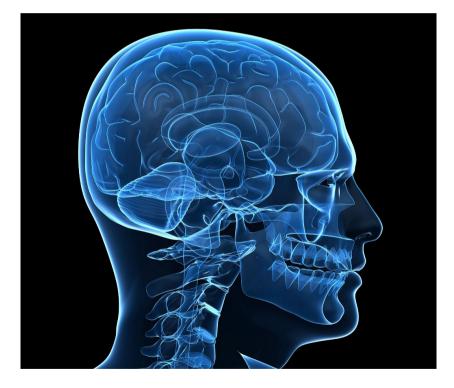
Web of Thought

The logical next step after the Web of Things


Dave Raggett <dsr@w3.org>

18 October 2014

Web of Things

- Web technology for application / service layer
- **Things** include connected devices, people, places, abstract things e.g. concerts, organizations, and time periods (the 70's)
- Things have virtual representations *Avatars*
- Avatars have identity, rich descriptions, services and access control
 - Avatars have URIs and are accessed via web technologies
- More details on the Web of Things
 - http://www.w3.org/2014/11/05-dsr-wot.pdf (Mindtrek 2014)
 - W3C Web of Things IG: http://www.w3.org/WoT/IG/

What is the most important difference?

With thanks to the Westside story

VS

With thanks to PSDgraphics.com

Common Sense!

Web of Thought

involves

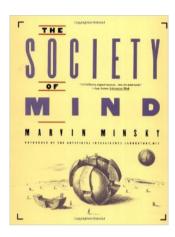
Avatars with common sense that act as smart assistants

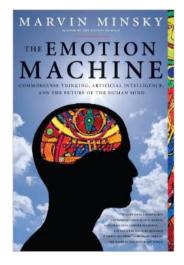
Accessible as part of the Web of Things

Common Sense

- Knowledge and reasoning about everyday things
- People and personal relationships, space, time, causality and naïve physics, tools, the natural world, the urban world, story telling, humour, emotions, empathy, personality traits
 - and much much more
- How to accomplish everyday tasks
- When someone says something
 - What is implied based upon what I know?
 - Why did they say this?
 - What should I say in response?

Emotions


- Understanding stories and actions at an emotional level
 - Modelling the emotions of others
 - What emotions are they experiencing
 - · How is this expected to influence their behaviour
 - Taking this into account in conversational dialogues
 - What does it mean to exhibit empathy?
- Experiencing emotions
 - Enabling a cognitive system to experience emotions that guide its behaviour
- Appraisal Theory of emotion and cognition
 - What things determine your current emotional state?
 - Reactive (fast), deliberative (slow)
 - How does this state influence cognition?
 - Psi-theory drives and goals
 - Physiological, Social and Cognitive drives
 - Goals are situations in which urges are fulfilled
 - What is instinctive and what is learned from experience?


Understanding Humour

For Sale: Parachute. Only used once, never opened. I used to be a banker, but I lost interest.

- Raskin's theory of incongruity resolution
 - Humour involves incongruous interpretations of a joke
 - The start of the joke invokes the "obvious" interpretation
 - The joke's punchline is inconsistent with the obvious interpretation and instead points to another incongruous interpretation
 - Understanding the punchline leads to relief expressed via laughter
 - People tend to just remember the punchline and the second interpretation
- Semantic jokes vs puns
 - Puns tend to rely on words that sound the same but have very different meanings
- Implications for cognitive architecture

Structuring Skills

- Marvin Minsky's Society of Mind
 - Theory of natural intelligence published as a book in 1988
 - Intelligence treated as a collection of agents
 - Agents which activate other agents
 - Nemes invoke representations of things
 - Nomes control how representations are manipulated
 - Frames & slots as collections of properties for a given thing
 - Transframes for representing events
- Minsky's 2006 book "The Emotion Machine"
 - Knowing when a way of thinking isn't working
 - Activating a better way to think in this situation

