
i

Proceedings

of the

First International Workshop

on the

Open Digital Rights Language (ODRL)

Vienna, Austria

April 22nd –23rd, 2004

Edited by:

Renato Iannella
Susanne Guth

Sponsored by:

 ii

Copyright remains with the authors. Request permission of authors to republish works that are
included in these proceedings.

Proceedings of the First International ODRL Workshop
Edited by Renato Iannella and Susanne Guth
22nd – 23rd April, 2004

ISBN: 1-74064-500-6

Additional copies may be ordered from:

Renato Iannella
IPR Systems, Australia
Email: renato@iannella.it

Susanne Guth
Vienna University of Economics and Business Administration
Augasse 2-6
1090 Vienna
Austria

Email: susanne.guth@wu-wien.ac.at
Phone: +43 1 31336 4427
Fax: +43 1 31336 746

 iii

Preface

Welcome to the first Open Digital Rights Language (ODRL) International Workshop. ODRL
is an XML-based rights expression language (REL). A rights expression language is a means
of expressing usage and access rights of parties to assets. Rights expression languages provide
a syntax and semantics that are sufficiently rich to formulate rights expressions for digital
publications, audio and video filed, images, games, software, and other digital or physical
goods, including pricing models as well as terms and conditions, regardless of whether a
monetary consideration is part of the transaction. Consequently, rights expression languages
provide a metadata framework for the expression of rights.

The ODRL Initiative has gained international significance in the field of digital rights
management (DRM) over the past years, culminating in ODRL being adopted as an
international standard by the Open Mobile Alliance for supporting the process of mobile
content distribution and management.

The objective of the ODRL International Workshop was to bring together the research and
industry communities to share experiences and discuss the future developments of the ODRL
language and to ensure its timeliness, usability, openness, and future success.

ODRL is seen as key infrastructure for the management and trading of content in the digital
environment. ODRL enables to formulate machine readable, interoperable contracts between
rights holders and content users and need to evolve as the community awareness increases and
business models change. The role of the Workshop is to enable this process.

The workshop would not have been the success we trust it will be without the support of the
two hosts, IPR Systems and The Vienna University of Economics and Business
Administration, and our sponsors, LiveEvents Wireless and BluePrint Software. We also
would like to thank the members of the Program Committee for their work refereeing the
papers.

The Workshop website will include all the papers and presentation slides:

 <http://odrl.net/workshop2004/>

Renato Iannella and Susanne Guth
Workshop Chairs and Editors

 iv

 v

Table of Contents

Workshop Organisation v

Keynotes:

DRM and the Web
Rigo Wenning, W3C, France 3

The OPERA Project: Interoperability of Digital Rights Management (DRM)
Technologies
Andreas Deppe, T-Systems, Germany 17

OMA Secure Content Delivery for the Mobile World
Willms Buhse, OMA Download and DRM Group, CoreMedia, Germany 35

Papers:

A Pervasive Application Rights Management Architecture (PARMA) based
on ODRL
Dominik Dahlem, Ivana Dusparic and Jim Dowling, Trinity College Dublin, Ireland 45

Interoperability between ODRL and MPEG-21 REL
Josep Polo, Jose Prados and Jaime Delgado, Universitat Pompeu Fabra, Spain 65

REAP: A System for Rights Management in Digital Libraries
Oyvind Vestavik, Norwegian University of Technology and Scienc, Norway 79

A Proposal for the Evolution of the ODRL Information Model
Susanne Guth, Mark Strembeck, The Vienna University of Economics and BA, Austria 87

Distributed Digital Rights Management: The EduSource Approach to DRM
Stephen Downes, Gilbert Babin, Luc Belliveau, Raphael Blanchard, Gerard Levy, Pierre
Bernard, Gilbert Paquette, Sylvie Plourde, National Research Council Canada 109

Towards Formal Semantics for ODRL
M. Holzer, S. Katzenbeisser, C. Schallhart, Technische Universität München, Germany 137

Nonius: Implementing a DRM Extension to an XML Browser
Olli Pitkänen, Ville Saarinen, Jari Anttila, Petri Lauronen, Mikko Välimäki, Helsinki Institute for
Information Technology, Finland 151

Invited Talks:

Flexible DRM: Real-life ODRL Implementations
Stephane van Hardeveld, VirtuosoMedia, The Netherlands 165

An Interoperable and Flexible Infrastructure for DRM
Mariemma Yagüe, University of Malaga, Spain 177

 vi

 vii

First International ODRL Workshop – Organisation

Workshop Chairs: Renato Iannella
IPR Systems, Australia

 Susanne Guth
Vienna University of Economics and BA, Austria

Program Committee: Grace Agnew Rutgers,
The State University of New Jersey, USA

Gilbert Babin
National Research Council, Canada

Oliver Bremer
Nokia, Finland

Robin Cover
ISOGEN International LLC, USA

John Erickson
Hewlett-Packard Laboratories, USA

Eckhart Koeppen
Nokia, Finland

Jerome McDonough
New York University, USA

Murali Kaundinya
Sun Microsystems Inc, USA

Usva Kuusiholma
Avain Technologies, Finland

Gustaf Neumann
Vienna University of Economics and BA, Austria

Jon Mason
education.au limited, Australia

Craig Miller
ObjectLab, USA

Magda Mourad
IBM T.J. Watson Research Center, USA

Xavier Orri
Octalis S.A., Belgium

Steve Probets
Loughborough University, UK

Norma Richardson
Digital Concepts, USA

Peter Schirling
IBM, USA

Carlos Serrao
Adetti/ISCTE, Portugal

Mark Strembeck
Vienna University of Economics and BA, Austria

 viii

First ODRL International Workshop

Keynote Talks

Proceedings of the First ODRL International Workshop

1

2

DRM and the Web

ODRL Workshop
Vienna, 22-23 April 2004

Rigo Wenning <rigo@w3.org>
W3C/ERCIM
Sophia Antipolis, France

Plan

Expectations
Integration and Interoperability
ID issues
Enhancements and constraints
DRM and Privacy
DRM and Web Services
DRM and P2P

Proceedings of the First ODRL International Workshop

3

Expectations

EC IST mentions lack of DRM as a roadblock?
iTunes works!
Piracy is (the only) reason for bad business in the music sector?
Voices talk about high prices for bad food!

Real issues

Is the Privacy-issue solved?
Does DRM integrate well into other DRM and into applications?
Is there a solution to the issue that a digital copy can't be distinguished from its
original?
Is DRM something that the Web Services Arena should think about?
What about P2P?

4

The war is still going on

Heavy lobbying to preserve a business model, where content is attached to
tangible goods.
Erosion of exceptions to copyright and Droit d'auteur
P2P is getting more sophisticated and more of a closed group
P2P starts using signature - mechanisms.

DRM and the war

As long as the war is going on, DRM - Schemes have uncertainety about the
semantics to use.
In presence of unsecure semantics, application semantics are used.
This will create a potential conflict with ever changing legal semantics.

Proceedings of the First ODRL International Workshop

5

ODRL?

ODRL is a framework to express semantics
ODRL is not application semantics as it is a framework
ODRL just perpetuates the semantic trouble
ODRL will have to offer profiles to allow certainty

Missing Semantics?

ODRL has a fairly complete set of semantics
But it is missing the logical NOT
NOT can be expressed with AND plus OR, but it gets more complicated

6

Example for NOT

Try to encode this simple sentence in ODRL:

You can do whatever you want with my work, but if you make money with it, give
me 15%

ODRL says:

A Permission that is not specified in any Rights Expressions is not granted.

Conclusion o(n/r) NOT:

ODRL is missing a wildcard mechanism or a NOT
The more constraints on copyright, the simpler the expression in ODRL
Creative Commons is exactly the opposite

Proceedings of the First ODRL International Workshop

7

Interoperability and Integration

Interoperability with other DRM languages
Interoperability with the Web

Other Languages

Treat with both sides of the war:

Interoperability with MPEG-21
Interoperability with Creative Commons

This has be explored but can not be considered done

8

Integration with the Web

Difficult integration into HTML
Would need some binding mechanisms like in P3P
Bind DRM to HTTP (URI) or to HTML (link rel?)

ID Issues

One of the various splits at the W3C DRM Workshop was the identification of
objects
This was also marked in the Team comment
There is still a profile missing on how to use URI's to identify a protected work just
in any namespace.

Proceedings of the First ODRL International Workshop

9

DRM and Privacy

A big issue in the W3C DRM Workshop, especially for the enforcement engine
Privacy is still a big issue
Privacy might be misused as a term for general dissatisfaction

ODRL and Privacy

Currently search for Privacy in ODRL gives one hit
P3P 1.1 is developing a generic p3p attribute to bind a P3P Policy to a specific
XML Element
ODRL could use that solution to address privacy in a much better way.

10

DRM and Web Services

DRM is just yet another set of metadata
DRM should integrate into the Web Services Model
SOAP and WSDL contain an advanced failure mechanism that could be used.

ODRL and Web Services

ODRL is not defining a protocol but contains a binding
The binding could be used to mix in to WSDL
A Profile or Note would be nice

Proceedings of the First ODRL International Workshop

11

DRM and P2P

Sounds like natural enemies, but it isn't
DRM would allow to legitimize some of the P2P activities
Psychology is key (see War above)
Initiatives are missing to integrate effective DRM

ODRL and P2P

Keep away from good/bad paradigms
adjust your attacker model
give people who want to do the right thing the opportunity to do the right thing, not
just throw away the data

12

DRM and Exceptions

Risk of losing our history
Does DRM generate a right to hack for history?
Library Privileges are not implemented yet
Keep Society and the needs of a democratic society in mind while designing DRM.

ODRL and Exceptions

This is still the weak point of ODRL and I still hope for a revision
Missing wild cards and NOT-operator
There is still research ahead
The exceptions show a lot about the spirit of design

Proceedings of the First ODRL International Workshop

13

Merci bien

I hope I gave you some points for discussion
Presentation is available on the Web
http://www.w3.org/Talks/2004/04-odrl/

14

Proceedings of the First ODRL International Workshop

15

16

1EURESCOM

OPERA

OPERA
Eurescom Project 1207

Interoperability of
Digital Rights Management (DRM)

Technologies

2

OPERA

EURESCOM

Overview.

1. Introduction

2. System Overview

3. Architecture

4. Demonstrator

5. Conclusion

Proceedings of the First ODRL International Workshop

17

3

OPERA

EURESCOM

1. Introduction.

History, OPERA Mission, Why OPERA?
OPERA framework, Project facts, Participating
partners.

4

OPERA

EURESCOM

History.

• Started with gathering requirements from the
operators
• Availability of content from content providers was

the key bottleneck

• Gathered requirements from Hollywood
studios
• Identified the gaps in current DRM offerings

1. Introduction

18

5

OPERA

EURESCOM

OPERA Mission.

The mission of the OPERA project was derived based
on the requirements from the content value chain –
content providers, operators/service providers and
content users.
The objective of the project was the specification of an
open DRM architecture that addresses the needs of:

• Content Providers: Addresses the needs of content
providers to get a powerful and independent platform.

• Operators: Able to handle content of different media types,
rights models and business models.

• Users: Addresses the needs of customers, to get an easy to
handle, device and location independent service.

1. Introduction

6

OPERA

EURESCOM

Mission Continued..

• Digital Rights Management (DRM) is the “central
component” for delivery of digital content in
eCommerce systems.

• Basic DRM requirements:
• Reliable, simple, compositional and ubiquitous DRM

infrastructure.
• Available on every system, independent of platform,

operating system and hardware.
• Current situation:

• Several different, proprietary DRM systems.
• Strongly altering market.
• Different approaches to solve that problems.

1. Introduction

Proceedings of the First ODRL International Workshop

19

7

OPERA

EURESCOM

Why OPERA?
Limitations of current systems

DRM 1

DRM 2

DRM 3

DRM ...

Player 1

Player 2

Player...

Player x

Every DRM System works separately i.e. specialized in
content types, players, end devices, system environments.

P
C

-B
as

ed

1. Introduction

8

OPERA

EURESCOM

OPERA framework.

DRM 1

DRM 2

DRM 3

DRM ...

Player 1 on a PC

Player 2 in a
car radio

Player... in a
settop box

Player x
in device ...

OPERA provides the framework to handle various DRM
systems in a common environment.

OPERA

1. Introduction

20

9

OPERA

EURESCOM

Project facts.

Milestones:
• Architecture: May 03.
• Demonstrator: August 03.
• Project end: September 03.

1. Introduction

10

OPERA

EURESCOM

Participating partners.

• DMDSecure.
• Exavio, Inc.
• Matáv Hungarian Telecommunications.

Company Limited.
• Sun Microsystems, Inc.
• T-Systems Nova GmbH, Berkom.

1. Introduction

Proceedings of the First ODRL International Workshop

21

11

OPERA

EURESCOM

2. System Overview.

Concepts, Features, General Overview, 3rd
Party Domain.

12

OPERA

EURESCOM

Concepts.

The main value of the OPERA framework is
based on two conceptual approaches:

• The usage license is independent of the
underlying DRM system.

• The usage license is bound to an user instead of
(as is common) to a device.

To achieve these functionalities Opera directly
integrates major DRM systems and uses the
already available DRM frameworks.

2. Overview

22

13

OPERA

EURESCOM

Features.

User bound
licenses

Usage rules are independent of the end
devices. Instead they are explicitly
bound to a user.

Secure for content provider, ease of
use for the user, “subscriber control” for
operator.

1

Support for
multiple
devices

Support for different end devices: (a) PC
(b) Set-top Box (c) PDA.

Ease of use for the user, more revenue
for operators and content providers.3

Feature Description Benefit#

Separation of
rights from
content

Rights management is completely
separated from the DRM process and
allows every content type that the
underlying DRM system is able to
support.

Content Providers and end users are
able to use arbitrary DRM systems. The
OPERA framework supports different
DRM systems.

2

2. Overview

14

OPERA

EURESCOM

General Overview.
Service
Domain

Client
Domain

Access
Domain

UMTS

WLAN

ISDN

Opera Server

3rd Party
Domain

Shop

DRM –
Framework

Supporting
Services

(Payment,
CMS

Content Delivery)

Presentation
Layer

• Web Portale

Service
Layer

• User Registration
• User Verification
• Licence Generation
• Rights Registration
• Content Registration

Opera
Proxy

STB

PC

PDA

Mobile
Phone

2. Overview

Content
Providers

Proceedings of the First ODRL International Workshop

23

15

OPERA

EURESCOM

editorial-
service

Content
Data

Play out
Server

Accounting/
Billing

Other Auth.
Services

Content
Management SMS-Gateway

Content
Meta Data

User DataReports

Accounting
Data

Service LayerPresentation Layer

Shop Server

3rd Party Domain.
2. Overview

16

OPERA

EURESCOM

3. Architecture.

Component Overview, Client Components,
Server Components, Additional Components.

24

17

OPERA

EURESCOM

Component Overview.

SOAP Interface

API

Opera Server

DRM Framework

Shop 1 ..n

API

T-Pay Payment Appl.

R
ea

l M
ed

ia
Pl

ay
er

API

M
S

-M
ed

ia
Pl

ay
er

API

Content Management
System

Use
r W

eb
-Inte

rfac
e

User
Datab

ase

eb
XML in

ter
fac

e

Pro
vide

r W
eb

-In
ter

fac
e

MPEG
7

inte
rfac

e
CM

S

Auth
ent

ica
tion

 Proc
ess

or

Te
lco

Pro
vide

r In
terfa

ce

FTP
-Serv

er

O
th

er
DR

M
 c

lie
nt

s

Opera Proxy

License Management Layer and
Content Management System

eb
XML in

ter
fac

e

Client Components

Opera System Architecture

HTTP

License
Enforcement /
Delivery Layer

additional
components

MS DRM Real DRM ...

SOAP Interface

API

Opera Server

DRM Framework

Shop 1 ..n

API

T-Pay Payment Appl.

R
ea

l M
ed

ia
Pl

ay
er

API

M
S

-M
ed

ia
Pl

ay
er

API

Content Management
System

Use
r W

eb
-Inte

rfac
e

User
Datab

ase

eb
XML in

ter
fac

e

Pro
vide

r W
eb

-In
ter

fac
e

MPEG
7

inte
rfac

e
CM

S

Auth
ent

ica
tion

 Proc
ess

or

Te
lco

Pro
vide

r In
terfa

ce

FTP
-Serv

er

O
th

er
DR

M
 c

lie
nt

s

Opera Proxy

License Management Layer and
Content Management System

eb
XML in

ter
fac

e

Client Components

Opera System Architecture

HTTP

License
Enforcement /
Delivery Layer

additional
components

MS DRM Real DRM ...

3. Architecture

18

OPERA

EURESCOM

Client Components.

• Opera Proxy:
• The Opera Proxy is responsible for connecting the

user to the Opera Server and adds the users
Authentication information to the incoming license
request from the Player.

• DRM Player (or Viewer) application:
• The media player or viewer allows users to

consume the content they bought. This
component is dependent on the particular used
DRM system.

3. Architecture

Proceedings of the First ODRL International Workshop

25

19

OPERA

EURESCOM

Server Components.

• The license management layer (Opera Server) is
responsible for management of the rights the users
have obtained. They are described through an Opera
license and stored in a database on a per-user basis.

• The license delivery layer is responsible for delivering
licenses of the underlying proprietary DRM-systems
to the user’s machines. Examples for such systems
are DMDfusion and the DWS (Digital World Services)
system.

3. Architecture

20

OPERA

EURESCOM

Server Components.
• The enforcement layer is realized by one of the

proprietary DRM-systems available on the market.
Enforcement layer - enforces the compliance of
usage rules (more exactly: those of the delivered
license) by using mechanisms like encryption.

• Content management layer – This layer represents
the content utility interface and a media asset
management system. For the Opera project the focus
is the additional possibility to specify usage rules for
the Opera Server.

3. Architecture

26

21

OPERA

EURESCOM

Additional Components.

• Shop Application: The shop application is used to buy
content over a web based application. The Opera
management layer uses the shop also to verify that
the content was bought by the user who request the
license.

• Payment Application: The payment application is
often part of the shop application but may also be a
separate application e.g. T-Pay or FirstGate.

• Content delivery system: – architecturally both
download and streaming capability shall be
supported. But for the demonstrator only download
will be supported.

3. Architecture

22

OPERA

EURESCOM

4. Demonstrator.

Components in demonstrator,
Work flow for Obtaining Licenses

Proceedings of the First ODRL International Workshop

27

23

OPERA

EURESCOM

Components.

• License Delivery Layer (DRM Frameworks)
• DMD Secure

• License Enforcement Layer (DRM Systems)
• Digicont DRM from SDC AG.
• Microsoft DRM

• Devices
• PDA
• Personal Computer
• Set Top Box
• (Mobile phone)

4. Demonstrator

24

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Components in Opera DRM solution

28

25

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

1

User browsed online in
content shop, purchased a
license and now license is
requested.

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

1

User browsed online in
content shop, purchased a
license and now license is
requested.

26

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

2

Client device is asked
to authenticate the
user.

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

2

Client device is asked
to authenticate the
user.

Proceedings of the First ODRL International Workshop

29

27

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

3

Client provides credentials
(e.g. SIM Card ID) to Opera
Server in order to
authenticate user

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

3

Client provides credentials
(e.g. SIM Card ID) to Opera
Server in order to
authenticate user

28

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

4

Oper Server generates a
challenge key which is sent
over SMS to mobile phone

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

4

Oper Server generates a
challenge key which is sent
over SMS to mobile phone

30

29

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

4

5

User device sends this
challenge key to the Opera
Server

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

4

5

User device sends this
challenge key to the Opera
Server

30

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Opera Server
validates
user`s rights to
content &
Generates a
one-time usage
license

6

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

ShopOpera
Server

License
Server Billing

Opera
DB

Opera Server
validates
user`s rights to
content &
Generates a
one-time usage
license

6

Proceedings of the First ODRL International Workshop

31

31

OPERA

EURESCOM

Workflow.

4. Demonstrator

Browser

Opera
Proxy

Mobile
Phone

Shop Opera
Server

License
Server Billing

Opera
DB

License
Server (e.g.
Real DRM)
sends the
one - time
usage license
to the device

7 Browser

Opera
Proxy

Mobile
Phone

Shop Opera
Server

License
Server Billing

Opera
DB

Browser

Opera
Proxy

Mobile
Phone

Shop Opera
Server

License
Server Billing

Opera
DB

License
Server (e.g.
Real DRM)
sends the
one - time
usage license
to the device

7

32

OPERA

EURESCOM

5. Conclusion.

• The Opera project has been successful in
providing an innovative DRM architecture, and
in implementing a demonstrator that satisfies all
the requirements of content value-chain
stakeholders.

