_API = 1;
 }
 required Type type = 1;
 required int32 version_major = 2;
 required int32 version_minor = 3;
}

message MessageType {
 enum Flavor {
 COMMAND = 0;
 REQUEST = 1;
 RESPONSE = 2;
 EVENT = 3;
 }
 required Flavor flavor = 1;
 required int32 type = 2;
 optional int32 subtype = 3;
}

Benchmark Data

● Benchmarks were run with prototype
PresentationAvailability{Request,Response} messages

● CBOR used untagged serialization variant shown before
● -O2 everywhere

Benchmark Data

Test+Generated Library

CBOR 30KB 42KB

Protobufs 94KB 3.8MB lite
(30MB full)

Code size

Request Response

CBOR 131 B 137 B

Protobufs 258 B 282 B

Message Size

Read Write

CBOR 14 ms 9 ms

Protobufs 12 ms 17 ms

Benchmark w/
10000 messages

Discussion & Recommendation

● Performance is very similar
● CBOR is more size-efficient but possibly more error-prone
● Both are open source and available in many languages
● CBOR has decent tooling support (debugging, CDDL, validation)
● CBOR was adopted by the Web Packaging standard
● CBOR would have more efficient JavaScript support

Our recommendation at this time is to use CBOR for serialization

Capabilities & Roles

Open Screen Protocol Library

Open Screen Protocol Library Outline

● Goals and rationale
● Library architecture
● Embedder API (sample)
● Dependencies, toolchains and style
● Repository & access
● Work plan

Goals and Rationale

● Create a complete library solution to translate network protocol to
Presentation API and Remote Playback API

● Platform-independent, Chromium-independent
● Allow replacement of network services (e.g. mDNS) by users

Architecture

Presentation
Controller

Embedder API

Presentation Receiver
Embedder API Management API

Controller Protocol Receiver
Protocol

Network Service &
Authentication
Management

Discovery Client
Discovery Server

Connection Client
Connection Server

Message Parsing &
Construction

mDNS
client

QUARTC
client

mDNS
server

QUARTC
server

Web Rendering Engine Browser/Device Platform

NETWORK
SERVICES

OPEN
SCREEN
LIBRARY

 USER
AGENT

Embedder API (sample)

class PresentationController {
 public:
 // Requests screens compatible with |url| and registers |observer| for
 // availability changes. The screens will be a subset of the screen list
 // maintained by the ScreenListener. Returns a positive integer id that
 // tracks the registration. If |url| is already being watched for screens,
 // then the id of the previous registration is returned and |observer|
 // replaces the previous registration.
 uint64_t RegisterScreenWatch(const std::string& url,
 PresentationScreenObserver* observer);

 // Requests that a new presentation be created on |screen_id| using
 // |presentation_url, with the result passed to |delegate|.
 // |connection_delegate| is passed to the resulting connection.
 void StartPresentation(const std::string& url,
 const std::string& screen_id,
 PresentationRequestDelegate* delegate,
 PresentationConnectionDelegate* conn_delegate);

 // ...
}

Embedder API (sample)

// An object to receive callbacks related to a single PresentationConnection.
class PresentationConnectionDelegate {
 public:
 // State changes.
 virtual void OnConnected() = 0;
 virtual void OnClosed() = 0;
 virtual void OnDiscarded() = 0;
 virtual void OnError(const std::string& message) = 0;
 virtual void OnTerminated(PresentationTerminationSource source) = 0;

 // A string message was received.
 virtual void OnStringMessage(const std::string& message) = 0;

 // ...
}

receiver.js:
connection.onmessage = e => {
 console.log(e.data);
};

Embedder API (sample)

controller.js:
presentationRequest.start()
 .then(connection => {
 connection.send(“hello”);
 });

Embedder (e.g. Chromium):
void PCDelegate::OnStringMessage(...) {
 // Forward |message| up to web engine.
}

Controller Receiver

hello

Embedder (e.g. Chromium):
connection->SendString(“hello”);

Platform API

● Porting layer of the library for platform primitives
● Similar to Chromium base/ and WebRTC rtc_base/
● Sockets, threading, logging, network state, system power states, etc.
● Not yet designed

Get The Source

● Get the source
○ git clone https://chromium.googlesource.com/openscreen

○ git submodule update --init --recursive

● Built with gn
○ Contained in a Chromium checkout
○ Also available from storage.googleapis.com (see README.md)

● Gerrit for code review (also see README.md)

https://chromium.googlesource.com/openscreen

Open Screen Library Timeline

Jan 2018: Kickoff

Feb 2018: Hello World

June 2018: Embedder APIs

August 2018: Platform APIs,
Control protocol

Oct 2018: Authentication

2H 2018: Benchmarking,
E2E testing

2019: V2 features

Intentionally Blank :-)

Protocol extensions

Why we need them. Sample use cases

