>N NVIDIA.

S T\

A FOSS Stack for Secire
Hardware Tokens

Hadi Nahari
Chief Security Architect
NVIDIA

TrustZone®

Normal world

Normal world
user mode

!

Normal world
priviieged modes

Monitor mode

Secure world

Secure world
user mode

!

Secure world
priviieged modes

rustZone® and Hardware-based TCB =

NVvVIDL/

Each of the physical processor cores provide two virtual cores
Secure (Secure World for the security subsystem)
Non-secure (Normal World for everything else)

New core mode: Monitor Mode
A mechanism to context-switch between two states (secure & non-secure)

A limited set of mechanisms to enter the Monitor Mode

S/W: SMC instruction from software
H/W: IRQ, FIQ, external (prefetch, Data) aborts

rustZone® Processor Architecture =

NVIDL

* The NS bit in the SCR in CP15 indicates which state
(aka “world”) the processor is currently in

NS = 1 & processor is in non-secure state

NS = 0 & processor is in secure state
SCR can only be accessed in secure state

* Monitor Mode is always running in secure state
regardless of the value of NS bit

rustZone® Secure Interrupts =2

NVIDL

ARM recommendation:
IRQ for normal world
FIQ for secure world

IRQ and FIQ can be directly trapped to Monitor Mode

Vector Based Address Register
For non-secure, secure, and monitor

EE: Trusted Execution Environment .

NVvVIDL/

A carve-out within Application Processor (AP)
Allows for running a trusted piece of code
Provides hardware-based isolation

Enables privileged access to device resources
(e.g. memory, hardware crypto accelerator(s), etc.)

ARM TrustZone® is one way to implement a TEE

Is not the only way

EE Use Cases —

NVIDL

» Secure hardware tokens

* Mobile payment

* BYOD

* Runtime integrity verification

* Trusted user interface

* Remote enablement/disablement

* Automotive (trust vs. safety)

» Secure isolation, Remote attestation

* DRM, HDCP, secure NFC in P2P mode

* Any other operation that requires verifiable trust

GlobalPlatform™ and TEE

TEE WG of GlobalPlatform™ standardizes the TEE & its APlIs

GlobalPlatform ™*

GlobalPlatform works across industries to identify, develop and publish

<N
NVIDL/

specifications which facilitate the secure and interoperable deployment and
management of multiple embedded applications on secure chip technology.
enable trusted end-to-end solutions which serve
multiple actors and support several business models.

(source:

)

GL=BALPLATFORM"

EE Ecosystem nVIDI

Main TEE ecosystem roles/entities
Chip vendor
Device vendor (OEM/ODM)
TEE stack vendor
TSM (Trusted Service Manager)
SP (Service Provider)
» TA (Trusted Application) provider

Each entity has a specific role: defined by GlobalPlatform™
» TEE stack vendors usually play the TSM role as well

LK: Trusted Little Kernel =

NVIDL

An open source and royalty free software (i.e. FOSS) stack for TrustZone® to
accelerate the adoption of hardware-based security for SoC, device, system,
and service providers

Kerckhoffs’s Desiderata: enabling a more secure ecosystem
Allow unencumbered pre-silicon, partner development and verification efforts

Existing TrustZone® software stacks facing variety of challenges supporting all
requirements of our partners, including Defense & Intelligence Communities

Foundation <3

NVIDL

TLK is based on LK (Little Kernel)

~63 KLOC in C, with ARM emulation .bin ~22KB

Small, pre-emptive kernel

Supports Cortex-M3, Cortex-A8, AVR32, x86 SoC families
Supports multi-threading, IPCs, and thread scheduling

No TrustZone® features present

MIT/FreeBSD license

Designed, implemented and maintained by Travis Geiselbrecht, Dima Zavin, et al

. X
Overview S d

NVIDL

~23 KLOC in C
Supports multi-threading, IPC, thread scheduling
Implements TrustZone® features

Provides detailed documentation
Maintains MIT/FreeBSD license

Design Criteria =

NVIDL

» Open source * Code
» Extensible .
Small size

» Easy to learn
* Open tools (e.g. gcc)
* Interrupt, SMP, Secure timer

* Well structured
* Existing security constructs
* Multiple security paradigms

» Deferred startup of services s GP
* Crypto ops s TCG
* Simulator (QEMU)

Componentized Architecture

NVvVIDL/

TCG (others)

TLK Core 2 e
& Snapdragon
. OMAP
TrustZone enabled SoC 1+ Exynos
NovaThor
\.