• Tremendous interest from operators, service
providers and content providers as well as
technology providers in real deployment of
Opera

5. Conclusion

32

Proceedings of the First ODRL International Workshop

33

34

OMA Secure Content Delivery for the
Mobile World

ODRL Workshop, Vienna

Dr. Willms Buhse
Vice Chair, OMA Download and DRM group

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

Agenda

• OMA Digital Rights Management background
• OMA DRM v1 for light media
• New DRM v2 for premium content
• Benefits for content providers
• Benefits for end consumers
• Applying OMA DRM to protect content
• Summary
• Questions

Proceedings of the First ODRL International Workshop

35

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

Why OMA started working on DRM- 2001

• A response to strong market demand
• Content sales to mobile devices becoming lucrative

• Phones coming to market able to support light media
• Content and service providers wanted to protect their investments

• Levels of protection needed to commensurate with different content
value

• Need for a mass market solution:
• Timely and inexpensive to deploy
• For mass market mobile devices (not just high -end)
• Did not require costly infrastructure to be rolled out

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

OMA DRM – Stakeholders

• OMA DRM is developed by the entire mobile value
chain for the mobile industry
• Content Providers
• Information Technology Companies
• Mobile Operators
• Wireless Vendors

• About 50 Companies participating in monthly
meetings and weekly conference calls

• Consolidated from DRM standardization at 3GPP,
WAPForum etc.

• Liasons created with industry organizations such as
MPEG, RIAA, 3GPP, etc.

36

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

OMA DRM1.0 for Light Media Content

• OMA DRM 1.0 was created to meet these market requirements
• Targeted protection for light media content
• Three levels of functionality

• Forward Lock prevents content from leaving device

• Combined Deliveryadds rights definition
• Separate Deliveryprovides content encryption and supports legitimate

viral distribution (SuperDistribution)

• Specifications rapidly developed to reduce time-to-market
• Delivered specifications for implementation in Nov, 2002
• OMA “Test Fest” in Seattle in Nov 2003 to test DRM v1

interoperability
• Over 50 hand sets available in the market today
• Several vendors have announced servers supporting OMA DRM 1.0
• Operators are integrating OMA DRM into their infrastructure

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

OMA DRM 2.0 for Premium Content

• DRM solution is evolving with the mobile industry
• High bandwidth cellular networks becoming widely available
• Mobile devices with removable media and larger color screens

support downloading and streaming rich media
• Content and service providers eager to release rich audio/video

content and applications

• Greater security and trust management required to protect high
value content
• Need to ensure target device can be

trusted to keep content and trade secrets safe
• Need greater security to prevent content

from leaking out during distribution

Proceedings of the First ODRL International Workshop

37

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

OMA DRM 2.0
Benefits for Content Providers

• Enhanced security
• Individually encrypted rights object using device’s public key to provide

cryptographic binding (to SIM/WIM)
• Integrity protection for content and rights objects

• Explicit trust mechanisms
• Mutual authentication between device and rights issuer
• Device Revocation: Rights issuer can identify device revocation status

• Secure multicast and unicast streaming
• Working with 3GPP and 3GPP2 on packetised file format for protected

streaming and progressive download
• Wide variety of business models

• Metered time and usage constraints
• Subscription rights for content bundles
• Gifting

• Support for Peer-to-Peer and Messaging
• SuperDistribution: Viral marketing and reward mechanism

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

OMA DRM 2.0
Benefits for End Consumers

• Advanced content management
• Storage and backup: move content and rights to remote or

removable storage and later restore to device
• Multiple devices: Move content and rights objects easily between

several devices owned by a user (2nd phone)
• Sharing between multiple user within domain

• Domain concept for sharing between devices in the same domain
(e.g. family)

• Unconnected devices
• Copy to SD card for a mobile music player

• Complementary Preview
• Constraints for superdistributed content before purchase

• Export to other copy protection schemes
• transfer music to DRM-enabled Settop box or computing device

38

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

Applying DRM to Protect Content

• Steps for distributing DRM protected content
• Encrypt the content and package in DRM Content Format
• Assign permissions and constraints during consumer

purchase transaction
• Consumer receives content and “rights” and begins using

the application

• DRM enables viral distribution of content
• Consumers can send the protected content to all their

friends that have OMA DRM enabled mobile devices
• Their friends, in turn, purchase the permission to consume the

content
• Content and service providers make money through “word

of mouth” advertising

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

Example of OMA DRM Deployment

Content
Issuer

Rights
Issuer

1. Browse to website
and download
protected content

4. Deliver
protected

rights object

3. Purchase “rights”
and establish trust

2. Transfer content Encryption key

5. Super -distribute
content to a friend

6. Establish
trust; purchase
and deliver
rights object

Share content
within your
domain

George’s devices

Sarah’s
phone

Proceedings of the First ODRL International Workshop

39

Copyright © 2004 Open Mobile Alliance Ltd. All Rights Reserved.

Future Directions for OMA DRM

• OMA DRM will continue to evolve
• New ideas and experiences will drive OMA DRM in

new directions

• OMA proactively seeking input from content
industry and developer fora
• Ensures OMA DRM satisfies their business models

• Please join the OMA DRM sub-working group
and help define the future of DRM
• Browser and Content Group, Download+DRM

• OMA-DOWNLOAD is the email reflector

Questions?

www.openmobilealliance.org

40

Proceedings of the First ODRL International Workshop

41

42

First ODRL International Workshop

Papers

Proceedings of the First ODRL International Workshop

43

44

A Pervasive Application Rights Management Architecture
(PARMA) based on ODRL

Dominik Dahlem, Ivana Dusparic and Jim Dowling

Distributed Systems Group
 Department of Computer Science

Trinity College Dublin
Dominik.Dahlem@cs.tcd.ie, Ivana.Dusparic@cs.tcd.ie, Jim.Dowling@cs.tcd.ie

Abstract. Software license management is currently expanding from its traditional
desktop environment into the mobile application space, but software vendors are still
applying old licensing models to a platform where application rights will be specified,
managed and distributed in new and different ways. This paper presents an open-source
pervasive application rights management architecture (PARMA) for fixed network and
mobile applications that supports the specification of application rights in a rights
expression language (REL) based on ODRL. Our rights specification model uses aspect-
oriented programming to generate modularized rights enforcement behaviour, which
reduces development time for rights models such as feature-based usage rights and
nagware. PARMA manages vendor and customer application rights over multiple
platforms using a web services architecture and a container model on the client-side. The
container model also supports the integration of services such as payment and
encourages the super distribution of the rights object with associated default (evaluation)
rights.

Keywords: Application Rights Management, Pervasive Computing, ODRL, Aspect-Oriented
Programming.

1 Introduction

Software licensing has been a relatively successful example of rights management based on
enforcement. The movement of license management from its traditional desktop environment into the
mobile application space has so far not resulted in the appearance of new licensing architectures that
utilise mobile-device features such as unique device identification, super distribution of applications
over multiple communication channels (e.g. Bluetooth and GPRS) and the separate delivery of
application usage rights [01]. Such a licensing platform must also deal with mobile-specific problems
such as disconnected operation and resource constrained environments. The DRM community has been
more successful at identifying some of these features and problems than the software licensing
community, but due to its focus more on rights management of content than applications existing DRM
specifications and architectures have left many of the aforementioned issues unresolved. Additionally,
there is a requirement for applications vendors who distribute both desktop and mobile applications for
an integrated (pervasive) licensing or application rights management architecture that will manage their
applications over many platforms.

One of the major limitations of existing licensing systems is how licensing behaviour (application
usage rights) is specified and integrated into applications. Existing distributed software licensing
platforms [02] and standards [03] support the specification of licensing behaviour in applications by
providing language- and platform-specific bindings to their licensing architectures. These solutions are
typically aimed at vertical markets, require programmer knowledge of proprietary application
programming interfaces (API) and do not provide the integration and flexibility required for more
ubiquitous software deployment. This all leads to significant problems in using existing licensing
technologies in the mobile application domain.

This paper investigates how the use of a declarative programming language (or a rights expression
language (REL)) for the specification of a user’s application usage rights (or license terms) can greatly
improve the application development process. We introduce a REL that extends ODRL [04] and
supports the specification of fine-grained application rights, such as specifying access rights at the

Proceedings of the First ODRL International Workshop

45

object and method level in object-oriented applications. The REL is integrated into applications using
aspect-oriented (AO) technology [05]. AO technology supports for the separation of rights
management concerns from application concerns. Calls to a licensing API that are scattered [05]
around application source code can be encapsulated into single, manageable aspects producing better
modularization, and hence improved maintenance, of rights management for applications. The REL
also supports the use of services external to application. For example, application usage rights can be
associated with payment services allowing users with an evaluation copy of an application to acquire
better usage rights for it.

The rights enforcement architecture provides a container model with plug-in services that mediates
application interaction with the services. The container is designed for resource constrained devices
and supports a base set of services, including application rights object management, security and the
separate delivery of rights objects to applications. This paper also describe how the application rights
management architecture handles the aforementioned pervasive computing and mobility problems. In
particular, we introduce a novel audited pay-per-use model designed specifically for mobile phone
application software.

Section 2 of this paper introduces and motivates the open-source PARMA model and Section 3
describes our rights expression language. Section 4 details the mapping of our REL to aspects and the
weaving of aspects into applications. Section 5 describes the rights enforcement architecture and we
conclude with the status of our work and future work.

2 Background and Motivation

An application rights management architecture for pervasive computing environments must
encompass a broad range of platforms and stakeholders. Application vendors need to be able to specify
and organize rights, application distributors need to be able to sell rights to consumers and client
devices must be able to run the applications while enforcing the rights and allowing the modification of
those rights. Application rights can be defined using traditional software licenses or with special
purpose rights expression languages (REL) such as ODRL or XrML [06]. However, for fine-grained
specification of application rights, i.e. at the application feature level, there is a requirement for rights
to be associated with application functionality, such as at the method invocation level for objects.
Traditional DRM is concerned with specifying whether or not a given user has a right to view the
passive content on the given device at the given time. Application DRM differs because users can be
allowed to execute one part of the application but not the other. For example, a user can create
documents, but not save them with a demo version of the application. Or users are allowed to execute
all parts of the application but billed differently for using different features, as opposed to being billed
per application execution/viewing as is the case with passive content DRM. Therefore, DRM
concerned with active content has to be more extensive than DRM over passive content.

Also, users will often receive evaluation versions of software or versions of software that degrade
over time [07] that they can later upgrade to a full version. For this reason, it is necessary that
application rights management architectures allow rights to be upgradeable and that support is provided
for the integration of external services such as payment. In our opinion, an application rights
specification language has to provide support for the association of changes in rights with use of
external services, such as payment.

The PARMA model is being developed according to open-source principles and provides support
for the specification of application rights and the mapping to a rights enforcement architecture that also
allows the integration of external services using a container model. The PARMA architecture also
addresses mobility-specific issues such as disconnected operation, resource constrained devices, super
distribution of applications (e.g. over Bluetooth), and the separate and combined delivery of rights. A
new audit-based rights model is specifically introduced for mobile devices with occasional
connectivity, to account for possibility of loss of network coverage and for the costs of GPRS
connection/traffic. Instead of checking application rights and initiating payment at the time of
application execution, information about application usage is safely stored on the device. Once device
is back on the network, it can transfer the data to the DRM server over GPRS, or via free short range
protocols like Bluetooth or 802.11, and users can be billed for the application usage according to their
log. A backend architecture is implemented as a web service [08] and allows vendors to manage
application rights over a pervasive computing environment.

46

2.1 Motivation

Typical and popular applications for mobile devices differ from desktop applications due to issues
such as user-interface disparities, ease of use and cost of network connectivity [09]. Retail applications
for mobile devices, including games, typically have a shorter life-span than their desktop or console
equivalents and customers appear less willing to make large up-front investments in expensive software
licenses [10]. However, some vendors have had success using novel application licensing solutions
such as FleetOnline [11], who distribute their base software for tracking the location of vehicle drivers
in the U.K. free of charge and charge per location request or message using sms billing.

It is our belief that the current model of restricting the distribution of mobile application software is
delaying the adoption of such software, as users appear unwilling to pay either the high costs of
application downloading over GPRS networks or the full-cost license for the application software. For
example, existing DRM architectures, such as Nokia’s [12], encourage the use of forward lock to
prevent the unauthorized further distribution of applications. However, the low cost of distribution of
digital media and applications over Bluetooth contrasts sharply with the high cost of GPRS. Given a
choice, users would prefer to acquire applications over a communication channel that is free instead of
paying for distribution as well as the application or content.

In contrast to existing DRM systems, however, our model encourages the removal of restrictions on
distributing application software. Application usage rights are determined during application usage by
software. The architecture adapts licenses to the user’s usage rights and integrates payment and other
container, including a payment service. In particular for the retail and gaming software markets, this
model will encourage users to distribute applications that come with default usage rights. More rights
can be acquired after application installation by the user without the need to download a new copy of
the software.

Application vendors have, in recent years, moved into the mobile application domain and are now
releasing products for multiple platforms. With this comes a requirement to centrally manage licenses,
payment and application rights. PARMA also provides a unified (or pervasive) application rights
management architecture for both fixed network and mobile applications. The integration of
application rights management architectures over multiple platforms and devices is achieved using a
web services backend architecture. Web services are platform and language independent and enable the
easy integration of the application rights management architecture with other backend systems, such as
asset management and billing systems.

3 The PARMA Rights Expression Language

Many DRM systems use rights expression languages to define rights on the content usage. Rights
expression languages are computer-readable, very often in XML format, and provide information on
content, owners of the content, and rights of usage for content users. Traditionally DRM is concerned
with copyrighted content (music, video, etc) but recently rights expression languages, such as Open
Mobile Alliance’s (OMA) REL [13], have been used to define rights on mobile software applications
as well [12].

The PARMA architecture primarily manages application usage rights on mobile devices and is not
concerned with usage rights on other types of mobile content (music, video, ringtones etc.). Existing
DRM systems that support applications as a possible content type are limited and support only
simplified models such as whether the user/device is permitted to run the application and whether the
user/device is permitted to forward the application to another user/device [12]. PARMA’s focus on
application usage rights will provide more fine-grained specification of rights over how the application
can be used, as well as integration with payment and other services.

PARMA supports an extensible set of rights models including traditional license for unlimited
usage, named user license, time-limited, feature-based model, subscription-based, pay-per-use where
payment can be in real-time or audited, node-locked, and concurrent usage rights models. We believe
that feature-based and pay-per-use models will be most attractive to application vendors and customers
alike. All of these rights models introduce requirements on a REL used to define application usage
rights and permissions.

Open Mobile Alliance’s (OMA) REL Version 1.0 [13] is designed specifically for mobile devices
and its schema consists of a subset of ODRL elements extended with elements specific for mobile
environments. The OMA REL is the basis for DRM systems by both Nokia and SonyEricsson.

Proceedings of the First ODRL International Workshop

47

PARMA REL, designed in part for mobile devices, reuses some of the permissions and constraints
from the OMA REL (execute, datetime, count etc) but beside simple permissions and constraints
PARMA REL requires information about parties involved in issuing rights, amount and means of
payment for the application, as well as finer definition of constraints. OMA REL by itself proves too
narrow for PARMA REL mobile software licensing requirements and needs to be extended.

ODRL [04], as a superset of OMA REL, introduces some new elements that define parties involved
in defining the permissions on content and payment elements PARMA can reuse. ODRL elements,
however, do not fully cover PARMA requirements and we required adaptations to ODRL to meet the
PARMA REL requirements. ODRL can be adapted in two ways: either by modifying or by extending
the ODRL schema. Modification of the schema would allow for finer and more strict schema level
validation of elements but we decided to perform this validation separately and instead extend ODRL
to stay compliant with other DRM architectures implementing it. PARMA REL, as an extension of
ODRL, is backwards compatible with ODRL and therefore with OMA REL. In that way, PARMA
REL is compatible with current DRM systems incorporated in mobile phones.

3.1 PARMA REL Schema

Figure 1 : ODRL Agreement Element

Figure 2 : PARMA Context Element
(Extended ODRL)

The first element PARMA REL adds onto the ODRL schema is a rights type. In the PARMA

schema the RightsType element is defined as a contextType element and it can contain the following
values: NodeLocked, Concurrent, PayPerUse-Audit, PayPerUse-RT, Unlimited, TimeLimited,
FeatureLimited, NamedUser, and Subscription. These are rights types currently supported by the
PARMA architecture and every agreement issued by PARMA will fall in one of these categories.
However, RightsType is open for extensions. Since a license model is directly related to offer and
agreement types, the ideal case would be to make this element mandatory child element of context
element that is child of agreement or offer type. However, ODRL uses the same definition of context
element regardless of whether it is a child of agreement, offer, party, permission etc, therefore it cannot
be defined as mandatory and this validation will have to be performed separately from the validation

48

against schema. A tool will be provided that allows application usage rights to be specified and allows
validation of those rights against the schema and PARMA validation rules. After successfully
validating the rights the tool will convert the rights to aspect code and weave it into the application.

<xsd:element name="RightsType" type=”xsd:string” substitutionGroup="o-ex:contextElement"/ >

Rights objects in PARMA REL must be identified by their location therefore we need an element to

store this information in the rights file. The ODRL definition of context elements includes the element
dLocation that represents the digital location of the event/entity. PARMA REL uses this element to
store a URI that refers to the rights object. In PARMA REL this element is mandatory and validation
will again have to be performed against PARMA validation rules rather than against the schema. The
context element also includes elements for the version name of the entity, used by PARMA REL to
specify name and version of the application, although dLocation alone is often enough to uniquely
identify the rights object.

Another group of elements introduced is the URI and type of the rights server.

<xsd:element name="ServerType" substitutionGroup="o-ex:contextElement">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EDS"/>
 <xsd:enumeration value="VDS"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

The rights server is responsible for delivering application and usage rights, updates of usage rights,

collecting audit data and billing for the application usage. Information on this server, following the
ODRL structure, best fits within the party element because the server will represent a party that is
either the owner or distributor of the application, or possibly an authorized enterprise that will
distribute licenses to its employees. In the case that the party is the owner or distributor we could put
this information in the rightsholder element, but in the situation where the party is an enterprise that
would not be accurate. Therefore, PARMA REL extends the context element with the new element
ServerType, and stores the information about the location of the server in the ODRL-defined element
dLocation. Similar to the RightsType element, we would like to restrict the ServerType element to
occur only within the context element that is a child of a party element, but again this validation is left
to be done against PARMA validation rules before rights objects are converted to code. The
ServerType element is mandatory (not by the schema but by PARMA rules validation) and can contain
only two values- EDS, in the case of the server being Enterprise DRM Server, hosted by the company
licensed to use the application, and VDS, in the case where the application is communicating with a
Vendor DRM Server to obtain the rights. This information is important for configuration of the client
side DRM engine that behaves differently depending on the type of server it is communicating with.

<o-ex:party>
 <o-ex:context>
 <o-dd:dLocation>URIofDRMServer</o-dd:dLocation>
 <parma:ServerType>EDS</parma:ServerType>
 </o-ex:context>
</o-ex:party>

Introducing these elements concludes the general part of all PARMA requirements – other elements

PARMA included and/or distributed in already existing ODRL elements are directly related to rights
information and usually specific to a license type declared in the new RightsType field.

3.2 PARMA Schema and Licensing Model Implementation

ODRL has defined an extensive list of permissions on content, however the only permission
applicable to software usage is “execute”. All the constraints PARMA REL uses will be defined as
constraints on the execute permissions.

Proceedings of the First ODRL International Workshop

49

Figure 3 : PARMA Constraint Elements (Extended ODRL)

The only constraint that is mandatory (and its presence is ensured by validation of PARMA

requirements) for all values of RightsType is the ODRL datetime constraint, that specifies start or end
date, or both, for the period in which the user/device is permitted to execute the application. PARMA
supports traditional usage rights models such as node-locked and named-user models by introducing
restriction elements to uniquely identify the user. If a node is a user it is identified by the new
restriction element IMEI number (International Mobile Equipment Identification number) and the
element userID that optionally contains the user’s name or his mobile phone number.

• Feature-Based Model

Another DRM model PARMA REL is implementing is a feature-based model, where certain

features of the software application will be enabled or disabled depending on the agreement. For
example, for a game application, a multiplayer over Bluetooth option might be disabled for a demo
version of the application. PARMA REL allows the specification of such features using a new
extension to the permission element called “disabledFeatures”. It is a complex type that contains a
sequence of zero or more “feature” elements that contain the name of the disabled feature.

<xsd:element name="disabledFeatures" substitutionGroup="o-ex:constraintElement">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="feature" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

However, PARMA also allows for much finer grained control over parts of the application. PARMA

schema defines a “returnType packageName.className.methodName(argumentTypes)” structure as an
extension of the requirement element. This structure contains the signature of the method within the
application source code where the rights check should be performed. Permissions specify the signature
of the method and the class/package it belongs to and the licensing code before calling this method

50

within the application checks the PARMA permissions to allow or deny the method call to be
performed. In this way PARMA can, for example, enable game players with a demo license to play the
game up to a 3rd level, but for higher levels prompt them to obtain an upgraded full license that
supports all levels.