Multiple Levels of Reasoning

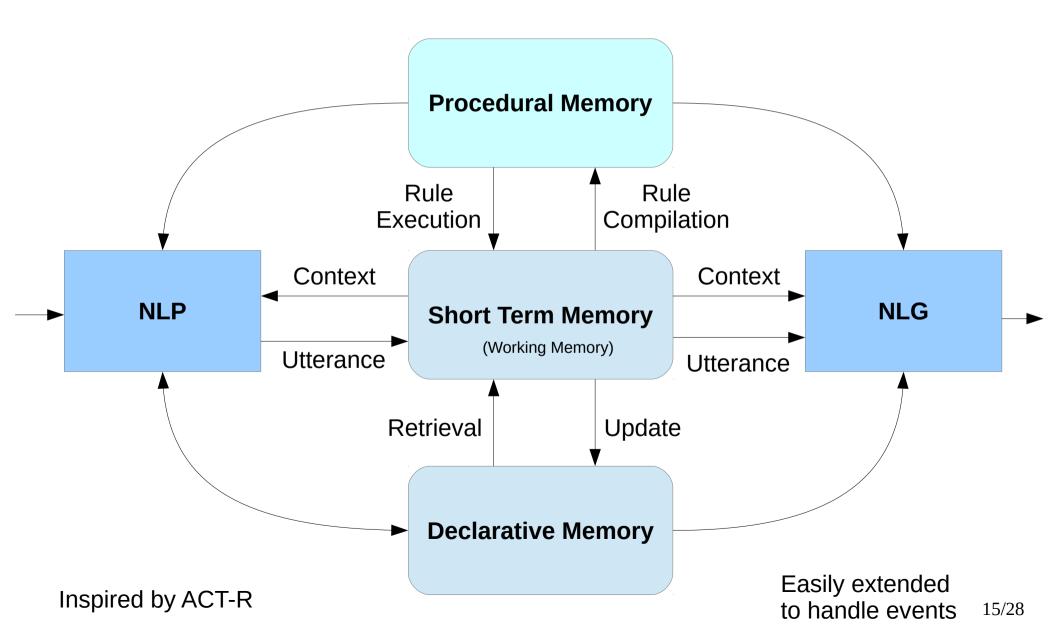
- Minsky proposes six levels of reasoning
 - Self-conscious reflection
 - Awareness of other people's feelings and matching up to your own ideals
 - Self-reflective thinking
 - Keeping track of your plans
 - Reflective thinking
 - Reflecting on recent experiences
 - Deliberative thinking
 - · Review and selection from alternative courses of actions
 - Learned reactions
 - Behaviours and representations that are learned through experience
 - Instinctive reactions
 - Hardwired for rapid reactions, e.g. removing your hand from source of pain
- Implemented by Push Singh as EM-ONE
 - http://web.media.mit.edu/~push/push-thesis.pdf

Narratives

- Narrative as a representation of an experience
 - An account of what you did in a particular situation
 - Together with annotations on what went well and what you could have done better
- Can be used as a basis for choosing a course of action
 - Search for relevant narratives
 - Adapt as needed to match current situation
- Stepping stone to learning how to react
 - Compiling rules based upon repeated experiences

Why Logic alone isn't the answer

- Logic is attractive as a basis for reasoning
- Researchers have focused on formal proof procedures and completeness
- This is a distraction from the real world!
- Rule engines don't scale well, especially for 2nd and higher order logics
 - Common sense involves too many facts and rules
- Need to give up on completeness and proof
- Limit inference to what it useful based upon experience
 - How to focus on what's important to the current goals
 - Godel's incompleteness theorem
 - Not all things can be proved or disproved from first principles


Traditional Statistical Learning

- Need for very large corpus of examples
- Examples define input and output
 - e.g. text utterance and syntactic parse trees
- Split corpus into training and testing sets
 - Use training set to build statistical models
 - Use testing set to assess performance
- Not really practical for common sense
 - Difficulties in creating large corpus
- Why not do as humans do?
 - Use natural language interaction
 - Sequence of lessons with examples and tests
 - Incremental learning from small data sets

