User Control Mechanisms for Privacy Protection Should Go Hand in Hand with Privacy-Consequence Information: The Case of Smartphone Apps

W3C Workshop on Privacy and User–Centric Controls
20–21 November 2014, Berlin, Germany

Dipl.-Inf. Gökhan Bal, Prof. Dr. Kai Rannenberg
Deutsche Telekom Chair of Mobile Business & Multilateral Security
Goethe University Frankfurt
www.m-chair.de
1 MOTIVATION
1. Motivation
Two Perspectives on Privacy Protection

Privacy Protection as a Process (Brunk 2005)

- Awareness
- Detection
- Prevention
- Response
- Recovery

Decision-making as a calculus of risks and benefits (Culnan and Armstrong 1999)

- Behavioral Reactions (including disclosures)
- Privacy Calculus
 - Risks / Costs
 - Benefits

Risk awareness is key!
1. Motivation

Problems

- Benefits are what drive users towards service use.

- Privacy thoughts most often are only a „supporting actor“ in users’ decision-making.

- More effective privacy-risk communication is needed to help users understand the consequences of behavior.

- **Call: integrate (privacy-)consequence information into user-control mechanisms.**
2 THE CASE OF SMARTPHONE APPS
2 The Case of Smartphone Apps
Privacy Risks of Smartphone App Usage

- Apps are useful and provide utility.
- APIs (e.g. geolocation API) as
 - ...enabler of utility.
 - ...threat to user privacy.
- Negative examples: „Path“ & „Brightest Flashlight“
- Lack of risk transparency and “hidden” information flows lead to a bias in users’ risk perceptions.
- Explicitness regarding consequences can help (Laughery et al. 1993).
2 The Case of Smartphone Apps
Privacy Risks of Smartphone App Usage

First-order privacy risk:
- apps can access a multiplicity of sensitive resources (enabled to provide utility).
- most apps have Internet access.
- information flows often without notice.

→ risk: leakage of sensitive data\(^1\).

Second-order privacy risk:
- Profiling: aggregated smartphone data can be used to generate meaningful information about the user (predict user traits, personality traits, movement patterns)\(^2\)

→ risk: implicit revelations of private information due to data-aggregation potentials.

\(^1\)e.g., Egele et al. 2011; Enck et al. 2010

\(^2\)e.g., Kwapisz et al. 2010; Weiss and Lockhart 2011; Chittaranjan et al. 2011; Min et al. 2013; González et al. 2008; Phithakkitnukoon et al. 2010.
Current privacy risk information is...

- ... static,
- ... coarse-grained & technical,
- ... timed inappropriately,
- ... ignored largely,
- ... does not support informed decision-making.
2 The Case of Smartphone Apps
Suggested New Approaches (1/2): Google Play Study

WhatsApp Messenger
WhatsApp Inc.

BESCHREIBUNG
★★★★ Mit neuer und verbesserter Benutzeroberfläche

2 The Case of Smartphone Apps
Suggested New Approaches (2/2): Android Study
2 The Case of Smartphone Apps
Results of Two User Studies (Summary)

- A consequence-based privacy-risk communication leads to:
 - increased privacy and risk awareness,
 - better comprehension of risks,
 - better comparison of apps,
 - privacy as a stronger decision factor,
 - safer app choices.
CHALLENGES & RECOMMENDATIONS
3 Challenges & Recommendations

Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conceptualization of Privacy Consequences</td>
<td>• Identification and conceptualization of consequences</td>
</tr>
<tr>
<td></td>
<td>• Consideration of context, scenario, etc.</td>
</tr>
<tr>
<td></td>
<td>• Positive vs. negative consequences</td>
</tr>
<tr>
<td>2. Consider functionality and context of data access</td>
<td>• Consideration of the purpose of an application (“demand level”)</td>
</tr>
<tr>
<td></td>
<td>• Context of access (e.g. background information flows vs. active UI)</td>
</tr>
<tr>
<td>3. Monitor data-access behavior of apps</td>
<td>The actual data-access behavior of an app is significantly influencing the privacy intrusiveness of an app (what resources? how frequent? what combinations? interactions with other apps?); TaintDroid as an example (Enck et al. 2010).</td>
</tr>
<tr>
<td>4. Consider Privacy Transparency of App Providers</td>
<td>Privacy-related consequences also depend on how the app provider processes personal data; statements from the app provider such in a privacy policy could be used to determine consequences.</td>
</tr>
<tr>
<td>5. Automation</td>
<td>Automation of monitoring and risk assessments will positively influence efficiency, effectiveness, scalability, and costs.</td>
</tr>
</tbody>
</table>
3 Challenges & Recommendations

Recommendations

<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smartphone Platform Providers</td>
<td>Mechanisms to keep track of sensitive-information flows; reason about privacy intrusiveness of apps based on data-access behavior; communicate observed behavior to other potential users.</td>
</tr>
<tr>
<td>App Marketplaces</td>
<td>Add more useful privacy information about apps, especially about privacy consequences to support decision-making; add privacy rating for apps based on their data-access profiles and purpose of data access; provide developers with standardized ways to explain permission requests.</td>
</tr>
<tr>
<td>App Developers</td>
<td>Provide explanations for permission requests (e.g. core functionality, side functionality, advertisements, etc.).</td>
</tr>
<tr>
<td>W3C</td>
<td>Support app developers by standardizing transparency mechanisms in Device API use.</td>
</tr>
</tbody>
</table>
THANK YOU!

Gökhan Bal, Dipl.-Inf.
Institute of Business Informatics
Deutsche Telekom Chair of Mobile Business & Multilateral Security
Goethe University Frankfurt
Grüneburgplatz 1, 60629 Frankfurt am Main, Germany
Tel: +49(69) 798-34702, Fax: +49(69)798-35004
Web: http://www.m-chair.de