Figure 4 : PARMA Package Element

• Pay Per Use models (Audited and Real-Time)

Figure 5 : PARMA Requirement Elements (Extended ODRL)

One of the features that distinguishes PARMA from other similar projects is the very flexible pay-

per-use policy. It can accommodate real-time pay-per-use where users make payments immediately

Proceedings of the First ODRL International Workshop

51

before or after running the application for the certain amount of time or certain number of times. In the
audited pay-per-use model information on the application usage is stored in a secure storage area of the
mobile device and is occasionally transferred to the EDS and from there to VDS, or directly to VDS.
Billing information is produced based on the usage data from this log. The PARMA schema defines the
complex element auditLogData as an extension of requirementElement that has several boolean
attributes that represent required parts of the log. All attributes are optional and their default values are
true.

<xsd:element name="auditLogData" substitutionGroup="o-ex:requirementElement">
 <xsd:complexType>
 <xsd:attribute name="dateTime" type="xsd:boolean" use="optional" default="1"/>
 <xsd:attribute name="duration" type="xsd:boolean" use="optional" default="1"/>
 <xsd:attribute name="accumulated" type="xsd:boolean" use="optional" default="1"/>
 </xsd:complexType>
</xsd:element>

Other elements required for the implementation of PARMA payment policies are already defined in

the ODRL schema. ODRL accounts for both prepaid and postpaid payment types and has
corresponding elements to store this information. Another ODRL payment element PARMA is using is
“peruse” where price per use (in PARMA’s case it is per execution) of the application is stored. Per use
can be combined with both prepaid and postpaid payment types, and also both with real-time and
audited approaches. Some payment types will require the user to be registered in advance with the
rights server, so elements userID, register and dLocation of the registration server will be reused here
as well.

<o-ex:requirement>
 <o-dd:peruse>
 <o-dd:payment>
 <o-dd:amount o-dd:currency="EUR">2.00</o-dd:amount>
 </o-dd:payment>
 </o-dd:peruse>
 <o-dd:prepay>
 <o-dd:payment>
 <o-dd:amount o-dd:currency="EUR">2.00</o-dd:amount>
 </o-dd:payment>
 </o-dd:prepay>
 </o-ex:requirement>
 <o-ex:requirement>
 <o-dd:register>
 <o-ex:context>
 <o-dd:dLocation>URIofApplication</o-dd:dLocation>
 </o-ex:context>
 </o-dd:register>
</o-ex:requirement>

4 Mapping REL into Application Rights Management Code

4.1 Introduction

In this section we explain the association of PARMA rights with the licensed software application
(rights object). Rights have to be tightly-coupled with the application code in order to support fine-
grained usage rights models. Before the particular method in the application is called, validation has to
be performed that rights specifications allow for this call to be made. Generally, a rights object requires
specific calls to a DRM system to be added to the code of the original application in order to perform
validation, and these calls are usually scattered over several classes throughout the application.
However, such modifications of the original source code to add rights enforcement are very inflexible
and impose extra work on application developers.

52

As an example for the comparison we will describe rights enforcement using XSLM, a licensing
standard proposed by the Open Group [03]. The first step of an XSLM-compliant application is to
determine what level of application usage rights the server supports. Next, it has to establish the rights
enforcing session and request the rights. After these calls are successfully completed, the user is
allowed to run the application. During the execution, the application occasionally makes API calls to
record application data, log the application usage, and confirm that the rights agreement is still in use.
Before the application is closed, calls have to be made to release the rights in order to end the rights
enforcing session. XSLM-compliant advanced DRM systems require rights objects to make at least
eight API calls during the execution and in standard object-oriented applications. These calls cut across
many different components of the application (on start up, during the execution and before application
termination) and have to be added by the programmer with knowledge of licensing system APIs.

+startUsageOK()
+conf irmRightsOK()
+endUsageOK()

License

+startApp()
+endApp()

MidletClass1

+method2()

MidletClass3

+method1()

MidletClass2

method2{
 if (Rights.confirmRightsOK())
 .. execute method code...
 else
 ..prevent method execution
}

method1{
 if (Rights.confirmRightsOK())
 .. execute method code...
 else
 ..prevent method execution
}

endApp{
 Rights.endUsageOK();
}

startApp{
 if (Rights.startUsageOK())
 .. execute application code...
 else
 ..prevent application execution
}

Figure 6 : Scattered Calls to Rights APIs

4.2 Generating code from Rights Files

PARMA uses aspect-oriented development techniques to add rights enforcing code to the
application in a non-intrusive manner. Aspect code specifies join points in the original source code
where rights enforcing APIs should be called. All the enforcement-related code is encapsulated in the
aspect and it is woven into the original application at compile time using an Aspect Oriented Software
Development (AOSD) tool, such as AspectJ [14] for Java applications. AOSD does not require any
changes to the original source code and therefore it is very easy for developers to add rights
enforcement to their application and maintain it in a single concern. In the example of an XSLM-
compliant licensing system shown below, the application would still have to make at least eight calls to
the DRM system. However, these calls do not cut across multiple, but rather are specified in a single
aspect class and are injected into the application at compile time. Also, calls don’t need to be added by
the programmer with knowledge of APIs – a user-friendly tool is provided that allows the specification
of rights without any programming knowledge. The tool generates the rights file in XML format,
validates it against the PARMA schema, convert it to aspect-oriented code.

Proceedings of the First ODRL International Workshop

53

+method2()

MidletClass3

+startApp()
+destroyApp()

MidletClass1

startApp{
...application code...
}

+method1()

MidletClass2

+startUsageOK()
+conf irmRightsOK()
+endUsageOK()

License

method2{
...method code...
}

method1{
...method code...
}

destroyApp{
...app finish up code...
}

aspect Rights{

pointcut start():
 execution (public myPackage.MidletClass1.startApp());
pointcut end():
 execution (public myPackage.MidletClass1.destroyApp());
pointcut confirm1():
 execution (public myPackage.MidletClass2.method1());
pointcut confirm2():
 execution (public myPackage.MidletClass3.method2());

before(): start(){
 if (Rights.startUsageOK())
 .. execute application code...
 else
 ..prevent application execution

before(): end(){
 if(Rights.endUsageOK())
 ..application finish up code
 else
 ...prevent application from finishing up...

before(): confirm(){
 if (Rights.confirmRightsOK())
 .. execute method code...
 else
 ..prevent method execution
}
}

Figure 7 : PARMA AOP Approach

This approach introduces security risks associated with the rights enforcing code. A loosely-coupled

approach of rights enforcement and the application decreases the effort of a potential hacker to rip off
the licensing calls. We are investigating in techniques to render an application useless when it has been
compromised with. PARMA also uses jar signing and verification techniques as well as code
obfuscation to minimize the risk of a potential attack.

develop
application

create evaluation
application usage

rights

generate aspects

[release]

[AND]

compile
application &

weave in aspects

[AND]

package

distribute
create

application usage
rights

Application
Developer

Application
Rights

Manager

Application
Assembler

Figure 8 : PARMA Development Life-Cycle

The roles involved in the development life-cycle of an application and its associated usage rights are

similar to those in the J2EE specification. On the one hand the developer is responsible for
implementing the application without any rights management API calls. The application rights
manager, on the other hand, is in charge of the declarative programming part. He maintains application
usage rights and creates them for each application. Application rights can be categorized into two
different rights models, the evaluation and any other ‘higher’ usage rights. The evaluation rights serve
as a super set of the ‘higher’ usage rights and therefore are the basis of the aspect generation. It

54

presents all code-location where calls to the rights enforcement architecture should be inserted. All
‘higher’ application usage rights specialize rights based on the evaluation rights. Consequently, it is
possible to distribute one rights object with a default evaluation rights agreement and upgrade at
runtime of this application to another rights agreement without downloading a new version of this
application with specific calls to the enforcement architecture. All ‘higher’ application usage rights are
being made available on a rights locker server which can be co-located with the EDS or VDS.

The application assembler compiles the application with the generated aspects into a rights object,
packages it with the evaluation usage rights agreement, and distributes it through a provisioning server.

4.3 Mapping of PARMA REL elements to aspect code

In traditional software licensing license validation is performed at different points in the application
source code. Many of the supported rights models require the validation to be done only once, usually
at the application start-up, while more fine-grained rights models specify validation to be performed in
set time intervals, for real-time billing licenses, or at function or methods calls within the application.
The latter type of model enables the use of feature-based rights and the release of upgradeable
evaluation versions of software. Such two different licensing models define two different types of
mapping from the PARMA rights file to join points in the aspect code.

For models that require the rights to be validated only at the beginning of the application, only one
join point is specified in the aspect code, regardless of constraints in the rights definition. That point cut
is a method startApp(), entry point to all MIDP applications. Rights validation is performed before
this method is called and if validation fails application execution is not allowed to proceed.

pointcut checkLicense() :
 execution(public myPackage.MIDlet.startApp());

before() : checkLicense () {
 Context appContext = new Context();

 //make an API call to DRM rights enforcement engine
 boolean proceed = DRMEngine.validateLicense(appContext) ;
 if (proceed==true) {
 // do nothing, allow code in the startApp() to be executed and
 // start the application
 } else{
 // prevent the application from proceeding
 }
}

The aspect creates the application context object and stores all the available runtime information

about the application in that object. This information includes join point information – the package,
class, and method it belongs to, as well as types and values of the parameters. The aspect calls
DRMEngine.validateRights(appContext) to validate the obtained runtime information
against the rights. Based on the return value of this API call, the aspect either returns to the main
application code and proceeds as normal, or exits the application with the error message informing
users they are not authorized to execute the given application at the given time on the given device.
Additionally, users can be provided with the option to purchase additional rights that will enable them
to proceed with the execution, or instead of exiting the application, user can be allowed to run the demo
version of the application.
The mapping of a PARMA rights definition to aspect code for feature-based rights model is more fine-
grained and complex. The rights specifies the methods that require rights enforcement before their call.
A sample right definition specifies that validation should be performed before the method myMethod
that takes int as its only parameter, has myReturnType as a return type, and belongs to the class
myClassName within myPackage. Pointcut can have values “before”, “after”, or “around”
depending on whether rights check is needed before the execution, confirmation is required after the
execution, or a replacement of a specified method is required.

<parma:pointcut>

 <parma:adviceType>before</parma:adviceType>

Proceedings of the First ODRL International Workshop

55

<parma:package>
 <parma:packageName>myPackage</parma:packageName>
 <parma:class>
 <parma:className>myClassName</parma:className>
 <parma:method>
 <parma:methodName>myMethod</parma:methodName>
 <parma:returnType>myReturnType</parma:returnType>
 <parma:argType>int</parma:argType>
 </parma:method>
 </parma:class>
</parma:package>

</parma:pointcut>

The REL-to-Aspects tool maps these XML elements into aspect joint point as follows.

pointcut validateLicense (int i) :
 execution(* myPackage.myClassName.myMethod(int))
 && args(i);

before (int i): validateLicense (i) {

 Context appContext = new Context();

 //make an API call to DRM enforcement engine
 boolean proceed = DRMEngine.validateLicense(appContext);
 if (proceed==true) {
 // do nothing, allow code in myPackage.myClassName.myMethod
 // (int) to be executed
 } else{
 // prevent the myPackage.myClassName.myMethod (int) from
 // proceeding
 }
}

As a result, the rights enforcement architecture can evaluate e.g. the level of a game the user is
currently in and denies access to the next level according to the usage rights.

5 Rights Enforcement Architecture

In previous sections we introduced how we accomplish rights management with a well-established
standard, ODRL, and our aspect-oriented approach to inject DRM enabling code into any JAVA
implemented application. Our emphasis on this approach is its ease-of-use. In order to enable an
application with DRM only an ODRL-specific rights file is needed.

The following sections deal with the design of our rights enforcement architecture, its components,
and which aspects we consider to be important in a successful DRM architecture. We aim to implement
a framework for resource constraint and occasional connected devices. PARMA targets the J2ME
environment, especially the MIDP 2.0 profile. In contrast to desktop computers mobile devices are not
permanently connected to the internet and hence the design of such a framework requires a flexible
model to decouple any DRM infrastructure from network connections. Consequently, flexible rights
models and DRM systems are necessary to encourage a scenario where a user is not able to connect to
a network to comply or upgrade the DRM agreement. With ODRL and our extensions to it we defined
the building block to express such a flexible agreement. This section gives an abstract view on the
framework and how we partition the components being involved.

56

5.1 Pervasive DRM Architecture

A flexible license model, such as an audit-based pay-per-use agreement, requires interaction with a
DRM server to upload audit information and initiate payment. Additionally, the user should have the
choice to migrate to a different rights model. As a result, interoperability with the content provider is
crucial and ideally should be standardized. The PARMA architecture consists of Vendor DRM Server
(VDS) hosted by the application vendor (or authorized distributor), Enterprise DRM Server (EDS)
hosted by an enterprise that purchases sets of rights for its users, and mobile clients running the rights
object and connecting to EDS or VDS. The EDS component can be left out in the case of retail rights
distribution where clients would communicate directly to VDS to download applications and obtain
usage rights.

On the server side, VDS exposes WSDL interfaces for enterprise customers (EDS) to register for the
application usage, download the application, request/return usage agreements, select/change/cancel
agreement options, send usage data for audit and make payments. The basis for a payment architecture
incorporated in PARMA is Web Services Framework for Mobile Payment Services developed by
David McKitterick [17]. EDS exposes similar WSDL interfaces to communicate with mobile clients,
allow them to register for and download the given application, obtain permissions on its usage and send
back auditing data. This architecture uses web services for communication between clients and
EDS/VDS and is an upgrade of a licensing architecture developed at Trinity College Dublin by Niall
Clarke where clients were communicating with servers using SOAP [18].

The development of the server side architecture is a great deal influenced by numerous U.S. patents
on license management systems and in order to avoid infringing these patents several initial design
decisions had to be altered. The VDS server will also implement JSR-124 J2EE Client Provisioning
specification [30] to enable clients to detect suitable applications, download them together with usage
rights and initiate payment.

Communication between clients and EDS somewhat differs from communication between EDS and
VDS due to limited resources of mobile clients. The PARMA DRM file is created on EDS, aspect code
is generated based on the rights specified in this file and packaged together with the original
application. Both aspects and original PARMA DRM file are delivered to the client. The payment
framework supports payment for applications and rights via SMS, mobile operators and credit card but
is extensible to new payment methods. In the case of enterprise licensing, payment is not done between
clients and EDS/VDS, but usage data is collected on EDS from all clients and then payment is settled
between EDS and VDS.

For a successful DRM architecture security considerations should be taken into account at initial
design decisions. However, cryptographic security measures are not the focal part of this paper. We
assume the client participates in a trusted environment, her juridical privacy is respected, and
communication channels are sufficiently secure. Further we assume that mobile code offers some
degrees of security in terms of protecting the rights of the copyrights holder with watermarking, and
provide some level of tamper-resistance with obfuscation techniques [04, 05]. We assume secure
storage is achieved with encrypting usage data, keeping the DRM agreement and secret keys on a SIM
card to prevent compromising with sensitive data. A detailed description of managing the persistent
state of DRM systems is given in [19].

One of the goals of this project was to design generic components to be able to adapt new features
easily. The following section on the container architecture sheds some light on the infrastructure of our
framework. Then services are introduced and finally application provisioning, related and future work
are discussed.

Proceedings of the First ODRL International Workshop

57

5.2 Container Architecture

Container:Security Service

Container:DRM Container

Container:Persistence Service

uses

Nagging

DRMController

Authentication

Authorization

Secure Storage

RMS

DRMAgent

uses

Figure 9 : DRM Container Architecture

 The DRM framework provides a set of mechanisms whereby applications can be configured to
support flexible rights management and billing options as well as a secure execution environment. The
DRM framework is built around a light-weight interface-based Inversion of Control (type I) container
architecture. The DRM support functionality is provided in isolated components (plug-ins). A
component has to be registered with the container and then exposes its interface to other components
which are interested in it. Components are not fixed to an implementation class, but rather to an
interface. The advantage of this approach is the easy exchange of the implementation class without
breaking dependent APIs. The fully qualified interface name of a component acts as a primary key. The
container makes sure that only one class implementing this interface is instantiated. This can be seen as
a pseudo singleton without implementing the singleton contract in a component explicitly.
Consequently, components either need to be immutable or their methods synchronized. Instantiating a
container is a two-phase process. First, all registered components are instantiated and in the second
phase their dependencies are resolved. The implementation class can be either retrieved through a
properties file which maps a plug-in to the implementation or it can be specified at registration time.
All components implement a service provider interface (SPI) which declares callback methods for life-
cycle, and dependency management.

The container is the central repository of instantiated components. Therefore memory management
can be handled in one single place, rather than in multiple spaces. As well this approach offers a bit of
security, because the container is the one and only instance which is responsible for creating
components with a specialized factory class. This class and the repository can be exchanged, if special
memory handling code is required. Common patterns in a memory constraint environment are object
pooling and fixed allocation which both can be easily adapted in a new implementation [31].

The container can be arranged in a hierarchical structure whereby each child container is responsible
for a specific task. In our architecture child-containers implement services which are only visible to its
parent.

58

5.3 Services

The Services are controlled by a DRMController which is a component itself. The
DRMController implements the delegation logic to each service and configures them when the
container starts up. The following sequence diagram illustrates the interaction of the
DRMController with the services provided by the child containers.

b:isAuthorized()

a:isAuthenticated()

getAuditData()

{user interaction}
[b == false]

[a == true]

<<DRMContainer>>
DRMController

<<Persistence Service>>
RMS

<<Security Service>>
Authentication

<<Security Service>>
Authorization

<<Communication Service>>
UpgradeManager

upgrade()

Figure 10 : DRMController Interaction

After the DRMContainer is initialized and a call to the DRMAgent is made, the controller first

accesses the Persistence Service’s Record Management System (RMS) to retrieve the runtime audit
data and updates them accordingly. These include usage data, subscription date, etc. This data is
initially recorded to a persistent store when the application first starts up. Usage data is appended with
a Message Authentication Code (MAC), encrypted and persisted into the RMS, whereas the usage
rights according to the DRM agreement are kept on a secure tamper-resistant smart card. In addition
the Persistence Service provides a one-way-counter for the usage statistics which is triggered at start up
time of the application.

The user is then authenticated based on certificates delivered with the application. If authentication
returns successfully, the authorization service is consulted to check against the DRM agreement. The
authorization service implements a simplified role-based policy language. The roles participating in
PARMA are shown in Figure 11:

Authorized

entry / isAuthorized()
exit / transition()

Evaluator

entry / isAuthorized()
exit / transition()

Not Authorized

entry / isAuthorized()
exit / transition()

Figure 11 : DRM Roles

An authorized role represents a user with valid rights, whereas the evaluator represents a user who
only is allowed to evaluate/preview an application. This approach helps in achieving a flexible rights
model. Users should be able to overdraft rights agreements and comply at a later stage. The overdraft is
expressed in ODRL. If the overdraft exceeds the tolerance level the user falls back into an evaluation
mode. If the evaluation period is exceeded the user has to upgrade to a new rights agreement. This

Proceedings of the First ODRL International Workshop

59

process may involve payment of some sort. However, these roles are not fixed to our DRM system. If
the ODRL agreement does not express such a flexible scenario, roles will be established according to
the agreement.

If authorization fails the user has the option to upgrade the agreement via the communication
service. The communication service abstracts the transport layer and applies security transparently,
such as client side authentication, content encryption. On top of the transport and security layer are
application-specific components, like the UpgradeManager.

5.4 Provisioning

OMA DRM 1.0 specified three methods for digital rights management: Forward-lock, separate and
combined delivery of usage rights and the rights object.

A combined delivery of the rights object and the rights addresses the preview or evaluation scenario.
We assume that evaluating applications based on restricted rights is a major aspect for customer and
enterprise adoption of software. Separate delivery is a two stage process, where the rights object is
delivered in an encrypted form to the client and the rights including the decryption key and maybe a
certificate are delivered via WAP Push or alternatively via the Push registry which is defined in MIDP
2.0. However, the application management system (AMS) in Symbian OS does not yet support the
installation of encrypted applications.

download/deploy
evaluation
application

User Server

execute

[authorized]

register/sign in
[not authorized]

request full
application usage

rights

push application
usage rights

Figure 12 : Provisioning Cycle

PARMA combines both methods, separate and combined delivery. The user first downloads the
application in combination with the evaluation usage rights from a content server, evaluates it and may
upgrade later to a full version. Upgrading requires the negotiation of an agreement which is then
delivered via the Push registry to the client. The MIDlet responsible for the Push request initializes the
record store and stores the rights and the certificate on the smart card.

6 Related Work

In [22] a framework (FILIGRANE) is proposed which tackles relevant security issues in the mobile
code commerce. The actors in a mobile code commerce scenario are identified which participate in the
functional model of FILIGRANE. Although, this project does not address a DRM standard they
implement practical security techniques to secure mobile code commerce including contract handling,
provisioning, software protection, and usage control. A very interesting part of this paper is the analysis
of the cost of piracy to break the protections and the measures they have taken to maximize the cost of
piracy. Those measures involve encryption, obfuscation and watermarking of code and the use of smart
cards to store sensitive data (e.g. the rules (rights) and the private key). However, encryption on a byte-
code level is very easy to breach and so get access to the original byte-code. JAVA uses classloaders to

60

load classes and deliver them to the JVM via one well-defined final method
ClassLoader.defineClass(String, byte, int, int, ProtectionDomain). All
classes must be delivered to the JVM via this aforementioned method. Although this method is final
any class can be dumped in clear byte-code. To achieve this, the ClassLoader implementation has to be
modified and repackaged (see rt.jar in the JAVA distribution) or specified in the -Xbootclasspath
option [23].