Feature Summary el

NVIDL

» Cortex A9 & A15 support » Addition of user mode
* LP2 on slave CPU » 2 MB carve-out (flexible)
Support for CPU reset after init » Addition of syscalls
* Page Table Management » Addition of libc
General improvements » SMC handler
N et » Boot to Normal World

* Many many more...

High Level Architecture <X

NVIDL

’] mser Space TLK \

i TA OpenSSL

[Tk internal iib. |
TLK Client
API

2
TLK Kernel
<

‘ M
$ essage
[HW features] dispatch €—>| TAs SMC
J \ y,
2 s e N
TLK Kernel . ’ > ‘ Idle > > ‘ System
%g [Momtor Thread) s handler) N[@]

g J

Secure World Architecture

Gser Space

-

TLK

TA

OpenSSL

TLK Internal lib.

Kernel Generic

message ’E 5‘
dispatch e SMC]

\;J

Arch
s N\ R
boot exception thread tasks
handler handler
\ J U J
s A
cache mmu
setup setup Platform
idl SMC
. idle
Monitor [€— handler

.

system
SMC

[HWV features]

$ Function call

[

Thread Sched. }

SMC

=

NVvVIDL/

<A
NVIDI/

Secure Storage

(’] (User S pace TLK R
Secure TA
Storage

- <
TLK
<

TLK Kernel
Driver

LK

L J
Secure Storage flow J TLK flow

Secure (A.K.A. Protected) Content

TLK

N
| Player Application | ’
Android Stagefright Android DRM
m- Framework

[HWComposer]

Android

——/

[TLK Client API

TLK Internal API

() (]

Multimedia TLK Kernel
driver(s) Driver

N

VDE OTF Engine

TIOEE
SJEJE

<

NVIDL

Footprints & stats

NVvVIDL/

* Memory carve-out (build-time configurable) = 2MB

* TLK core code-footprint o> 22,843 LOC

* File count (all possible header/source) = 173

* TLK library code (all possible header/source) => 5,073 LOC

Includes Normal World client and Secure World internal libs
» Size of core tlk.bin (full support, no service) = 131,072 bytes (128KB)
» Size of tlk.bin (full support, all services) = 1,589,248 bytes (1.58MB)

* secure_otf, crypto, secure_rtc, hdcp, widevine, storage (81.3% of total image)
Expect further savings when bionic/openssl = TLK libc

Downloading TLK source <3

NVIDL

In a terminal window, set up your current working directory

For new trees, set up your project directory with the following shell commands:
$ mkdir mytree
$ cd mytree

git clone git://nv-tegra.nvidia.com/3rdparty/ote_partner/tlk.git tik

git clone git://nv-tegra.nvidia.com/3rdparty/ote partner/lib.git lib
git clone git://nv-tegra.nvidia.com/tegra/ote partner/tlk_driver.git tlk_driver
git clone git://nv-tegra.nvidia.com/tegra/ote_partner/tasks.git tasks

git clone git://nv-tegra.nvidia.com/tegra/ote partner/daemon.git daemon

Downloading TLK source (contd) e

NVIDL

« tlk: tlk core

* lib: required libraries

« tlk_driver: Linux driver between NS/S worlds
« daemon: a proxy agent in NS world for TLK
» tasks: containing secure task (TA)

 tools: toolchain to build tlk

ltems 3 and 4 will be released in source as example only: they will not be part of the
final image

Downloading toolchains <3

NVIDL

The toolchain will not be included in the release. User needs to download toolchai
into mytree/tools

Required toolchains are:

tools/aarch64-linux-android-4.8: for 64-bit TLK
tools/arm-eabi-4.7: for 32-bit TLK

<X
NVIDL/

Downloading toolchains (contd)

$ mkdir mytree/tools
$ cd mytree/tools

$ git clone

b git clone

Building

LK Image

NVIDL

« To make TLK image including tlk (tlk core) and lib (required libraries), run the

following shell commands:
$ cd tlik

$ TARGET=<platform> make —e
(#<platform> is “t124” for now)
« The resulting binary will be at the “build-<platform>/tos.img” location
* You can find these instructions in mytree/tlkyREADME file as well

Why TLK <3

NVIDL

No need for IP clean up
Continuous Blackduck clearance
Ready for secure virtualization solution

Multi-arch design from day zero
Productized WV and multiple PR solutions

Active TLK ecosystem
Less than 5% SOC-specific code

NVIDL

Thank You

Q&A

Hadi Nahari
hnahari@nvidia.com

Il hadinahari
www.LinkedIn.com/in/hadinahari