Lesson plans for Als

- Start with taxonomy of common sense
 - This will grow over time and doesn't need to be "complete" to start with
- Identify interdependencies to determine the order in which concepts need to be taught
- Construct lessons for each concept
- Lessons use simple natural language
 - Examples and counter examples
 - Assessment exercises
 - Revision for reinforcement

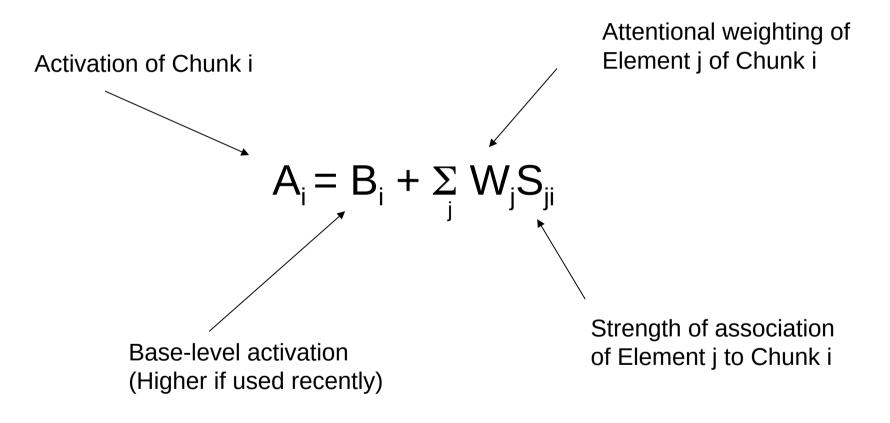
Cognitive Architecture

Cognition

- Symbolic reasoning with chunks (n-tuples) and production rules
 - Chunks form semantic networks of arcs and nodes
- Short term memory as strictly limited resource
 - Strongly borne out by cognitive science experiments
- Spreading activation with excitory and inhibitory links
 - For word senses and declarative concepts
- Sub-symbolic reasoning with statistical models
 - Retrieval from declarative long term memory
 - Rule selection and conflict resolution
- Theory adopted from John R. Anderson's ACT-R*

* For more about ACT-R see http://act-r.psy.cmu.edu/about/

Rational Thought


$$P(a|b) = \frac{P(a)P(b|a)}{P(b)}$$

- Making choices that reflect the statistics gained from experience
 - Bayesian statistics
 - Probability of **a** given observation **b**
 - Use past data to estimate P(a), P(b) and P(b|a)
 - Update probabilities as experience is gained

Declarative Memory

- Facts vs episodic memories
 - Jupiter is a planet
 - Context independent facts
 - I had a pizza last night
 - Facts that hold in a given context
 - Yesterday, John told me that he loves Mary
 - Reported facts
- Stories, imaginary and counter-factual knowledge
- Memories fade with time
 - The more you use a memory, the more likely it is to be relevant
- Memories can be strengthened by the context in which they occur
 - Retrieval of one memory can make another easier to recall
- Memories can be decontextulalized if they occur frequently in many different contexts

Chunk Activation

Probability of chunk retrieval is $P_i = 1 / (1 + \exp(-(A_i - \tau)/s))$

Opportunities for exploiting SIMD instructions and multicore CPUs for subsymbolic processing

Production Rules

- Conditions on short term memory and current input utterance
 - Small set of logical and string operators
- Actions include
 - Asynchronous retrieval from long term declarative memory
 - Updates to short term memory and generation of output utterance
- Rule variables with unification across variable instances
- Rules mapped to discrimination lattice for efficient evaluation of conditions
- Conflict resolution (see ACT-R)
 - Estimate of rule utility based upon its relative benefit & cost
- Reinforcement of successful rules (see ACT-R)
- Compilation of rules from repeated experiences