This attack is more difficult to perform on J2ME devices. In contrast to J2SE classloading
mechanisms can not be overriden or extended in application code. Further, it is more difficult to
compromise with a J2ME installation on a mobile device, because the classloading capabilities are
implemented in a native component, called Application Management System (AMS).

Nokia and SonyEricsson are in the process of implementing OMA REL based DRM systems on
their mobile devices [1]. The version supported so far is OMA DRM 1.0 [13] that specifies three ways
to protect copyrighted content – forward lock, combined delivery and separate delivery. Several Nokia
phones so far support forward delivery while SonyEricsson’s Z1010 is the first device that implements
the full OMA DRM 1.0 specification supporting all three delivery methods. Both Nokia and
SonyEricsson plan to support the full specification on all of their phones in forthcoming releases.
Although efficient for content, this type of DRM system is not flexible enough for software
applications as it does not support feature-based licensing. Also, the complete implementation of OMA
DRM is done on the device, without DRM servers and back-end implementations that support client
provisioning, payment and flexible license models.

ContentGuard[06] released their patented DRM system based on XrML eXtensible Rights Markup
Language. XrML is not primarily aimed at wireless devices and currently does not have
implementation on mobile phones.

7 Status of PARMA and Future Work

The development of our framework is in its early stages. Areas which require more attention are
privacy, JavaCard access, a policy language in XML, and the interoperability with the server entities.

Privacy is a big issue in DRM systems and contributes significantly to the adoption of such a
system, if done properly. The legal and technical privacy rights need to be explored in future versions
of our framework. According to Brands’ book [25] protecting one’s privacy involves restricting the
amount of data being submitted electronically to an absolute minimum because once submitted this
information is not under control of the user anymore. It can be abused for e.g. marketing purposes.
Additionally, different transactions of a user should not be linkable, unless the cost outweighs the
benefits. In [24] security and privacy issues are assessed and applied to Digital Rights Management
Systems. We are going to explore this area further and implement a workable solution with practical
privacy measures.

The ability to store sensitive data in a tamper-resistant manner is crucial to every DRM system. In
the very near future the Security and Trust Services API for J2ME (JSR-177) [32] will be available on
J2ME mobile phones. This specification spans security services which rely on the interaction with a
“Security Element” to provide secure storage, secure execution, and custom security features to allow
e.g. payment. An implementation which facilitates the access to a smart card to store and retrieve
sensitive data can be further abstracted with JSR-177. In combination with JSR-177, Security Assertion
Markup Language (SAML) [26], XML digital signatures [27], XML encryption [28], Web Services
secure XML protocol family (WS-Security [29]) we can provide a more generic and sophisticated
communication layer to the content servers. An interesting task would be to define a Web Services-
based Digital Rights Messaging protocol to exchange audit data and renew a DRM agreement.

Moreover, the generic design of our framework encourages the use of a dedicated XML-based rules
description in order to configure the policy language used in our framework. The rules need to be
transformed via XSL/T from the policies (rights) in the DRM agreement. It would then be possible to
describe a DRM agreement in a different language, such as XrML without changing the
implementation.

A big task is the interoperability with the content server. The entities involved in a complete DRM
architecture need to be implemented either in a single server, which is not ideal, or as separate
independent entities. Further, interoperability of the client with the back-end servers can be increased
in a standard way with implementing the J2EE Client Provisioning specification [16].

Proceedings of the First ODRL International Workshop

61

8 Conclusions

We have introduced our extensions to the ODRL schema to represent a flexible software usage
rights scenario. ODRL was extended to add more details about payment and user identification, to
support constraints specific to mobile environment, and to differentiate between rights models for
mobile software applications. Our experience with ODRL in general is that it is difficult to validate its
schema because it is designed in an abstract way and allows many interpretations. Therefore, the
semantics of application usage rights introduced in PARMA requires additional validation to make sure
that all parties, the assets and rights for the assets conform to the PARMA model.

With our framework we accomplished a prototype for pervasive software licensing which enables
and encourages the use of a flexible DRM agreement, such as feature-based policies. PARMA’s
aspect-oriented approach to usage rights code insertions also greatly reduces application developers’
involvement in usage rights specifications for these flexible models and separates usage rights concerns
from application and management concerns. Our framework is designed for extensibility and provides
therefore a solid basis for our future work.

Bibliography

[01] Johannes Rastas, “OMA DRM - Technical overview”, Nokia Media & Music Digital Rights
Management (DRM) Workshop, November 4th, 2003.

[02] Macrovision, “Overcoming the Software Licensing Complexity Crisis”, FlexNet White Paper,
17 Dec. 2003. <http://www.macrovision.com/pdfs/PlatformWP.pdf.>.

[03] XSLM Resource Center. Dec. 16 2003. <http://www.xslm.org>.
[04] R. Iannella. Open Digital Rights Language (ODRL) Version 1.1, Aug. 8 2002,

<http://odrl.net>.
[05] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.

“Aspect-oriented programming”. In ECOOP'97, LNCS 1241, pages 220--242, 1997.
[06] ContentGuard Inc. eXtensible rights Markup Language (XrML), Version 2.0. November 2001,

<http://www.xrml.org/>.
[07] Barry Fox, “Subversive code could kill off software piracy “, New Scientist, 10 October 03,

<http://www.newscientist.com/news/news.jsp?id=ns99994248>.
[08] W3C (2003) Web Services Description Language (WSDL). Dec 17 2003.

http://www.w3.org/TR/wsdl.
[09] Bellamy, R., Brezin, J., Kellogg, W.A., Richards, J. and Swart, C. “Designing an E-Grocery

Application for a Palm Computer: Usability and Interface Issues”. IEEE Personal
Communications, 8, 4, 60-64, August 2000.

[10] Antony Adshead, “Cheaper field staff tracking services”, Computer Weekly, May 13, 2003.
[11] gamesindustry.biz, “Nokia N-Gage tops mobile game download chart“, Dec 18 2003,

<http://www.theregister.co.uk/content/68/34241.html>.
[12] Matt Volpi, “Nokia DRM Tools”, Nokia Media & Music Digital Rights Management (DRM)

Workshop, November 4th, 2003.
[13] Open Mobile Alliance, "OMA Digital Rights Management version 1.0", 19 Nov. 2002,

<http://www.openmobilealliance.org/tech/docs/index.htm#DRM>.
[14] IMEI codes, Dec. 17 2003, <http://www.accesscomms.com.au/imei.htm>
[15] Gregor Kiczales et Al, “An Overview of AspectJ”, In ECOOP, pages 327-- 353, 2001.
[16] JCP, J2EE Client Provisioning Specification, JSR-124,

<http://www.jcp.org/aboutJava/communityprocess/first/jsr124/>.
[17] David McKitterick, A Web Services Framework for mobile payment services, M.Sc. thesis at

the Department of Computer Science, Trinity College Dublin, 2003.
[18] Niall Clarke, Distributed Software Licensing Framework based on SOAP, B.A. thesis at the

Department of Computer Science, Trinity College Dublin, 2003.
[19] William Shapiro and Radek Vringalek, How to manage persistent state in {DRM} systems,

Digital Rights Management Workshop, 2001.
[20] A. Monden and H. Iida and K. Matsumoto and Katsuro Inoue and Koji Torii, A practical

method for watermarking JAVA programs, compsac2000, 24th Computer Software and
Applications Conference, 2000.

[21] developers.sun.com, FAQ
<http://developers.sun.com/techtopics/mobility/midp/questions/obfuscate/>.

62

[22] G. Hachez, L. Den Hollander, M. Jalali, J.-J. Quisquater, and C. Vasserot, Towards a Practical
Secure Framework for Mobile Code Commerce, In Pieprzyk et al. POS00, pages 164--178. 7,
2000.

[23] Vladimir Roubtsov, Cracking JAVA byte-code encryption,
<http://www.javaworld.com/javaqa/2003-05/01-qa-0509-jcrypt_p.html>, 2003.

[24] Joan Feigenbaum, Michael Freedman, Tomas Sander, Adam Shostack, Digital Rights
Management Workshop, p. 76-105, 2001.

[25] Stefan A. Brands, Rethinking Public Key Infrastructures and Digital Certificates, MIT Press,
Cambridge Massachusetts, 2000.

[26] OASIS Security Services TC, SAML, 17 Dec. 2003
<http://www.oasis-open.org/committees/security/>

[27] W3C, XML-Signature Syntax and Processing, 17 Dec. 2003
<http://www.w3.org/TR/xmldsig-core/>.

[28] W3C, XML-Encryption Syntax and Processing, <http://www.w3.org/TR/xmlenc-core/>.
[29] OASIS Security Services TC, WS-Security,

<http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss>.
[30] JCP, J2EE Client Provisioning Specification, <http://www.jcp.org/en/jsr/detail?id=124>.
[31] James Noble and Charles Weir, Small Memory Software – Patterns for systems with limited

resources, Addison-Wesley, 2001.
[32] JCP, Security and Trust Services API for J2ME,< http://www.jcp.org/en/jsr/detail?id=177>.

Proceedings of the First ODRL International Workshop

63

64

Interoperability between ODRL and MPEG-21 REL

Josep Polo, Jose Prados, Jaime Delgado
Universitat Pompeu Fabra (UPF), Departament de Tecnologia,

Pg. Circumval·lació 8, E-08003 Barcelona, Spain
{josep.polo, josep.prados, jaime.delgado}@upf.edu

Abstract

Two main Rights Expression Languages (RELs) exist to describe licenses governing the access
to digital content: ODRL (Open Digital Rights Language) and MPEG-21 REL. Both RELs are
powerful and complex enough. The use of different RELs could divide the network commerce
in two separate factions. In this paper we propose a way for interoperability between them.
They have many similarities that permit to translate expressions from one language into the
other one. In the Distributed Multimedia Applications Group (DMAG) [12] we are developing
utilities that permit to translate licenses between both RELs. Furthermore, the DMAG has
developed a set of applications to generate and check licenses in both RELs.

This paper first describes the current situation of the RELs. Then the MPEG-21 REL and
ODRL are introduced. Later, the interoperability between ODRL and MPEG-21 REL is
exposed and the DMAG licenses generator and checker are described1.

1 Rights Expression Languages

At present, network commerce of multimedia content is based on the trade of rights, but one of
the limitations of Digital Rights Management (DRM) technology is due to the deficiency of
means to express in an unambiguous, precise, machine-readable way the complex permissions
on content. Furthermore it is not possible to create business relationships with distributors
based on machine-readable licenses that can be automated to a significant degree.
Consequently, today’s business models have limited attraction to consumers and providers.

It is necessary to have a process by which the rights can be expressed in machine-readable
licenses, guaranteed to be unambiguous and secure. A Rights Expression Language (REL) is
the key to technical interoperability between proprietary DRM systems.

The basic component of a REL is the rights expression, which describes a permission granted
to a user of protected content. Those rights expressions can be generated by any party
authorised to grant permissions on content. In order for a rights expression language to be
machine-readable, it must be based on a syntax that is recognised. Furthermore, there must be
some measures built in, such as the ability to digitally sign rights expressions, so that their
authenticity and tamper-resistance can be verified.

Several RELs have been proposed to describe licenses governing the terms and conditions of
content access. In this field, ODRL [4, 5, 6] and MPEG-21 REL [16, 18] cover a prominent
role. Both languages are powerful yet complex. This paper doesn’t propose a way of analysing
both languages to decide which of them is better, but it proposes to analyse the similarities and
the interoperability of both languages.

1 This work has been partly supported by the Spanish Ministry of Science and Technology (TIC2002-01336)

Proceedings of the First ODRL International Workshop

65

2 MPEG-21

At present, there is a standardisation committee, the Moving Picture Experts Group (MPEG),
formally Working Group 11 of the ISO/IEC Joint Technical Committee, Sub-committee 29
[16], that covers most multimedia content subjects.

One of the standards produced by the MPEG is MPEG-21 [1]. Its aim is to offer
interoperability in multimedia consumption and commerce. The standard is currently (after the
March 2004 MPEG meeting) divided into 16 parts, most of them still under development. The
number of parts may still increase.

Three of these parts are directly dealing with Digital Rights Management (DRM):

• Part 4. Intellectual Property Management and Protection (IPMP): provides the
means to reliably manage and protect content across networks and devices.

• Part 5. Rights Expression Language (REL): specifies a machine-readable language
that can declare rights and permissions using the terms as defined in the Rights Data
Dictionary.

• Part 6. Rights Data Dictionary (RDD): specifies a dictionary of key terms required to
describe users’ rights.

This paper is focused in part 5: Rights Expression Language. This part explains the basic
concepts of a machine interpretable language for expressing the rights and permissions of users
that act on digital items, components, fragments, and containers.

2.1 MPEG-21 REL

The REL from MPEG-21 is based on the XrML proposal [10]. Using MPEG-21 REL it is
possible to specify, for a digital resource (content, service, or software application), who is
allowed to use that resource, the rights available to them and the terms, conditions or
restrictions necessary to exercise those rights on the resource.

The core of MPEG-21 REL is the following four elements: principal, resource, right and
condition (shown in Figure 1):

• Principal: identifies an entity such as the person, organisation, or device to whom
rights are granted. Each principal identifies exactly one party. Typically, this
information has an associated authentication mechanism by which the principal can
prove its identity.

• Right: specifies the activity or action that a principal can be granted to exercise against
some resource. Example rights include play, print, issue, obtain, etc.

• Resource: identifies an object which the principal can be granted a right. It can be a
digital work, a service or a piece of information that can be owned by a principal. A
Uniform Resource Identifier (URI) can be used to identify a resource. For example, a
video file that a principal may play.

• Condition: specifies one or more conditions that must be met before the right can be
exercised. For example, a principal may need to pay a fee to exercise a right, a limit to
the number of times, a time interval within which a right can be exercised, etc.

The core data model is enhanced by a number of so-called “Extensions” which add both
functionality and applicability.

66

 Rights Right

ConditionPrincipal
Resource

Figure 1. Core elements of MPEG-21 REL.

The MPEG-21 REL function is to express rights granted by some principals for specific
resources and the conditions under which those rights apply. It does not provide any encryption
functionality for content, though it does link to processes for ensuring the rights expressions
themselves are tamper proof and capable of authentication.

The basic MPEG-21 REL element is the license. A license can contain one o more grants, the
license issuer, that gives the grants that the license contains, and additional administrative
information. Each grant must contain information to identify the four elements (principal,
resource, right and condition) associated to it. Figure 2 shows a simple license structure.

 License

Grant
Principal Resource

Right Condition

Issuer
Signature

Time of Assurance

Figure 2. MPEG-21 REL license.

The license issuer who issues a license can digitally sign it, meaning that the issuer does really
give the grants contained in it. Multiple issuers may sign a given license.

A grant is the part of an MPEG-21 REL license that conveys to an identified party the right to
use a resource subject to certain conditions.

For example, consider an e-book named “Why Cats Sleep and We don’t” distributed to a
consumer (Alice) that she can print 3 times. The MPEG-21 REL document has a sentence that
says that Alice is granted with the right to print the book for 3 times. In this case, Alice is a
principal, the book is a resource, print is a right, and “3 times” is a condition. In MPEG-21
REL the right-granting portion of this statement is called a grant and the entire statement is
called a license. Figure 3 shows this example grant.

 Grant

Principal -- Alice Resource -- book

Right -- print Condition -- 3 times

Figure 3. MPEG-21 REL grant example.

Proceedings of the First ODRL International Workshop

67

3 ODRL

The ODRL is a proposed language for the DRM community for the standardisation of
expressing rights information over content. The ODRL is intended to provide flexible and
interoperable mechanisms to support transparent and innovative use of digital resources in
publishing, distributing and consuming of electronic publications, digital images, audio and
movies, learning objects, computer software and other creations in digital form. This is an
XML-based usage grammar.

ODRL is focused on the semantics of expressing rights languages and definitions of elements
in the data dictionary. ODRL can be used within trusted or untrusted systems for both digital
and physical assets (resources).

ODRL is based on an extensible model for rights expressions, which involves three core
entities and their relationships. These are shown in Figure 4. They are:

• Party includes end users and Rights Holders. Parties can be humans, organisations, and
defined roles. In the previous example, Alice is the party.

• Right includes permissions, which can then contain constraints, requirements, and
conditions. Permissions are the actual usages or activities allowed over the assets (e.g.
play, print, etc.) Constraints are limits to these permissions (e.g. print an e-book for a
maximum of 3 times) Requirements are the obligations needed to exercise the
permission. Conditions specify exceptions that, if they become true, expire the
permissions and re-negotiation may be required. In the previous example, print is the
right that includes the constrain of “3 times”.

• Asset includes any physical or digital content. They must be uniquely identified and
may consist of many subparts and be in many different formats. Assets can also be non-
tangible expressions of works and/or manifested in particular renditions. In the previous
example, the book is the asset.

 Rights

Party

Right

Asset

Party

Figure 4. Core elements of ODRL.

4 Interoperability between ODRL and MPEG-21 REL

ODRL and MPEG-21 REL have many similarities: syntactically they are both based on XML,
while structurally they both conform to the Stefik's axiomatic principles of rights modelling [2,
14].

A difference between ODRL and MPEG-21 REL is that ODRL seems more adapted to actual
transactions in the commerce environment, whereas MPEG-21 REL has designs on broader
cross-vertical applicability. ODRL's primitives map more directly onto the types of terms that
are found in real-world commerce.

68

These RELs are widely used, so it is very important to permit interoperability between
different systems that use these RELs. They have the same objective and they start from the
same base.

They have different entities, but these try to represent the same information. After analysing
both languages, we can conclude that there are four main entities in a license:

• Subject: actor who performs some operation. In ODRL, it is the party and in MPEG-21
REL it is the principal.

• Right: what a subject can do to an object. In ODRL it is the permission (right) and in
MPEG-21 REL it is represented by the right.

• Object: content acted upon by a subject. In ODRL it is the asset and in MPEG-21 REL
it is the resource.

• Condition: describes when a right can be performed. In ODRL it is the constraint and
is included in the permission (right), and in MPEG-21 REL it is the condition.

As an illustration, we can consider the previous example: Alice has got a license to print an
e-book 3 times.

Intuitively, the subject of this example is “Alice”, the object is “book”, the right is “print” and
the condition is “3 times”.

Figure 5 shows the ODRL license for this example.

 <?xml version="1.0" encoding="UTF-8" ?>
<o-ex:rights xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:o-dd="http://odrl.net/1.1/ODRL-DD"
xsi:schemaLocation="http://odrl.net/1.1/ODRL-EX ../schemas/ODRL-EX-11.xsd
http://odrl.net/1.1/ODRL-DD ../schemas/ODRL-DD-11.xsd">

 <o-ex:asset>
 <o-ex:context>
 <o-dd:uid>urn:ebook.world/999999/ebook/rossi-000001</o-dd:uid>
 <o-dd:name>Why Cats Sleep and We don't</o-dd:name>
 </o-ex:context>
 </o-ex:asset>
 <o-ex:permission>
 <o-dd:print>
 <o-ex:constraint>
 <o-dd:count>3</o-dd:count>
 </o-ex:constraint>
 </o-dd:print>
 </o-ex:permission>

 <o-ex:party>
 <o-ex:context>
 <o-dd:name>Alice</o-dd:name>
 </o-ex:context>
 </o-ex:party>
</o-ex:rights>

Figure 5. ODRL example license.

Figure 6 shows the equivalent MPEG-21 REL license.

Proceedings of the First ODRL International Workshop

69

 <?xml version="1.0" encoding="UTF-8" ?>
<r:license xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mpeg:mpeg21:2003:01-REL-R-NS ../schemas/rel-r.xsd

urn:mpeg:mpeg21:2003:01-REL-SX-NS ../schemas/rel-sx.xsd
urn:mpeg:mpeg21:2003:01-REL-MX-NS ../schemas/rel-mx.xsd">

 <r:grant>
 <r:keyHolder>
 <r:info>
 <dsig:KeyName>Alice</dsig:KeyName>
 </r:info>
 </r:keyHolder>
 <mx:print />
 <r:digitalResource>
 <r:nonSecureIndirect URI="urn:ebook.world/999999/ebook/rossi-000001" />
 </r:digitalResource>
 <r:allConditions>
 <sx:exerciseLimit>
 <sx:count>3</sx:count>
 </sx:exerciseLimit>
 </r:allConditions>
 </r:grant>
</r:license>

Figure 6. MPEG-21 REL example license.

Table 1 shows the four main entities and their relationship with ODRL and MPEG-21 REL.
Table 1. The four main entities in the licenses.

ENTITY ODRL MPEG-21 REL
Subject o-ex:party r:keyHolder
Object o-ex:asset r:digitalResource
Right o-ex:permission r:grant

Condition o-ex:constraint r :allConditions

If we consider the similarities that can be seen in the previous example, as well as in the
previous part of the paper, it can be concluded that the interoperability between both languages
is possible. To transform an ODRL license into an MPEG-21 REL license, or vice versa, it is
equivalent to transform a XML document to another XML document, where the information to
represent is the same one, but with a different XML structure.

These are preliminary results. As it can be seen from the example, these licenses in ODRL and
MPEG-21 REL are very simple. It is supposed that more complicated licensed will be more
difficult to transform between ODRL and MPEG-21 REL, but it is also to be expected that the
transformation will be done properly due to the languages similarity.

In order to obtain this transformation, XSL (Extensible Stylesheet Language) can be used. The
XSL is one of the most important intricate specifications in the XML family. Using XSLT
(XSL Transformation) [3] is not the only way to transform XML documents. A general
purpose programming language like C, C++, or Java can also be used. XSLT has the advantage
of being more lightweight than those languages and it is oriented to XML interaction. It is
adequate for transformation and is well-equipped as a language to perform this main design
goal. It allows to write programs that are much smaller than with a general purpose
programming language. XSL can be broken in two parts: the said XSLT and XSL-FO (XSL
Formatting Objects). XSLT applies transformation rules to the document source and, by
changing the tree structure, produces a new document, such as another XML document. It can
also amalgamate several documents into one, or even produce several documents starting from
the same XML document.

70

In order to implement this interoperability, we have developed two utilities: one to transform
an ODRL License into a MPEG-21 REL License and the other one to transform into the
reverse direction. These utilities have been developed using XSL pages. The structures of both
tools are very similar, but many differences exist at rules implementation level, given the
syntactic and semantic differences of both languages. Figure 7 shows the XSLT document that
allows to transform the previous ODRL license (Figure 5) to a MPEG-21 REL license (Figure
6). The other XSLT document (MPEG-21 REL to ODRL) is quite similar, so it is not shown.

 <?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:o-
ex="http://odrl.net/1.1/ODRL-EX" xmlns:o-dd="http://odrl.net/1.1/ODRL-DD"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mpeg:mpeg21:2003:01-REL-R-NS ../schemas/rel-r.xsd urn:mpeg:mpeg21:2003:01-
REL-SX-NS ../schemas/rel-sx.xsd urn:mpeg:mpeg21:2003:01-REL-MX-NS ../schemas/rel-mx.xsd">

<!-- Output file is a XML file -->
 <xsl:output method="xml"/>

<!-- Substitute root node from ODRL file to this MPEG-21 REL template -->

 <xsl:template match="/">
 <r:license xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mpeg:mpeg21:2003:01-REL-R-NS ../schemas/rel-r.xsd
urn:mpeg:mpeg21:2003:01-REL-SX-NS ../schemas/rel-sx.xsd urn:mpeg:mpeg21:2003:01-REL-MX-NS
../schemas/rel-mx.xsd">
 <r:grant>
 <!-- Inside the grant, apply the rest of templates or replacements -->
 <xsl:apply-templates/>
 </r:grant>
 </r:license>
 </xsl:template>

<!— ODRL file "o-ex:party" node replacement for this MPEG-21 REL template -->
 <xsl:template match="o-ex:party">
 <r:keyHolder>
 <r:info>
 <dsig:KeyName><xsl:value-of select="o-ex:context/o-dd:name"/></dsig:KeyName>
 </r:info>
 </r:keyHolder>
 </xsl:template>

<!-- ODRL file "o-ex:asset" node replacement for this MPEG-21 REL template -->
 <xsl:template match="o-ex:asset">
 <r:digitalResource>
 <xsl:element name="r:nonSecureIndirect">
 <xsl:attribute name="URI"><xsl:value-of select="o-ex:context/o-dd:uid"/></xsl:attribute>
 </xsl:element>
 </r:digitalResource>
 </xsl:template>

<!-- ODRL file "o-ex:permission" node replacement for this MPEG-21 REL template -->
 <xsl:template match="o-ex:permission">
 <r:allConditions>
 <sx:exerciseLimit>
 <sx:count><xsl:value-of select="o-dd:print/o-ex:constraint/o-dd:count"/></sx:count>
 </sx:exerciseLimit>
 </r:allConditions>
 </xsl:template>

</xsl:stylesheet>

Figure 7. XSLT document that transforms the previous ODRL license in Figure 5, into the MPEG-21 REL

license in Figure 6.

Proceedings of the First ODRL International Workshop

71

XSLT documents form a special class of XML documents. As all XML documents, it has one
document element. This is the xsl:stylesheet element.

To specify the output method, the document has an xsl:output element. It is xml in this case.

The xsl:template element is the most important element in XSLT. It is the basis for matching
patterns to perform transformation. The match attribute is used to match a pattern. The
document has an xsl:template match=”/” element. This element matches the root of a document.
The transformation process always starts from an element that matches the root. This element
allow us to substitute root node from the ODRL document to the MPEG-21 REL document.

The rest of nodes are inside the root node. This is the way to declare and call subroutines.
Using an xsl:apply-templates element, we apply the rest of templates or replacements inside this
root node to the other nodes.

The document has three more xsl:template elements: to transform o-ex:party to r:keyHolder (from
ODRL to MPEG-21 REL), to transform o-ex:asset to r:digitalResource and to transform
o-ex:permission to r:allConditions.

The xsl:element is used to construct an element in the result tree. The mandatory attribute is the
name attribute, which specifies the name of the element to be generated.

The xsl:attribute element is used inside the template that match o-ex:asset, and it is used to add
an attribute in the result tree.

The xsl:value-of element returns the string value of the expression given in the select attribute.

5 REL Tools

We have also developed a set of applications that permit to generate licenses in the REL
languages: ODRL and MPEG-21 REL [7, 8, 9, 13]. The internal structure of the applications
has similarities and differences between the two language versions, but from the point of view
of the formal structure they are equivalents. For this reason, only the ODRL applications are
described below. The MPEG-21 REL applications have the same formal description.

5.1 DMAG ODRL License Creator

The DMAG ODRL License Creator (DOLC) is a software implementation that creates ODRL
Licenses. This software has been developed in Java. It can run on MS-Windows and Linux
platforms. At present, the DOLC can only create basic licenses. The license types are offer and
agreement. It is expected that, shortly, the software will be able to generate more complex
licenses.

This software can create XML documents representing valid ODRL Licenses. Their
implementation is based on the Document Object Model (DOM) API for HTML and XML
documents. The DOM API provides a structural representation of the document, and it defines
the way that a structure is to be accessed from a script. Essentially, it connects web pages or
XML documents to programming languages.

From the point of view of a user, the DOLC has been implemented as a web application. It is
composed by a web page containing an HTML form, a servlet for processing the information

72

introduced in the form and to generate the ODRL License, and finally, a web page containing
the ODRL License created.

In order to syntactically validate the license against their schemas, another application has been
developed, the DMAG Schema Checker (DSC), which is described in 5.2. So, the DSC
software has been used to verify the validity of the ODRL License created by the DOLC.

The information needed to generate the license is introduced by means of the HTML form.
This module allows the introduction of: asset, rights, requirements, constraints, parties, etc.

This information is sent to the servlet, which is installed in a servlet engine. Tomcat [11] is the
servlet engine used. The License Creator servlet, extracts the information introduced in the web
page form by the user that is creating the license, checking that all the needed fields have been
filled. If all necessary information has been introduced, the XML file containing the license is
created.

The license is conformant with its schemes using the DSC. Finally, the result is shown to the
user, who can see the generated license.

Next steps to be taken are the addition of more complex permissions and/or constraints and the
study of more complex licenses. The tools used to implement the DOLC application allow
these additions in an easy way.

Figure 8 shows the structure of the DOLC developed.

DOM
API

License
Creator
Servlet

HTML
form

ODRL
License

Schema
Checker

ODRL
License

Figure 8. DMAG ODRL License Creator (DOCL) and its relation with the DMAG Schema Checker (DSC)

5.2 DMAG Schema Checker

As it was explained above, the DMAG Schema Checker (DSC) is an application that validates
syntactically ODRL and other types of licenses such as MPEG-21 REL Licenses, against the
XML schemas used by the licenses. This software has been developed in Java. It can run on
MS-Windows and Linux platforms.

The parser used in the implementation is the Xerces parser [19]. The software validates
syntactically a document with an ODRL license specified by the user.

Proceedings of the First ODRL International Workshop

73

The output of the DSC is a message reporting if the license is syntactically valid or not,
according to the XML Schemas specified within the license. If the license is not valid, the DSC
will inform about the reasons why.

Figure 9 shows the structure of the DSC developed.

Parser
(Xerces)

Schema
Checker

Valid

Not valid (reasons why)

ODRL
License

Figure 9. DMAG Schema Checker (DSC)

6 Conclusions and future work

A set of applications has been presented to permit interoperability between ODRL and MPEG-
21 REL licenses. In the DMAG, we have developed utilities that permit to translate ODRL
licenses into MPEG-21 REL licenses and in the other way around. The current licenses are
simple, but we are working to expand the interoperability to more complex licenses.

Furthermore, a set of applications has been described to generate and check licenses in ODRL
and MPEG-21 REL. At present, they can generate non-complex licenses, but we are also
working to extend the capabilities of the applications.

The objective of our future work is to expand the scope of this set of applications (generators
and converters) to permit that every system could work in ODRL or MPEG-21 REL without
distinction, transparently to the user, generating the appropriate license, and, furthermore, when
receiving a license, it would not matter the REL license format, because the system could work
without distinction.

74

References

1. Burnett et al. MPEG-21 Goals and Achievements. IEEE Computer Society, October-
November 2003

2. C.N. Chong et al. Comparing Logic-based and XML-based Rights Expression
Languages. Confederated International Workshops: On The Move to Meaningful Internet
Systems. Catania, Sicily, Italy. Published by Springer-Verlag. November, 2003.

3. K.Y. Fung. XSLT Working with XML and HTML. Addison-Wesley.

4. S. Guth et al. Experiences with the Enforcement of Access Rights Extracted from ODRL-
based Digital Contracts. ACM Workshop on Digital Rights Management, Washington
D.C./USA, October 2003.

5. S. Guth, E. Koeppen. Electronic Rights Enforcement for Learning Media. IEEE
International Conference on Advanced Learning Technologies, Kazan/Russland,
September, 2002.

6. R. Iannella. Open Digital Rights Language (ODRL) Version 1.1. http://odrl.net. August
2002.

7. S. Llorente, J. Delgado, E. Rodríguez. Enhanced versions of DMAG REL Reference
Software. ISO/IEC JTC1/SC29/WG11 - MPEG2003/M10286. December 2003. http://
dmag.upf.edu/DMAGRELTools/m10286.pdf.

8. S. Llorente, J. Delgado, E. Rodríguez. DMAG REL License Creator. ISO/IEC
JTC1/SC29/WG11 - MPEG2003/M10040. October 2003. http://dmag.upf.edu/
DMAGRELTools/m10040.pdf.

9. E. Rodríguez, J. Delgado, S. Llorente. DMAG REL Schema Checker. ISO/IEC
JTC1/SC29/WG11 - MPEG2003/M10039. October 2003. http://dmag.upf.edu/
DMAGRELTools/m10039.pdf.

10. X. Wang et al. XrML – eXtensible rights Markup Language. ACM Workshop on XML
Security, Nov. 22, 2002, Fairfax VA, USA.

11. Apache Tomcat. http://jakarta.apache.org/tomcat/index.html.

12. Distributed Multimedia Applications Group (DMAG), Technology Dept., Universitat
Pompeu Fabra. http://dmag.upf.edu

13. DMAG MPEG REL reference software.
http://dmag.upf.edu/DMAGRELTools/Index.htm

14. eXtensible Rights Markup Language (XrML), Version 2.0. DRM watch. GiantSteps,
Media Technology Strategies.
http://www.giantstepsmts.com/DRM%20Watch/xrml20.htm

15. Information Technology - Multimedia Framework - Part 5: Rights Expression Language.
FDIS 21000-5:2003(E). ISO/IEC JTC1/SC29/WG11/N5839.

Proceedings of the First ODRL International Workshop

75

16. Moving Picture Expert Group. ISO/IEC JTC/SC29 WG11.
http://www.chiariglione.org/mpeg/index.htm

17. Moving Picture Expert Group. ISO/IEC JTC/SC29 WG11. Programme of Work.
http://www.itscj.ipsj.or.jp/sc29/29w42911.htm#MPEG-21.

18. Rightscom Ltd. The MPEG-21 Rights Expression Language. A white paper.
http://www.rightscom.com/files/MPEG21_RELwhite_paper.pdf

19. Xerces Parser. http://xml.apache.org/xerces-j/

76

Proceedings of the First ODRL International Workshop

77

78

REAP
A System for Rights Management in Digital Libraries

Øyvind Vestavik

Norwegian University of Technology and Science
Oyvind.Vestavik@idi.ntnu.no

Abstract

This paper presents REAP, a system for rights management in digital libraries. REAP is aimed at
demonstrating that intellectual property can be published in the Internet by digital libraries in accordance
with copyright laws. The article proposes an architecture/paradigm for managing rights when publishing
information through Digital Libraries involving digital rights management. Based on this architecture a
working prototype called REAP has been implemented and is documented and discussed in this paper.

1. Introduction

The requirements for a Digital Rights Management system to be used in a digital library are a combination
of the needs of the library’s users and authors. Authors and rights holders want control over their work and
possibly economic compensation for their effort. Information consumers want free access to as much
information as possible without any administrative interaction like registering personal information like
personal names, email address etc. The library tradition seems now to be challenged by the rise of the
Internet as an information medium. Because of the ease of access to information in the Internet, users are
beginning to vote out the traditional libraries when searching for information. For libraries to be able to
continue their role as a society’s source of quality information and a society’s memory in a networked
environme nt, libraries have to open up to the Internet and use it progressively to let users access the
information and knowledge present in their collections and holdings. This poses radical challenges to the
library tradition and the new actors in the library world. Digital libraries must, as far as possible, satisfy the
needs of both its users and authors to survive. On the one hand, a too restricted access to information will
not be satisfactory for information consumers as they will not be able to get the information they need. In
these cases consumers will often turn to other sources of information. On the other hand, authors will not
be willing to publish their information unless the digital library is able to handle the rights over the material
in the digital library properly. It is therefore in the interest of a digital library to implement systems that
preserves the needs of both groups. This means that the digital library must be able to trade with material or
rights to material on behalf of its rights holders, providing its users with the material they need in a manner
consistent with copyright and without violating the rights of users and authors. Well designed and adequate
DRM Systems can hopefully balance the needs of the different patrons in a digital library. As a first attempt
to create a DRM system for use in a digital library setting we have created a system called REAP, a Rights
Enforcing Access Protocol. This system consists of a rights language to express rights over material in the
digital libra ry and a server side software that should be able to control that access to digital material
published in the digital library is granted or denied based on rights description for the material expressed in
the rights expression language. The rights language is based on ODRL [ODRL] and the software is
inspired by a reference architecture for rights management systems proposed by [Rosenblatt, Trippe,
Mooney 2002]

The rest of the paper is organized as follows: In part 2 the basis of REAP in terms of entities and concepts
is discussed. Then, in part 3, a suggestion of how REAP fits into the larger setting of a digital library is
given. Next, in part 4, the REAP software and what it does is presented before in part 5, the motivations
and choices for a rights expression language for REAP is explained. Finally, in part 6, the properties of
REAP is discussed.

Proceedings of the First ODRL International Workshop

79

2. The Basis of REAP

REAP [Vestavik2002] is an access protocol and is aimed at controlling users access to information
resources on a server. It is not intended to support end-to-end chain services. As such, REAP can be seen as
a part of the services a repository of a digital library offers its users. The architecture of REAP is based on a
defined set of logical entities as shown in figure 1 below.

Figure 1: Logical Entities in REAP

Rights owners create rights offers for their material giving the rights that can be granted to users, the
requirements to be fulfilled by users in order to be granted those rights and the constraint limiting the extent
of the rights. Note that conditions expiring rights is not supported by REAP . Users have to register with the
system to be able to create an agreement giving them access to rights over the material in the library and
during registration a profile for the user is created. Both Offers and Agreements are expressed in an
application specific rights language based on ODRL.

3. REAP and ADEPT

The proposed model/prototype is concerned with rights management in connection with retrieval of
material. All other functions of a digital library is the responsibility of components and systems that are
outside the scope of the prototype. For practical reasons all functionality normally associated with digital
libraries is assumed to be carried out in Alexandria Digital Library (ADL) / Alexandria Digital Earth
Prototype (ADEPT), a distributed digital library for georeferenced information [Alexandria].

Using an ADEPT client, users can search for information resources as shown in figure 2. The client sends a
search/query to the middleware component of ADL/ADEPT which distributes the search to distributed
collections located around the world. These collections have metadata collections containing metadata
formatted for ADL, so-called ADEPT views or metadata for the ADL bucket framework on which the
query is executed. The result of the query on the local metadata catalog is returned to the middleware which

own

have

negotiate

applies to

applies to

basis for

basis for

defined
using

defined
using

create
Rights

Owners

Material

Users

Rights
Expression
Language
of REAP

Offers

Agreements

Profiles

80

returns it to the calling client at the user’s location. Based on the responses from all collections that were
queried an ADEPT access report presents the overall search results to the user.

The access report contains information about where to retrieve the information resource. This information
is given as an URL. For REAP to be able to enforce rights policies in the retrieval process, the given URL
must be formed as an http get request to the REAP software giving the resource to be retrieved as a
parameter to the request. This means that the URL for the resource must be encoded in the metadata
presented to the search engine of ADEPT. In REAP the identifier for a material is given by a combination
of a collection id identifying the collection the resource is located in and an item id identifying the material
within the given collection. In practice this information could have been given as a DOI, PURL or other
persistent identifier as long as the resolved URL is of the form given below:

http://fenris.idi.ntnu.no:8080/REAP/get_Document?CollectionID=4?ItemId=2

Figure 2: REAP in an ADEPT context

Although REAP is designed to be used with ADEPT, the intention is that the system is to be as autonomous
as possible. This means that the system can be used with any system as long as the identifier for a material
points to the REAP system giving the local identifier for the material as parameters to the http request.
Also, REAP is not part of the ADEPT system itself, and collections under ADEPT do not have to
implement or use REAP or any other rights enforcing software.

4. The REAP software

The REAP software is realized as a set of java servlets running on a Jakarta Tomcat Servlet Engine and
uses an Apache Xindice native database to store rights description and other information.

4: REAP
Request

3: Overall
Search
Results

1: Search

2: Local Search result

ADEPT Middleware

Metadata
catalog

ADEPT

View
Offers Agreements Information

Objects
User

Profiles

Rights Enforcing Access Protocol (REAP)

ADEPT-NTNU
Client

ADEPT
Access
Report

Proceedings of the First ODRL International Workshop

81

When a user request access to information protected by REAP for the first time, an agreement between
REAP and the user is set up regulating how the user can use the given resource. This agreement is based on
the initial rights offer given for the material by the owner of the material, the information known about the
user (recorded during registration), the requirements the user is willing to fulfill and the selection of rights
from the initial offer that the user is interested in obtaining. Both offer and agreement is based on an
application specific Rights Expressing Language described later.

First REAP checks if the given URL is well formed, that is if it contains a collection id and an item id.
Then the system checks if the user is logged on. The system uses session variables, so being logged in
means that there is a session registered on the server for the IP and process number of the browser/machine
the user is using. If the user is not logged in the user is presented with a login page with a link to a
registration page. Once the user is registered / logged on to the system checks whether the resource
identified by the collection id / item id exists. If the user already has an agreement for accessing rights to
the material the user can start executing rights over the material. If not, the system will interact with the
user to set up such an agreement by letting the user select one or more rights from the initial rights offer for
the material that he/she wants access to. Once the agreement is created, the user can start exercising the
rights transferred in the agreement.

There is no rendering application created for REAP. The result of requesting access to execute rights on
material as specified in the user’s agreement for the materia l is a ticket granting or denying access to
exercise the requested right. The system will keep track of the rights the user accesses and make sure he/she
does not overstep the bounds of the agreement. The execution paths involved in getting access to material
is given in figure 3 below.

Figure 3: Execution Paths in REAP

No

No

No No

No No

User enters URL

Error Message:
Malformed URL

Well
Formed?

Logged
in?

Reg.
user?

Registration

Reg.
OK?

Error Message
NOT registered

Log on Resource
Exists?

Error Message:
Resource Not
Found

User has
agreement

for material?

Make
Agreement

Error Message:
Agreement NOT

created

Agreement
created? Execute

rights

No

82

5. The REAP Rights Expression Language

The rights expression language created for REAP is a subset of the ODRL rights expression language
created during development of the prototype implementation with a few local adjustments and changes.
Since the Rights Expression Language created for REAP is defined as a sublanguage to ODRL, the best
way of describing it is to describe which parts of ODRL is not part of the language and which local
additions have been made. This section presents a short introduction to the most important cut-aways and
modifications made to ODRL to create the REAP rights language. Readers are assumed to be familiar with
the ODRL rights language.