Short Term Memory

- Constrained resource
 - Humans have very limited short term memory
 - Necessary for focussing conscious attention
 - Chunking as a limited work around
 - Older memories displaced by newer ones
- Combination of data and goals
 - Allows for reflection on goals
- Multiple levels of abstraction
 - Minsky describes
 - Instinctive, learned, deliberative, reflective, self-reflective, self conscious levels of thinking
 - Social and emotional models
 - How we see ourselves in relation to others

Natural Language Input

- Lexical processing for part of speech
 - Ignore punctuation (for the most part)
- Syntactic processing for grammar rules
 - Chart parser with competing incremental results
 - Loose grammar rules to avoid premature bindings
- Word sense selection through spreading activation
- Prepositional attachment through rules and STM*
- Resolution of Pronouns through rules and STM*
- Reinforcement from successful parses
- Dealing with unknown words
 - Most commonly proper names

Natural Language

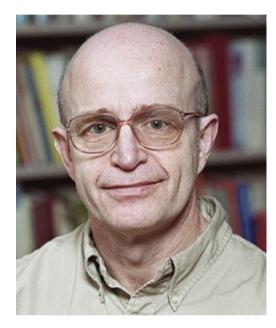
- Statistics for
 - Parts of speech
 - Based upon individual words, and preceding or following parts of speech
 - Recognition of compound words
 - Grammar rules
 - Based upon sequence of parts of speech
 - Word senses
 - Based upon semantic consistency
 - Spreading activation through memory
 - Is this adjective applicable to this noun?
 - Prepositional attachments
 - · Verb cases with semantic and syntactic consistency
 - Bindings for indefinite pronouns
 - Role in dialogue

Natural Language Output

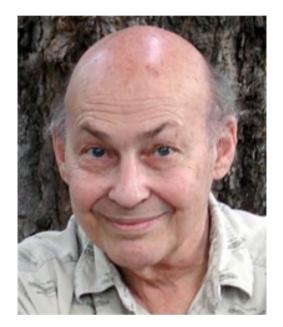
- Maps utterance chunk into natural language
 - In most cases a single sentence
- Find verb then deal with subject, object and prepositional phrases
- Use context to replace nouns with pronouns
- Choose between alternatives based upon frequency data from natural language input

Non-Verbal Communication

- Textual communication simplifies study of common sense reasoning skills
- Realistic avatars will require spoken dialogues and non-verbal communication
- Vocal stress and emotional speech
- Head and facial gestures
 - Speaker for emphasis and to check if listener agrees
 - Listener to indicate agreement or disagreement
 - Rich facial gestures to convey emotional responses
 - e.g. smiling when someone does what you want
 - Social cues, e.g. when to engage in eye contact


Next Steps

- Study ACT-R for
 - Semantics of rule conditions and actions
 - Details for how utility is computed
 - Full details for memory retrieval/update
 - Functional interface definition
 - Mathematical model for subsymbolic processing
 - Algorithms for efficient subsymbolic processing
 - Use of hardware acceleration, e.g. graphics chips
 - How to constrain working memory
- Separate rule engines for each level of reasoning?
 - Does reasoning proceed asynchronously at different levels?
- Define human friendly syntax for facts/rules
 - As basis for serialization and debugging
- Define test framework for modules
- Develop tests and modules
- Integrate modules into complete system


Long Term

- Define evolving taxonomy of common sense
 - Study interdependencies of concepts
- Define lesson plans
 - Learning by rote
 - Understanding examples
 - Learning by problem solving
 - Assessments
 - Ability to understand and solve tests
 - Ability to respond to questions about understanding
- Implement and evolve along with lesson plans
 - Lessons correspond to test suite
 - Blend of hard coded facts & rules and those learned during the lessons
 - With inspiration from Minsky's books
 - Re-run lessons after changes to check results
- Likely to take many years of work ...

With special thanks to

John R. Anderson

Marvin Minksky

As well as all the other pioneers in Cognitive Science and Artificial Intelligence