The advantage of using ODRL (or some other Rights Expression Language) without modifications would
be that everyone familiar with the language (including scripts or programs translating from logical choices
made by an author to a formal rights description) could make their own rights descriptions that REAP could
understand and act upon. This would facilitate trading of rights over material over the entire life cycle of a
material from creation to use and reuse, possibly including redistribution. However, the REAP software
would then be required to take the entire ODRL language as input, leading to a situation where the software
either had to be able to interpret all rights expressions in ODRL and act upon them, or to ignore parts of
rights expressions it could not interpret correctly, denying users access to rights for which the software
could not verify all requirements, constraints and conditions. Neither creating software that could
understand all aspects of ODRL nor creating software that could detect exp ressions it could not verify
seemed feasible given the limited time available for the development of REAP.

First of all, since the language is only intended to be used for describing which rights to be given to direct
users of the library, the REAP rights language can only describe usage rights (display, print, execute and
play). REAP is assumed to have been given the rights to the material needed for licensing these usage
rights to the users of the library.

Next, the language does not have a security model. This means that offers and agreements can not be
digitally signed and material and rights descriptions cannot be encrypted. Also, the language does not
support the condition construct of the permission element that act like triggers revoking rights when certain
conditions are no longer met. Neither are revoke constructs that, when entered into the system, revokes the
rights previously offered and traded with. Utility constructs and functionality like Containers , Expression
Linking and Inheritance are also not supported.

Assets are identified locally by a REAP identifier consisting of a collection id and an item id. This local
identifier enables REAP to translate internally to a file/document to be retrieved without disclosing the
location of the files to the user. (If the asset is not available in digital form, this kind of identifier is still
used, although a resolution of the identifier will not result in a reference to a file. Assets can, as in ODRL,
be further described by a context element. The context element contains an element called uid, which is a
unique identifier for the material. It is important that this element does not point to an alternative download
location for the material. The requirements model in the REAP rights expression language is highly
simplified. The only requirement that can be defined is payment, which is limited to prepay, requiring the
user to pay for access to rights before being given such rights.

As in ODRL, there is a Constraint model containing among other things a count element which is used to
indicate how many times a given right can be executed over the material. Under the count element contains,
in REAP, the elements max and executed. The executed element has been added to the Rights Language of
REAP and is not part of the ODRL. It is initially set to zero and is incremented by the REAP software each
time a right is executed. Se figure 4 below. Access to a right constrained by count is granted or denied as a
result of comparing the value of max and executed. However, the information about how many times a
user has executed a right over a material should have been recorded in the profile of the user, not in the
agreement. Storing this information in the agreement requires the software to write to the agreement each
time a user accesses the right in question and probably makes digital signing of agreements impossible.
…..
<permission>

Proceedings of the First ODRL International Workshop

83

<print>
<constraint>

<count>
<max>2</max>
<executed>0</executed>

</count>
</constraint>

</print>
</permission>
…..

Figure 4: The executed element is used to indicate how many times a given permission has been executed.

There are also other constructs from ODRL that are not part of the REAP rights expression language. Most
of them have been excluded in order to make a language easy to understand by the REAP software. The
draw back is that the REAP rights expression language is not as flexible as the ODRL language. The logic
of the rights expression language of REAP is however mainly the same as that of ODRL.

6. Discussion

Being a first attempt to create an adequate DRM solution for digital libraries, there are some issues that
have to be addressed in relation to REAP.

Works that are describ ed by a rights language are often realized as a set of files. For instance, a work can
often be a set of text documents, images, video and citations. HTTP transported documents resolves this by
letting the rendering application (browser) issue subsequent request to the server, one for each part of the
document. REAP is supporting one file pr rights description as the internal resolution from a collection id
and an item id results in a path to a single file. Issuing successive requests for delivery of material to REAP
in its present form would require an agreement to be set up for each part of the information object/asset.

REAP does not support renegotiation of agreements. If there is a constraint on a right so that the particular
right can only be exercised 4 times, there is no functionality to renegotiate the agreement, letting the user
obtain extended rights or new rights to a material.

The terms offer and agreement inherited from ODRL can be misleading. One would think that making an
agreement would involve some kind of negotiation or two-way dialog between parties where the parties
makes an agreement based on some middle ground. However, since the user cannot influence the initial
rights offers given by authors REAP is based more on a take it or leave it concept where the only rights a
user can obtain is a full or partial subset of the rights from the initial rights offer. It is a

Authors are meant to be able to use the Rights Expression Language of REAP to express rights in order to
protect the material from usage in violation of copyright. However, there is nothing stopping authors from
making expressions in the language more targeted at protecting the business interests of the authors or
publishers than protecting copyright over the material. Copyright legislation in most countries is balancing
the needs and power of authors and users of information. However, since distribution of material over the
Internet is in its nature transnational and copyright is defined nationally and varies, Rights Languages have
to be flexible enough to express copyright independently of any nation’s legislation. The actual expressions
made in a language should be in according to a certain copyright legislation, but the expressional power of
the language itself should not be limited by single nation’s legislation.

REAP is a prototype of a DRM system. It is an attempt at creating a rights management system and can be
seen as a first step to create more adequate solutions. The development and testing of REAP has provided
valuable insight into the problems and opportunities inherent in DRM systems . The prototype is currently
not under further development.

84

7. Acknowledgement
I wish to thank my supervisor Prof. Ingeborg Sølvberg for invaluable help during the work with REAP and
my master thesis in general and for valuable comments on this paper.

8. References

[Alexandria]
Alexandria Digital Library Project
http://www.alexandria.ucsb.edu/

[DRMWatch]
DRMWatch
GiantSteps Media Technology Strategies
http://www.giantstepsmts.com/drmwatch.htm

[Erickson 2001]
Information objects and Rights Management
A Mediation-Based Approach to DRM Interoperability
John S. Erickson, Hewlett-Packard Laboratories
http://www.dlib.org/dlib/april01/erickson/04erickson.html

[Ianella2001]
Digital Rights Management (DRM) architechtures
Renato Ianella
Chief Scientist, IPR System
http://www.dlib.org/dlib/june01/ianella/06iannella.html

[ODRL]
Open Digital Rights Language Specification version 1.1
http://www.odrl.net/1.1/ODRL-11.pdf

[PayetteLagoze2000]
Policy-Carrying, Policy-Enforcing Digital Objects
Sandra Payette and Carl Lagoze
Research and advanced Technology for Digital Libraries
4th European Conference on ECDL
Lisbon, Portugal Sept 2000, Proceedings

[RosenBlatt, Trippe, Mooney 2002]
Digital Rights Management Business and Technology
Bill Rosenblatt, Bill Trippe, and Stephen Mooney
M & T Books 2002
ISBN 0-7645-4889-1

[Stefic1997]
Letting Loose the Light: Igniting Commerce in Electronic Publication
In: Internet Dreams: Archetypes, Myths and Metaphors
Authors Mark J Stefik, Vinton g.Cerf
ISBN: 0262692023 (may 9. 1997)

[Vestavik2002]
REAP Et system for rettighetsstyring i digitale bibliotek.
Øyvind Vestavik, 2002
Available in Norwegian from
http://www.idi.ntnu.no/~oyvindve/MasterThesis.pdf

Proceedings of the First ODRL International Workshop

85

86

A Proposal for the Evolution of the ODRL Information Model

Susanne Guth and Mark Strembeck
Department of Information Systems, New Media Lab

Vienna University of Economics and BA, Austria
{firstname.lastname}@wu-wien.ac.at

Abstract
In this paper, we discuss the information model of ODRL 1.1 with respect to the definition of rights and

duties for contract parties. We identify a number of shortcomings, and propose an evolutionary advancement
of the ODRL. In particular, we present a modified information model and corresponding XML schemas.

1 Introduction

A contract typically represents an agreement of two or more parties. The contract specifies rights and obliga-
tions of the involved stakeholders with respect to the subject matter of the respective contract. Digital contracts
are most often defined via special purpose XML-based rights expression languages (REL), such as ODRL [13],
XrML [6], or MPEG 21 REL [7].

On the one hand, a language for the definition of digital contracts should enable the automated processing
of digital contracts via software programs. On the other hand, the resulting contracts should also be human-
readable and also valid in law. In order to fulfill these requirements, languages for the definition of digital
contracts must provide a straightforward grammar and a fixed (but extensible) and unambiguous vocabulary.
Moreover, they should simultaneously be flexible enough to express a wide variety of different business cases.

In this paper, we discuss the information model of ODRL 1.1 with respect to the definition of rights and
duties for different contract parties. We identify a number of shortcomings, and propose an evolutionary ad-
vancement of the ODRL. In particular, we present a modified information model and the corresponding XML
schemas.

The remainder of this paper is structured as follows. In Section 2 we give an overview of ODRL 1.1 and
identify a number of drawbacks in that specification. Section 3 then introduces a proposal for a future version
of the ODRL information model. Subsequently, Section 4 briefly discusses our changes to the ODRL XML
schemas. Moreover, we give an example to show how our approach helps to remove different disadvantages
of ODRL 1.1. Section 5 provides an outline of (technical) issues which must be considered when mapping
permissions and duties defined in digital contracts to enforceable policy rules in concrete software systems.
Section 6 gives a brief overview of related work and Section 7 concludes the paper.

2 Definition of Digital Contracts with ODRL 1.1

In this section we introduce the language constructs offered by ODRL 1.1 to define the rights and duties of
different contract parties. Section 2.1 presents the respective elements of the ODRL 1.1 information model.

Proceedings of the First ODRL International Workshop

87

Section 2.2 discusses drawbacks of the current ODRL information model with respect to the expressiveness, the
understandability/comprehensibility for human users, and the automated processing of ODRL-based contracts
via different software services, e.g. access control services (see also [11]).

2.1 Subset of the ODRL Information Model

Figure 1 shows a subset of the ODRL 1.1 information model [13]. Party, Asset, and Permission are the core
elements of ODRL (these elements are subelements of the ODRL Rights element, the ODRL Offer element,
or the ODRL Agreement element which are not shown in the figure). The three core elements allow for the
definition of simple rights expressions, e.g. "Ms. Guth (party) has the right to play (permission) the movie Lola
Runs (asset)". Note that in ODRL a permission is an operation, such as play, print, or copy, whereas in the
area of access control a "permission" is an 〈operation, object〉 pair, such as 〈play,movie〉 (see also [8, 9, 5]).
Sometimes permissions need to be constrained, e.g. to a specific time-interval or by the maximum number of
uses (see e.g. [1, 14, 16]). ODRL offers three different language elements to define constraints:

Party

Asset
Permission

has

1..*

1..*

refers to
1..*
 1

Condition
 *
 Rightsholder

receives

1..*
 0..*

Royalty

Constraint

Requirement

*

*

specifies

1..*

0..*

1..*

Figure 1: Excerpt of the ODRL 1.1 information model

• A Requirement element defines a specific type of precondition (for permission assignments). In particu-
lar, an ODRL requirement states that the permission it is related to may only be granted to the respective
beneficiary if the corresponding requirement is fulfilled. In ODRL, monetary payments are the most
common type of such “requirements”.

• The Constraint element of ODRL is intended to narrow ODRL permissions. For example, a “play” per-
mission can be constrained to a maximum of five usages via a count constraint. ODRL provides a number
of (predefined) constraints: user-, device- bound-, temporal-, aspect-, target-, and rights constraints (for
details see [13]).

• An ODRL Condition, in essence, define constraints which restrict the validity of a permission. Once a
condition is fulfilled, the condition renders the respective permission as no longer valid.

In contracts the party element usually occurs twice, once for the beneficiary (also: consumer or buyer) and
once for the so called rightsholder (or seller). In ODRL a rightsholder is identified via a Rightsholder element
nested in a party element. ODRL party elements that do not include a rightsholder element per definition

88

“automatically” reference a beneficiary. Additional information related to rightsholders can be specified via a
Royalty element (see Figure 1). Concrete ODRL royalty elements are Fixed Amount and Percentage (for details
see [13]). These constructs either define a fixed amount or a percentage of the revenues resulting from the
corresponding business transaction, and can be assigned to rightsholder parties of a digital contract.

The elements described above are used to express rights and duties in ODRL-based digital contracts. The
ODRL example below expresses that: The two parties “Ms. Guth” and “Mr. Strembeck” have reached an
agreement on the purchase of the right "display" to an asset identified as “ODRL workshop proceedings”. Mr.
Strembeck is the consumer and Ms. Guth is the rightsholder of the workshop proceedings. The “display” right
costs

�
5.00 and is associated with a time constraint that expires on January 1st, 2011. 100 percent of the agreed

upon royalties go to Ms. Guth.

<?xml version="1.0" encoding="UTF-8" ?>
<o-ex:rights xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"

xmlns:o-dd="http://odrl.net/1.1/ODRL-DD">
<o-ex:agreement>

<o-ex:party>
<o-ex:context>
<o-dd:uid>x500:c=AT;o=Registry;cn=sguth</o-dd:uid>
<o-dd:name>Dr. Susanne Guth</o-dd:name>

</o-ex:context>
<o-ex:rightsholder>

<o-dd:percentage>100</o-dd:percentage>
</o-ex:rightsholder>

</o-ex:party>
<o-ex:party>

<o-ex:context>
<o-dd:uid>x500:c=AT;o=Registry;cn=mstrembe</o-dd:uid>
<o-dd:name>Dr. Mark Strembeck</o-dd:name>

</o-ex:context>
</o-ex:party>
<o-ex:asset>

<o-ex:context>
<o-dd:uid>urn:wu-wien.ac.at#proc01</o-dd:uid>
<o-dd:name>ODRL Intl. Workshop ’04 Proceedings</o-dd:name>

</o-ex:context>
</o-ex:asset>
<o-ex:permission>
<o-dd:display>

<o-ex:constraint>
<o-dd:datetime>

<o-dd:end>2010-12-31</o-dd:end>
</o-dd:datetime>

</o-ex:constraint>
<o-ex:requirement>

<o-dd:peruse>
<o-dd:payment>

<o-dd:amount o-dd:currency="EUR">5.00</o-dd:amount>
</o-dd:payment>

</o-dd:peruse>
</o-ex:requirement>

</o-dd:display>
</o-ex:permission>

</o-ex:agreement>
</o-ex:rights>

Proceedings of the First ODRL International Workshop

89

2.2 Drawbacks of ODRL 1.1

We now discuss drawbacks that result from the ODRL 1.1 information model. The discussion focuses on
the expressiveness, the understandability/comprehensibility for human users, and the automated processing of
ODRL-based contracts via different software services.

1. Expression of rights and duties. Generally (and non-technically) speaking, contracts specify the rights
and duties of contract parties. In the example from Section 2.1, a customer receives the right to display
some resource after fulfilling his duty of paying a certain amount of money. The rights and duties of
the rightsholder, however, are less explicit. With respect to the same example, the rightsholder receives
a certain amount of money in return for the usage right of her resource. Here, the respective royalty
element (“percentage”) may also be interpreted as a right of the rightsholder (e.g. “the right to debit the
consumers account“). But does the rightholder have duties, too? A human reader of the example contract
shown in Section 2.1 may use his knowledge on the nature of contracts in general to interpret the contract
and to identify the duty of the rightsholder that, in return to receiving a certain amount of money, she has
to make the asset (the digital good) available to the consumer. Nevertheless, such implicit information
can, in the general case, not easily be derived via an automated processing of ODRL-based contracts.
This results from the fact that ODRL does not provide language elements that can explicitly express
(arbitrary) duties of contract parties (aside from monetary payments, as mentioned above).

2. Distinction between the rightsholder and consumer parties. Let us assume that a certain agreement
shall include duties of two contract parties, as it is common in barters for instance (a barter is an agree-
ment on the exchange of one asset against another asset, in contrast to a monetary payment). For example,
an Austrian university department offers its learning resources (presentations, papers, etc.) to a German
university department. In return, the German department agrees to provide its learning resources to the
Austrian department. In this example, two parties exchange usage rights for certain digital goods and no
monetary payment is required of either department. Thus, both parties are rightsholder and beneficiary
at the same time. If, however, both parties in an ODRL-based contract include the rightsholder element,
the ODRL expression of granting mutual access rights gets ambiguous. Therefore, the simple example
already indicates that ODRL 1.1. is not well-suited to model situations where different contract parties
“act” in multiple contract roles. In particular, a rightsholder party cannot be treated as a consumer at the
same time.

3. The expression of constraints on requirements. A common type of expression used in contracts is the
following: ". . . the payment has to be made within four weeks after receipt of the shipment." With respect
to ODRL 1.1 this expression is a requirement (the payment) that is narrowed by a constraint (within four
weeks). However, ODRL 1.1 does not allow to constrain requirements.

4. The term "permission". In ODRL permissions refer to certain operations, for example “play”
or “print”. However, in the area of system security and access control a permission refers to an
〈operation, object〉 pair as 〈play,movie〉, for example. Moreover, as in the area of access control,
ODRL provides constraints that can be used to define specific “side-conditions” on permissions. Nev-
ertheless, due to the above mentioned difference the approaches significantly differ, since in ODRL,
constraints are associated with operations rather than 〈operation, object〉 pairs (see also Figure 2).

However, if we constrain operations rather than 〈operation, object〉 pairs, we need additional means to
specify the asset(s) that a certain constraint applies to (at least if it should not apply to all possible assets

90

Operation

Object

Constraint

Permission

1..*

0..*

has

1

has

1

1..*

constrains

Constraint

Operation

1..*

0..*

constrains

Figure 2: Constraints on Permissions vs. Constraints on Operations

the corresponding operation could be used on). In other words, if more than one asset (e.g. three PDF
documents) is referenced in a contract, the operation (e.g. view or print) is constrained for each of these
assets. This, however, causes obvious problems if a constraint should refer to one specific asset only (e.g.
a specific PDF document, and thereby to a specific 〈operation, object〉 pair as 〈print, lecturenotes〉),
while the same operation (e.g. print) should not be constraint for the other assets referenced in the con-
tract. Therefore, in the general case, it is more flexible (and more expressive) to enable the definition of
constraints on 〈operation, object〉 pairs than on operations only. In particular, this allows to unambigu-
ously define constraints that clearly refer to a specific 〈operation, object〉 pair.

5. Different types of “conditions” in ODRL. ODRL version 1.1. distinguishes between constraints, re-
quirements and conditions (see Section 2.1) which can be assigned to ODRL permissions (i.e. opera-
tions). As an example, let us consider an ODRL payment requirement, an ODRL time condition, and an
ODRL count constraint (see also [13]). A permission that has these elements assigned to it, may then be
granted iff the payment was settled, iff the time restriction is not met (i.e. the right is not yet expired),
and iff the count limit is not exceeded. Each of these clauses defines a certain “side-condition” for a
respective permission. With respect to our discussion points 1 and 3 mentioned above, we believe that
it would be more reasonable to distinguish between ODRL conditions/constraints on the one hand and
ODRL requirements (which in essence define duties) on the other. ODRL conditions and ODRL con-
straints directly relate to a permission (e.g. do not play after 12/31/05; or play at most five times) whereas
requirements are more of a precondition that has to be fulfilled before a right may actually be assigned to
the corresponding beneficiary. Therefore, we argue that ODRL requirements are classical duties, whereas
ODRL conditions and ODRL constraints should be seen as constraints on 〈operation, object〉 pairs.

3 Proposal for a Future ODRL Information Model

In this section, we propose an information model that can be considered in a future version of ODRL. In
particular, we introduce duty as a new element that can be assigned to contract parties and we use constraint as
the sole element to define “side-conditions” on duties or permissions (which are defined as 〈operation, object〉
pairs rather than operations in ODRL 1.1, see below). The rightsholder element and the related royalties have
been removed. Figure 3 shows the a proposal for an information model which could serve as an replacement

Proceedings of the First ODRL International Workshop

91

for the model depicted in Figure 1. The elements of the proposed information model and their relations are
described in this section. In subsequent paragraphes, contracts that are compliant to the proposed ODRL
information model are referred to as future (ODRL) contracts.

Each future ODRL contract contains two or more contract parties. A contract party may be either a physical
person (an individual), a legal person (an organization), or an abstract type of party (a role). Typical types
of parties in a contract are buyer, seller, rightsholder, or beneficiary. A permission essentially consists of
an 〈operation, object〉 pair and grants the right to perform the corresponding operation (e.g. play) on the
respective object (e.g. a particular MPEG video file). Here, the object represents a reference to a certain asset,
and an asset is defined as a good or service, be it digital or physical. Each permission in an future ODRL
contract is assigned to at least one contract party, and each contract party may possess a number of permissions.

*

*

*0..

*0..

*0..

*

*1..

Permission

Contract Party
(Party-Type)

Duty

1

Constraint

 assigned to

 assigned to

*1..

 constrains

 constrains

*0..

 refers to

*

Payment Deliver Asset

1

Asset
(Asset-Type) refers to

 is-a

Figure 3: Proposal of a Future ODRL Information Model

A duty defines a reward for a certain permission. This reward may be, for example, a (monetary) payment
or the duty to deliver an asset. Duties are optional elements in an electronic contract. Each duty is assigned
to at least one contract party which is thereby (i.e. via the contract) obliged to fulfill this duty. On an abstract
(business process) level, a duty can be seen as the “counterpart” of a permission, which means that a party
receives one or more permissions in exchange for the fulfillment of one or more corresponding duties.

Permissions and duties may be associated with constraints. Here, a constraint is a predicate and defines a
(side-)condition on the respective permission or duty. A typical example of a constraint may be a time constraint
which checks if the current date (todays date) is previous to “December 31st, 2005”. Such a constraint could
be associated with:

• a permission to define that this particular permission is valid while the corresponding constraint is fulfilled
(i.e. while the respective predicate returns true), or

• a duty to define that the corresponding duty must be fulfilled before the respective constraint "expires"
(i.e. before the respective predicate returns false). For example, such a constraint can indicate, that a
certain duty, e.g. a payment, has to be made before "December 31st, 2005".

The information model proposed in this section thereby eliminates the drawbacks described in Section 2.2.

92

4 Proposed Changes for the ODRL Expression Language XML Schema

We now give an overview of proposed modifications of the ODRL XML schemas. These modifications should
allow for the definition of ODRL-based digital contracts which adhere to the information model suggested in
Section 3. Corresponding XML schemas can be found in Appendix A and B of this paper. These schemas
include the following modifications:

- A new duty element. This element has the type dutyType and includes dutyElements. Concrete dutyEle-
ments, such as prePayment, perusePayment, or deliverAsset are defined in the corresponding ODRL
data dictionary schema. The data dictionary currently does not include other duties that are available
as requirements in ODRL 1.1, such as tracked, attribution, accept, and register (see also [13]). Those
element have to be newly defined accordingly.

- The permissionType element has been revised and now includes the mandatory elements operation

and object as well as the element beneficiary and the attribute grantor. The hasConstraint sub-
element is used to a link to constraint elements that are associated with the corresponding permission

element.

- Conditions and requirements, as defined in ODRL 1.1, have been removed and are not part of our pro-
posed ODRL schemas. Requirements are now represented as duties. All conditions that narrow permis-
sions are modeled as constraints.

- The constraintType has been heavily modified and now includes operand and operator elements.
Moreover, a corresponding operatorType and an operandType were added to the expression language.
The type of an operator is determined via a corresponding type attribute that defines if an operator is
a prefix, a postfix or an infix operator. Furthermore, the operatorType includes a valence attribute,
defining if the operator is an unary, binary, ternary or n-ary operator. The operandType includes the
position attribute which indicates whether the the operand is located e.g. to the left or to the right of
a binary infix operator. An example of a constraint using the binary infix operator <= could be date <=

2005-01-01.

- The rightsholder element of ODRL 1.1 has been removed. Rights and duties of a rightsholder can now
be represented by the permission and duty elements.

The listing below depicts an XML instance of the proposed future ODRL XML schemas and shows how the
identified shortcomings of ODRL 1.1 can be removed. With respect to its content, the example resembles the
contract described in Section 2.1. To demonstrate the increased expressiveness the contract includes additional
statements:

• The listing includes rights (or permissions) and duties. In particular, Mark Strembeck receives the per-
missions display and print, and in return, he accepts the duty of a prepayment over the amount of
�

5.00. For each permission a grantor and a beneficiary can be specified. In the same way a bearer can
be specified for each duty. Therefore, permissions and duties can be assigned to each contract party, be
it a seller or a buyer. This issue addresses drawback 1 discussed in Section 2.2.

Proceedings of the First ODRL International Workshop

93

• The example no longer distinguishes between a rightsholder party or a consumer party. This permits that
each contract party may receive permissions, grant permissions, and/or be associated with duties. This
issue addresses drawback 2 discussed in Section 2.2

• The new duty element helps eliminating drawback 3 explained in Section 2.2. In particular, the list-
ing shows that constraints can be related to duties. In the example, a time constraint is related to the
prePayment-Duty, expressing that the payment has to be settled until April 4th, 2004.

• The example also shows the new shape of the ppermission element that now includes operations and
objects. Constraints are now related to the 〈operation−object〉 pair and no longer to the operation only.
This method permits a clear translation from ODRL expressions to access control information, and thus
addresses drawback 4, as discussed in Section 2.2. Additionally, the listing shows that each constraint
(e.g. constraint01) can be assigned to various permissions.

• The rights expression in the listing below defines various constraints. ODRL 1.1 condition elements now
are also expressed as constraints. This means that former elements ODRL Constraint and ODRL Condi-
tion are now expressed with one newly shaped element called constraint. For example, a condition in
ODRL 1.1 states: "If the country where a usage right should be claimed is Australia, then the permission
must not be granted." Constraint03 in the listing shows how this former ODRL Condition can be formu-
lated as constraint. This change in the ODRL language addresses drawback 5. Addtionally, the constraint
element now includes the elements operator, operand, and constraint type. Thus, an arbitrary number
of constraints can be formulated without changing the data dictionary. Thereby we are also able to check
the fulfillment of duties via constraints (see constraint02).

<?xml version="1.0" encoding="UTF-8"?>
<o-ex20:rights xmlns:o-ex20="http://odrl.net/2.0/ODRL-EX"

xmlns:o-dd20="http://odrl.net/2.0/ODRL-DD">
<o-ex20:agreement>

<o-ex20:party partyID="party01">
<o-ex20:context>

<o-dd20:uid>x500:c=AT;o=Registry;cn=sguth</o-dd20:uid>
<o-dd20:name>Dr. Susanne Guth</o-dd20:name>

</o-ex20:context>
</o-ex20:party>
<o-ex20:party partyID="party02">

<o-ex20:context>
<o-dd20:uid>x500:c=AT;o=Registry;cn=mstrembe</o-dd20:uid>
<o-dd20:name>Dr. Mark Strembeck</o-dd20:name>

</o-ex20:context>
</o-ex20:party>

<o-ex20:asset assetID="asset01">
<o-ex20:context>

<o-dd20:uid>urn:wu-wien.ac.at#proc01</o-dd20:uid>
<o-dd20:name>ODRL Intl. Workshop ’04 Proceedings</o-dd20:name>

</o-ex20:context>
</o-ex20:asset>

<o-ex20:permission grantor="party01">
<o-ex20:operation>display</o-ex20:operation>
<o-ex20:object>asset01</o-ex20:object>
<o-ex20:beneficiary>party02</o-ex20:beneficiary>

94

<o-ex20:hasConstraint id="constraint01"/>
<o-ex20:hasConstraint id="constraint02"/>
<o-ex20:hasConstraint id="constraint03"/>

</o-ex20:permission>
<o-ex20:permission grantor="party01">

<o-ex20:operation>print</o-ex20:operation>
<o-ex20:object>asset01</o-ex20:object>
<o-ex20:beneficiary id="party02"/>
<o-ex20:hasConstraint id="constraint01"/>

</o-ex20:permission>

<o-ex20:constraint constraintID="constraint01">
<o-ex20:type>datetime</o-ex20:type>
<o-ex20:operator type="infix" valency="Binary"> LessThan </o-ex20:operator>
<o-ex20:operand position="left">today</o-ex20:operand>
<o-ex20:operand position="right">2011-01-01</o-ex20:operand>

</o-ex20:constraint>
<o-ex20:constraint constraintID="constraint02">

<o-ex20:type>dutyfulfilled</o-ex20:type>
<o-ex20:operator type="prefix" valency="Unary"> Fulfilled </o-ex20:operator>
<o-ex20:operand>duty01</o-ex20:operand>
</o-ex20:constraint>

<o-ex20:constraint constraintID="constraint03">
<o-ex20:type>spatial</o-ex20:type>
<o-ex20:operator type="infix" valency="Binary"> NotEqual </o-ex20:operator>
<o-ex20:operand position="left">Country</o-ex20:operand>
<o-ex20:operand position="right">Australia</o-ex20:operand>

</o-ex20:constraint>
<o-ex20:constraint constraintID="constraint04">

<o-ex20:type>datetime</o-ex20:type>
<o-ex20:operator type="infix" valency="Binary"> LessThan </o-ex20:operator>
<o-ex20:operand position="left">today</o-ex20:operand>
<o-ex20:operand position="right">2004-04-23</o-ex20:operand>

</o-ex20:constraint>

<o-ex20:duty dutyID="duty01" bearer="party02">
<o-dd20:prePayment>

<o-dd20:amount currency="EUR"> 5.00 </o-dd20:amount>
</o-dd20:prePayment>
<o-ex20:hasConstraint>constraint04</o-ex20:hasConstraint>

</o-ex20:duty>
</o-ex20:agreement>

</o-ex20:rights>

The next listing shows an example of a barter contract. Here, one permission 〈modify, ODRL_1.1〉 is simply
exchanged against a second permission 〈print, ODRL_Workshop_proceedings〉 between Renato Iannella and
Susanne Guth. No monetary payment has to be made by either party; both permissions expire with the end of
year 2010.

<?xml version="1.0" encoding="UTF-8"?>
<o-ex20:rights

xmlns:o-ex20="http://odrl.net/2.0/ODRL-EX"
xmlns:o-dd20="http://odrl.net/2.0/ODRL-DD">

<o-ex20:agreement>
<o-ex20:party o-ex20:partyID="party01">

<o-ex20:context>
<o-dd20:uid>x500:c=AT;o=Registry;cn=sguth</o-dd20:uid>
<o-dd20:name>Susanne Guth</o-dd20:name>

</o-ex20:context>
</o-ex20:party>
<o-ex20:party o-ex20:partyID="party02">

Proceedings of the First ODRL International Workshop

95

<o-ex20:context>
<o-dd20:uid>x500:c=AU;o=Registry;cn=riannel</o-dd20:uid>
<o-dd20:name>Renato Iannella</o-dd20:name>

</o-ex20:context>
</o-ex20:party>

<o-ex20:asset o-ex20:assetID="asset01">
<o-ex20:context>

<o-dd20:uid>urn:wu-wien.ac.at#proc01</o-dd20:uid>
<o-dd20:name>ODRL Intl. Workshop ’04 Proceedings</o-dd20:name>

</o-ex20:context>
</o-ex20:asset>
<o-ex20:asset o-ex20:assetID="asset02">

<o-ex20:context>
<o-dd20:uid>urn:odrl.net#ODRLspec1.1</o-dd20:uid>
<o-dd20:name>ODRL 1.1</o-dd20:name>

</o-ex20:context>
</o-ex20:asset>

<o-ex20:permission o-ex20:grantor="party01">
<o-ex20:operation>print</o-ex20:operation>
<o-ex20:object>asset01</o-ex20:object>
<o-ex20:beneficiary>party02</o-ex20:beneficiary>
<o-ex20:hasConstraint>constraint01</o-ex20:hasConstraint>

</o-ex20:permission>
<o-ex20:permission o-ex20:grantor="party02">

<o-ex20:operation>modify</o-ex20:operation>
<o-ex20:object>asset02</o-ex20:object>
<o-ex20:beneficiary>party01</o-ex20:beneficiary>
<o-ex20:hasConstraint>constraint01</o-ex20:hasConstraint>

</o-ex20:permission>

<o-ex20:constraint o-ex20:constraintID="constraint01">
<o-ex20:type>datetime</o-ex20:type>
<o-ex20:operator o-ex20:type="infix" o-ex20:valency="Binary">LessThan</o-ex20:operator>
<o-ex20:operand o-ex20:position="left">today</o-ex20:operand>
<o-ex20:operand o-ex20:position="right">2011-01-01</o-ex20:operand>

</o-ex20:constraint>
</o-ex20:agreement>

</o-ex20:rights>

Note that the XML schemas proposed in this paper (listed in the Appendix) are an approach to a more
flexible and expressive future version of ODRL and should be further discussed by the ODRL initiative.

5 Mapping to Enforceable Policies

Another essential aspect that was not yet discussed is the mapping of permissions and duties that are defined on
the level of digital contracts to policy rules that can be enforced in an actual software system. Though this topic
is by far to complex to be discussed in this paper, we would like to mention the corresponding problem domain
and outline some issues arising in this context. Figure 4 shows a simplified information model for permissions
and duties as they can be defined on a technical level, i.e. on the level of actual software systems that need to
enforce the corresponding policy rules.

A particular difference between the information model for digital contracts introduced in Section 3 and the
model shown in Figure 4 is the direct relation between duties and permissions. In a software system, a subject
(a party) that must fulfill a certain duty inevitably needs a corresponding permission. Therefore, each duty must

96

*0.. *

*

*

*0..

*0..

*0..

*

*1..

Permission

1Subject
(Subject-Type) Operation

consist of

Duty

consist of

 refers to
1Object

(e.g. Asset-Id) Constraint

 assigned to

 assigned to

*1..

 constrains

 constrains

*0..1

1 1

1

 associated
 with

*1..

Asset
(Asset-Type)

Figure 4: Simplified Information Model for System-level Permissions and Duties

be associated with (at least) one corresponding permission (note that while Figure 4 indicates that permissions
and duties consist of 〈operation, object〉 pairs respectively, two related permission and duty objects do not
necessarily refer to the same 〈operation, object〉 pair!). For example, a subject may only fulfill the duty
“transfer money” iff the subject simultaneously possesses a corresponding permission which grants access to a
specific banking account. Such information, however, is not (and typically should not be) modeled on the level
of digital (business) contracts.

Nevertheless, in order to automatically process digital contracts and to enforce permissions and duties that
are defined via ODRL contracts, one needs to specify a mapping of contract level elements to corresponding
elements on the level of corresponding permissions and duties in concrete software systems. In the general
case, each duty (or permission) defined on the contract level maps to one or more permission and duty objects
on the “technical level” (as indicated by Figure 5). Moreover, constraints defined via a digital contract may
(of course) only be enforced on a technical level if a respective (software) service exists which supports the
corresponding type of constraints (see e.g. [16]). Another important issue that needs to be addressed is the def-
inition and verification of “trust chains”, for example to examine if a certain grantor (a party granting/assigning
a permission to another party) actually is in possession of the respective control right, i.e. if the grantor was
allowed/legitimated to pass the corresponding permission to another party (see e.g. [2, 4, 17, 18]).

6 Related Work

In the work of Keller et al. [15] a management architecture for specifying, deploying, monitoring, and enforcing
service contracts is proposed to provide a basis for service level agreements. Contracts contain agreements
about quality of service (QoS) attributes, they are concluded between service providers and a service integrator.
This contract model is tailored to the needs of service level agreements, and thus contains different contract
objects than the model discussed in this paper. However, their model also contains basic contract objects, such
as provider, customer, and service, as well as objects that represent the guaranteed service parameters (rights).
Keller et al., however, do not envision the exchange of contract information between the involved components
in a standardized format, such as a rights expression language.

In [3], Beugnard et al. introduce a general model of software contracts that aims at increasing trust and reli-
ability between software components. To conclude contracts between components, every component publishes
a feature set to describe its services in a common language (e.g. CORBA IDL). Contracts are established be-
tween a client and server component in a negotiation phase where the contract parties agree on certain services.

Proceedings of the First ODRL International Workshop

97

Contract Level
(Business Transaction)

Technical Level
(Software System)

*0.. *

*
Permission

Operation

consist of

Duty

consist of

Object
(Asset-Id)

1

1 1

1

*1..

*

*

*0..

*0..

*0..

*

*1..

Contract Party
(Party-Type)

Duty

1

Constraint

 assigned to

 assigned to

*1..

 constrains

 constrains

*0..

 refers to

*

Payment Deliver Asset

1

Asset
(Asset-Type) refers to

 is-a

*0.. *

*
Permission

Operation

consist of

Duty

consist of

Object
(Asset-Id)

1

1 1

1

*1..

Permission

Figure 5: Mapping of Contract Level Elements to Enforceable Policies on the Software System Level

The work provides a basic interface description for the negotiation phase. Beugnard et al. suggest an “XML-
formatted description of the contracts” that is applied for negotiation purposes. This is somewhat similar to the
approach presented in this paper.

The eXtensible Access Control Markup Language (XACML) [10] is a standard adopted by the Organization
for the Advancement of Structured Information Standards (OASIS). XACML provides an XML-based language
for the definition of access control policies. The language syntax is formalized via an XML schema. Beside
standard access control policies including subjects, operations, and objects, it also allows for the definition
of obligations and conditions. Conditions are boolean functions over attributes associated with a subject, an
operation, an object, or the system environment. XACML environment attributes are attributes which are
relevant to an authorization decision but are independent of a particular subject, operation, or object (see [10]).

The Security Assertion Markup Language (SAML) [12] is an other standard adopted by OASIS. SAML de-
fines an XML-based framework for exchanging security information via computer networks. It is based on the
SAML protocol which consists of XML-based request and response messages. By this protocol, clients can re-
quest assertions from so-called “SAML authorities” (trusted servers). SAML authorities can make three differ-
ent kinds of assertion statements: authentications, authorization decisions, and attributes. An authentication as-
sertion confirms that a specific subject has been authenticated by a particular means at a particular time. An au-
thorization decision assertion states that a particular access request consisting of a 〈subject, operation, object〉
triple has been granted by the corresponding SAML authority. Finally, an attribute assertion confirms that a
specific subject is associated with a certain set of attributes.

7 Conclusion and Future Work

In this paper we discussed the information model of ODRL version 1.1. In particular, we focussed on the
ODRL Rightsholder element, the ODRL Permission element, as well as the elements that further describe
ODRL Permissions, such as ODRL Condition, ODRL Constraint, and ODRL Requirement. When investigating

98

the current ODRL information model we found that it has several drawbacks in terms of expressiveness and
mapping the ODRL rights information to common access control information models. For example, with the
current ODRL information model, rights and duties can only be expressed for the purchasing contract party but
not for the seller. Each identified drawback is explained in detail. Consequently, we worked out an improved
information model for ODRL that is eliminating the identified drawbacks. The improved information model
is translated to new XML schemas as a proposal for future ODRL specifications. The resulting XML schemas
can be found in the appendix and may serve as basis for a future version of ODRL. The future work in this field
is clearly to embed the improvements into an official, future ODRL version with regard to ensure the timeliness
and usability of ODRL.

A Proposed XML Schema for the ODRL Expression Language
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://odrl.net/2.0/ODRL-EX"

xmlns:o-ex20="http://odrl.net/2.0/ODRL-EX"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:enc="http://www.w3.org/2001/04/xmlenc#"
elementFormDefault="qualified" attributeFormDefault="qualified" version="2.0">

<xsd:import
namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<!-- NOTE: The W3C Encryption Namespace URI will be updated as the specification is advanced -->
<xsd:import

namespace="http://www.w3.org/2001/04/xmlenc#"
schemaLocation="http://www.w3.org/Encryption/2001/Drafts/xmlenc-core/xenc-schema.xsd"/>
<xsd:element name="rights" type="o-ex20:rightsType"/>
<xsd:element name="offer" type="o-ex20:offerAgreeType"/>
<xsd:element name="agreement" type="o-ex20:offerAgreeType"/>
<xsd:complexType name="offerAgreeType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:party" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:asset" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:permission" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:duty" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:constraint" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
</xsd:complexType>
<xsd:complexType name="rightsType">

<xsd:complexContent>
<xsd:extension base="o-ex20:offerAgreeType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:revoke" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:offer" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:agreement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="ds:Signature" minOccurs="0"/>

</xsd:choice>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:element name="context" type="o-ex20:contextType"/>
<xsd:element name="contextElement" abstract="true"/>
<xsd:complexType name="contextType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context" minOccurs="0" maxOccurs="unbounded"/>

Proceedings of the First ODRL International Workshop

99

<xsd:element ref="o-ex20:contextElement" minOccurs="0" maxOccurs="unbounded"/>
</xsd:choice>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>

</xsd:complexType>
<xsd:element name="duty" type="o-ex20:dutyType"/>
<xsd:element name="dutyElement" abstract="true"/>
<xsd:complexType name="dutyType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:dutyElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:context" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:hasConstraint" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
<xsd:attribute name="dutyID" type="xsd:string" use="required"/>
<xsd:attribute name="bearer" type="xsd:string" use="required"/>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>

</xsd:complexType>
<xsd:complexType name="partyType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context" minOccurs="0"/>
<xsd:element ref="o-ex20:party" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:container" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:asset" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>
<xsd:attribute name="partyID" type="xsd:string" use="required"/>

</xsd:complexType>
<xsd:element name="party" type="o-ex20:partyType"/>
<xsd:complexType name="assetType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context"/>
<xsd:element ref="o-ex20:inherit"/>
<xsd:element name="digest">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="ds:DigestMethod"/>
<xsd:element ref="ds:DigestValue"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element ref="ds:KeyInfo"/>

</xsd:choice>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>
<xsd:attribute name="assetID" type="xsd:string" use="required"/>
<xsd:attribute name="type">

<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="work"/>
<xsd:enumeration value="expression"/>
<xsd:enumeration value="manifestation"/>
<xsd:enumeration value="item"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:element name="asset" type="o-ex20:assetType"/>
<xsd:complexType name="inheritType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
<xsd:attribute name="override" type="xsd:boolean" default="false"/>
<xsd:attribute name="default" type="xsd:boolean" default="false"/>

</xsd:complexType>

100

<xsd:element name="inherit" type="o-ex20:inheritType"/>
<xsd:element name="permission" type="o-ex20:permissionType"/>
<xsd:element name="operation" type="operationType"/>
<xsd:element name="beneficiary" type="o-ex20:linkType"/>
<xsd:element name="object" type="o-ex20:assetType"/>
<xsd:complexType name="permissionType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:operation" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:object" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:hasConstraint" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:beneficiary" minOccurs="1" maxOccurs="unbounded"/>

</xsd:choice>
<xsd:attribute name="exclusive" type="xsd:boolean" use="optional"/>
<xsd:attribute name="grantor" type="xsd:string" use="required"/>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>

</xsd:complexType>
<xsd:complexType name="operandType">

<xsd:attribute name="position" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="type" type="o-ex20:cType"/>
<xsd:element name="operand" type="o-ex20:operandType"/>
<xsd:complexType name="operatorType">

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="type" use="required">
<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="prefix"/>
<xsd:enumeration value="infix"/>
<xsd:enumeration value="postfix"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name="valence" use="required">

<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="unary"/>
<xsd:enumeration value="binary"/>
<xsd:enumeration value="ternary"/>
<xsd:enumeration value="n-ary"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:element name="operator" type="o-ex20:operatorType"/>
<xsd:complexType name="constraintType">

<xsd:choice>
<xsd:element ref="o-ex20:container" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:type" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="o-ex20:operand" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:operator" minOccurs="1" maxOccurs="1"/>

</xsd:choice>
<xsd:attribute name="constraintID" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="xsd:NMTOKEN" use="required"/>

</xsd:complexType>
<xsd:element name="hasConstraint" type="linkType/">
<xsd:complexType name="linkType">

<xsd:attribute name="id" type="xsd:string" use="required"/>
</xsd:complexType>

Proceedings of the First ODRL International Workshop

101

<xsd:element name="constraint" type="o-ex20:constraintType"/>
<xsd:complexType name="revokeType">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:context" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>

</xsd:complexType>
<xsd:element name="revoke" type="o-ex20:revokeType"/>
<xsd:complexType name="sequenceType">

<xsd:sequence>
<xsd:element ref="o-ex20:seq-item" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="order" default="total">

<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="total"/>
<xsd:enumeration value="partial"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:element name="sequence" type="o-ex20:sequenceType"/>
<xsd:complexType name="containerType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:container" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:permission" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:constraint" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:sequence" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:party" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
<xsd:attribute name="type" default="and">

<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="and"/>
<xsd:enumeration value="in-or"/>
<xsd:enumeration value="ex-or"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attributeGroup ref="o-ex20:IDGroup"/>

</xsd:complexType>
<xsd:element name="container" type="o-ex20:containerType"/>
<xsd:complexType name="seqItemType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="o-ex20:container" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:permission" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:constraint" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="o-ex20:sequence" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
<xsd:attribute name="number" type="xsd:integer" use="required"/>

</xsd:complexType>
<xsd:element name="seq-item" type="o-ex20:seqItemType"/>
<xsd:attributeGroup name="IDGroup">

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="idref" type="xsd:IDREF"/>

</xsd:attributeGroup>
</xsd:schema>

102

B Proposed XML Schema for the ODRL Data Dictionary
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://odrl.net/2.0/ODRL-DD"

xmlns:o-ex20="http://odrl.net/2.0/ODRL-EX"
xmlns:o-dd20="http://odrl.net/2.0/ODRL-DD"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="qualified" version="2.0">

<xsd:import namespace="http://odrl.net/2.0/ODRL-EX" schemaLocation="http://odrl.net/2.0/ODRL-EX-20.xsd"/>
<!-- Declare the operation Vocabulary -->
<xsd:simpleType name="operationType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="display"/>
<xsd:enumeration value="print"/>
<xsd:enumeration value="play"/>

<xsd:enumeration value="execute"/>
<xsd:enumeration value="sell"/>
<xsd:enumeration value="lend"/>
<xsd:enumeration value="give"/>
<xsd:enumeration value="lease"/>
<xsd:enumeration value="modify"/>
<xsd:enumeration value="excerpt"/>
<xsd:enumeration value="aggregate"/>
<xsd:enumeration value="annotate"/>
<xsd:enumeration value="move"/>
<xsd:enumeration value="duplicate"/>
<xsd:enumeration value="delete"/>
<xsd:enumeration value="verify"/>
<xsd:enumeration value="backup"/>
<xsd:enumeration value="restore"/>
<xsd:enumeration value="install"/>
<xsd:enumeration value="uninstall"/>
<xsd:enumeration value="save"/>

</xsd:restriction>
</xsd:simpleType>
<!-- Declare the Payment Elements -->
<xsd:element name="payment">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="amount">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:decimal">

<xsd:attribute name="currency" type="xsd:NMTOKEN" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="taxpercent" minOccurs="0">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:decimal">
<xsd:attribute name="code" type="xsd:NMTOKEN" use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- Declare all the Duty Elements -->
<xsd:element name="perusePayment" substitutionGroup="o-ex20:dutyElement">

Proceedings of the First ODRL International Workshop

103

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="o-ex20:dutyType">
<xsd:sequence>

<xsd:element ref="o-dd20:payment"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="postPayment" substitutionGroup="o-ex20:dutyElement">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="o-ex20:dutyType">
<xsd:sequence>

<xsd:element ref="o-dd20:payment"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="prePayment" substitutionGroup="o-ex20:dutyElement">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="o-ex20:dutyType">
<xsd:sequence>

<xsd:element ref="o-dd20:payment"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="deliverAsset" substitutionGroup="o-ex20:dutyElement">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="o-ex20:dutyType">
<xsd:sequence>

<xsd:element ref="o-ex20:asset"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<!--Duty elements for accept, register, attribution, tracked have to be formulated accordingly

Declare all the Context Elements -->
<xsd:simpleType name="uriAndOrString">

<xsd:union memberTypes="xsd:anyURI xsd:string"/>
</xsd:simpleType>
<xsd:element name="uid" type="o-dd20:uriAndOrString" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="role" type="xsd:anyURI" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="name" type="xsd:string" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="remark" type="xsd:string" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="event" type="xsd:string" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="pLocation" type="xsd:string" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="dLocation" type="xsd:anyURI" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="reference" type="xsd:anyURI" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="version" type="xsd:string" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="transaction" type="xsd:string" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="service" type="xsd:anyURI" substitutionGroup="o-ex20:contextElement"/>
<xsd:element name="date" type="o-dd20:dateType" substitutionGroup="o-ex20:contextElement"/>
<!-- Declare all the Constraint Elements -->
<xsd:simpleType name="cType">

104

<xsd:restriction base="xsd:string">
<xsd:enumeration value="dutyfulfilled">
<xsd:enumeration value="individual"/>
<xsd:enumeration value="group"/>
<xsd:enumeration value="cpu"/>
<xsd:enumeration value="network"/>
<xsd:enumeration value="screen"/>
<xsd:enumeration value="storage"/>
<xsd:enumeration value="memory"/>
<xsd:enumeration value="printer"/>
<xsd:enumeration value="software"/>
<xsd:enumeration value="hardware"/>
<xsd:enumeration value="spatial"/>
<xsd:enumeration value="quality"/>
<xsd:enumeration value="format"/>
<xsd:enumeration value="unit"/>
<xsd:enumeration value="watermark"/>
<xsd:enumeration value="purpose"/>
<xsd:enumeration value="industry"/>
<xsd:enumeration value="count"/>
<xsd:enumeration value="minimum"/>
<xsd:enumeration value="maximum"/>
<xsd:enumeration value="datetime"/>
<xsd:enumeration value="accumulated"/>
<xsd:enumeration value="interval"/>
<xsd:enumeration value="recontext"/>

</xsd:restriction>
</xsd:simpleType>
<!-- Transfer Permission is defined as a ContainerType to enable complete expression of
rights in the Constraint -->
<xsd:element name="transferPerm" substitutionGroup="o-ex20:container">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="o-ex20:containerType">
<xsd:attribute name="downstream" default="equal">

<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="equal"/>
<xsd:enumeration value="less"/>
<xsd:enumeration value="notgreater"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
</xsd:schema>

References

[1] G.J. Ahn and R. Sandhu. Role-based Authorization Constraints Specification. ACM Transactions on
Information and System Security (TISSEC), 3(4), November 2000.

[2] J. Bacon and K. Moody. Toward Open, Secure, Widely Distributed Services. Communications of the
ACM, 45(6), June 2002.

Proceedings of the First ODRL International Workshop

105

[3] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins. Making Components Contract Aware. IEEE
Computer Magazine, 32(7), July 1999.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Proc. of the IEEE Conference
on Security and Privacy, May 1996.

[5] National Computer Security Center. A Guide to Understanding Discretionary Access Control in Trusted
Systems, September 1987. NCSC-TG-003-87.

[6] ContentGuard Inc. eXtensible rights Markup Language (XrML), Version 2.0. http://www.xrml.org/,
November 2001.

[7] T. DeMartini, X. Wang, and B. Wragg. MPEG-21 Working Documents - Part 5 & Part 6, MPEG-21
Rights Expression Language. http://www.chiariglione.org/mpeg/working_documents.htm, March 2003.

[8] D.E. Denning. A Lattice Model of Secure Information Flow. Communications of the ACM, 19(5), May
1976.

[9] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on Information and System Security, 4(3), August 2001.

[10] S. Godik and T. Moses (eds.). eXtensible Access Control Markup Language (XACML) Version 1.0.
http://www.oasis-open.org, February 2003. OASIS Standard.

[11] S. Guth, G. Neumann, and M. Strembeck. Experiences with the Enforcement of Access Rights Extracted
from ODRL-based Digital Contracts. In Proc. of the 3rd ACM Workshop on Digital Rights Management
(DRM), October 2003.

[12] P. Hallam-Baker and E. Maler (eds.). Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML). http://www.oasis-open.org, November 2002. OASIS Standard.

[13] R. Iannella. Open Digital Rights Language (ODRL), Version 1.1. http://odrl.net, August 2002.

[14] T. Jaeger. On the Increasing Importance of Constraints. In Proc. of the ACM Workshop on Role-Based
Access Control, 1999.

[15] A. Keller, G. Kar, H. Ludwig, A. Dan, and J.-L. Hellerstein. Managing Dynamic Services: A Contract
Based Approach to a Conceptual Architecture. In Proc. of the 8th IEEE/IFIP Network Operations and
Management Symposium (NOMS), April 2002.

[16] G. Neumann and M. Strembeck. An Approach to Engineer and Enforce Context Constraints in an RBAC
Environment. In Proc. of the 8th ACM Symposium on Access Control Models and Technologies (SAC-
MAT), June 2003.

[17] K.E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and L. Yu. Requirements
for Policy Languages for Trust Negotiation. In Proc. of the 3rd International Workshop on Policies for
Distributed Systems and Networks (POLICY), June 2002.

[18] W.H. Winsborough and N. Li. Towards Practical Automated Trust Negotiation. In Proc. of the 3rd
International Workshop on Policies for Distributed Systems and Networks (POLICY), June 2002.

106

Proceedings of the First ODRL International Workshop

107

108

Distributed Digital Rights Management:
The EduSource Approach to DRM
April 15, 2004

Stephen Downes, Gilbert Babin, Luc Belliveau, Raphael Blanchard, Gerard Levy, Pierre
Bernard, Gilbert Paquette, Sylvie Plourde

Abstract
This paper describes the design and implementation of the distributed digital rights
management (DDRM) system as undertaken by the eduSource project, a national network
of learning object repositories built by a consortium of universities and other agencies in
Canada. DDRM is foremost a system of rights expression, with transactions managed by
a set of brokers acting on behalf of purchasers and providers. Rights are described using
ODRL, contained in files managed by the provider broker, and accessed by means of
pointers in the learning object metadata exchanged within the eduSource network.

1. eduSource
The eduSource project is a network of Canadian learning object repositories providing
access to all Canadian educational institutions to a broad array of educational resources.
Funded by the contributions of project partners (more than 30 universities, agencies, and
businesses across Canada) and by CANARIE, Canada’s Advanced Internet Development
Organization, the intent of eduSource is to "create a testbed of linked and interoperable
learning object repositories." (McGreal, et.al., 2003) The development of eduSource
involves not only the design of a suit of software applications, referred in project
documentation as the Repository in a Box (RiB), it is also intended support the ongoing
development of standards based tools, systems, practices and protocols necessary for a
national learning infrastructure.

eduSource is based in part on three prior CANARIE funded initiatives: Explor@, "a
software environment for the delivery of courses or distance learning events"
(Technologies Cogigraph 2003), POOL (Portal for Online Objects in learning), a peer to
peer learning object distribution network (eduSplash, 2003), and CanLOM, a learning
object metadata repository. (CanLOM, 2003) Added to these were CAREO (Campus
Alberta Repository of Educational Objects), a learning object metadata repository
(CAREO, 2003), institutional services provided by Athabasca University, and a variety of
smaller initiatives.

The eduSource project team identified four major goals:

Proceedings of the First ODRL International Workshop

109

1. To promote and refine a repository metadata framework through the ongoing
development of the CanCore protocol;

2. To support experimental research in key areas such as pedagogy, accessibility,
protocols, network engineering, hardware integration, quality of service, security,
rights management, content development and software applications;

3. To implement a national testbed to investigate processes such as peer review,
content repurposing, user support, professional development and content
transactions; and

4. To communicate and disseminate its findings through cooperation and partnership
with other federal and provincial agencies, institutions and the private sector.
(McGreal, et.al., 2003)

Work on the eduSource project began in the summer of 2002. As of this writing,
eduSource is projected for launch at the end of March, 2004.

2. eduSource Vision
The eduSource Digital Rights Management initiative has its origins in the eduSource
vision. Making eduSource unique was not only its distributed nature, it being an attempt
to link a geographically dispersed set of online resources and services, but also the
diverse and sometimes conflicting points of view characterizing member initiatives at the
outset. For example, while POOL is fundamentally a peer to peer system, similar in many
ways to products such as Napster, Explor@ was a relatively traditional learning
management system and CAREO a centralized metadata repository.

Moreover, as additional projects came into the fold, a wider array of points of view was
added. With the addition of business partners came a desire to see implemented a digital
rights management solution, and as a consequence this was incorporated into the original
approach. Through the duration of the project, the emergence of such projects as the
Open Archives Initiative (OAI) and Rich Site Summary (RSS) added yet another content
distribution model for members to consider.

At the crux of many of these different visions lay digital rights management, and
accordingly, Canada's National Research Council e-Learning group, as the DRM package
manager for eduSource, initiated a 'Vision Committee' to draft broad parameters for the
eduSource project. After wide consultation, the Vision Committee produced the
following statement as part of its overall document: (Downes, et.al., 2002)

eduSource is to be designed not as a single software application, but
rather, as a set of related components, each of which fulfills a specific
function in the network as a whole. This enables users of eduSource to
employ only those tools or services that suit their need, without requiring
that they invest in the entire system. It also allows for distributed
functionality; an eduSource user may rely on a third party to provide
services to users. The purpose of this principle is to allow for

110

specialization. Additionally, it allows eduSource users to exercise choice
in any of a variety of models and configurations.

Any given software tool provided by eduSource may be replicated and
offered as an independent service. Thus, it is anticipated that there will be
multiple instances of each type of repository in the network. The purpose
of this principle is to provide robustness. Additionally, it is to ensure that
no single service provider or software developer may exercise control over
the network by creating a bottleneck through which all activities must
pass.

In order to realize this objective, the vision committee also endorsed the principle of open
standards and open source. Accordingly, they wrote: (Downes, et.al., 2002)

EduSource repositories will use Open Rights Management standards and
protocols. The purpose of this is to ensure that there is no a priori
overhead cost incurred by agencies wishing to offer services compatible
with eduSource. Imposing an a priori cost immediately poses a barrier to
small and medium sized enterprises that may wish to participate and it
biases the network toward the provision of commercial content only.

This vision was endorsed by the eduSource Steering Committee, which in turn resolved
to license all software under the Lesser GNU Public License (LGPL, 1999) and to
endorse the use of Open Digital Rights Language (Ianella, 2002) to express digital rights
in the eduSource project.

3. DRM Vision
In addition to statements about the design of eduSource as a whole, the Vision
Committee defined specific parameters for the development of eduSource Digital Rights
Management: (Downes, et.al., 2002)

Any provider of learning materials may prepare and distribute learning
materials through the eduSource repository network. eduSource will
support the registration and indexing of various providers, this registration
will be free and optional. The purpose of this principle is to ensure that
providers are not faced with a priori `membership fees' or similar tariffs in
order to gain access to potential purchasers. This does not preclude
restrictions, tariffs or controls on specific instances of an eduSource-
compliant repository. However, in any case where a restricted component,
such as a for-profit metadata repository, exists, an equivalent unrestricted
component, such as a public metadata repository, will also exist.

There will be no prior restraint imposed on the distribution model selected
by participants in eduSource. Specifically, eduSource will accommodate
free content distribution, co-op or shared content distribution, and

Proceedings of the First ODRL International Workshop

111

commercial fee-based content distribution. The purpose of this principle is
to ensure fair and open competition between different types of business
models, to ensure that users are not `locked in' to the offerings provided by
certain vendors, to provide the widest possible range of content options,
and to ensure that prices charged for learning content most accurately
reflect the true market value of that content.

Multiple parties may provide metadata describing a given learning
resource. There is no prior restraint exercised by providers of learning
materials on evaluations, appraisals, comments and other descriptions of
their learning material. The purpose of third party metadata may be to
provide alternative classification schemes, to indicate certification
compliance, or to provide independent assessments and evaluations of
learning resources. The purpose of this principle is to ensure that potential
users of learning resources can obtain and input multiple descriptions of
that material. It is also to create an environment for the creation of
optional but value-added third party services for which fees or other costs
may be charged.

eduSource should be considered as an implementation of and an extension
of the semantic web. This means that metadata and services provided by
eduSource repositories should be available to the semantic web as a
whole. It also means that eduSource repositories and tools can and should
incorporate elements of the semantic web, such as sector-specific
ontologies, into its own design. The purpose of this principle is to ensure
that eduSource is capable of the widest reach possible. It is also to reduce
the duplication of effort between developers working in specific domains
and educators working in the same domain.

The principle behind fee-based and subscription-based transactions is that
it should be easier to buy material than to steal it. Thus where possible, the
acquisition of rights and the exchange of funds will be automated. The
purpose of this principle is to reduce transaction and clearance costs for
purchasers of learning materials.

In addition, the structure of DRM within the network should be such as to
allow for multiple digital rights models. For example, it should be possible
for a government or agency to distribute free materials, for a college
association to establish a cooperative system for sharing, and for a
commercial provider to sell content on a per-view or subscription based
model. Individual learners should have the option to access and, if
necessary, purchase materials directly, or they should be able to obtain
access to materials through their school board, provincial learning
ministry, or employer.

112

Thus there is no single rights agency governing all transactions. A given
provider of learning materials will work with one of many brokers who
sell to multiple purchasers, and a given user may one of many agents who
conduct transactions with multiple vendors. Vendors and users may select
from any number of brokering services, so that no single transaction agent
controls the network. Vendors and purchasers may act as their own
brokers. A vendor or purchaser may elect to employ multiple brokers.
Brokers acting on behalf of, say, a provincial department of education,
may represent a given populations, such as the students of that province.
The purpose of this provision is to eliminate the need for the creation of
multiple accounts, to allow users to user resources from multiple vendors,
and to provide a choice of brokers, and therefore a greater likelihood of
trust.

In addition to describing digital rights on behalf of content providers, the
network should assert individual rights and preferences on behalf of users.
Users of the system own their own personal data. Brokers within the
network may operate on behalf of the user, and releases information or
money only with the agent's explicit consent. The purpose of this principle
is to engender trust in the system and to ensure privacy when dealing with
multiple agencies.

4. DRM in eduSource Use Cases
The eduSource architecture development process employed a standard methodology,
preceding from the vision document, though a set of use cases, and the creation of a UML
diagram describing the overall system. The Digital Rights Management package
participated in this part of the development.

Use cases provided by the DRM package described typical procedures whereby a person
(using IMS DRI terminology, an 'infoseeker') would search for, select, and ultimately
purchase an online learning resource through eduSource.

Proceedings of the First ODRL International Workshop

113

Figure 1. eduSource Use Case Diagram - Overview. Paquet, et.al., 2003

In figure 1, several features of the DRM system to be described below are evident.
Digital rights functionalities are provided by two major actors within the eduSource
system, the 'purchaser broker' and the 'provider broker' (sometimes documented as the
'vendor broker'). Financial transaction between the two brokers are managed by an
external payment agency, such as PayPal or a credit card transactions company. The
purchaser broker, in turn, interacts with the LO Searcher (infoseeker), while the provider
broker interacts with the provider. This process is displayed in more detail in figure 2.

114

Figure 2. eduSource Use Case Diagram - Digital Rights Management. Paquette, et.al.,
2003

As this expanded diagram shows, the provider (or 'publisher') works with the provider
broker to create or select a 'rights model'. Information about this rights model is then
embedded in learning object metadata. When a searcher retrieves the learning object
metadata, he or she may then locate the rights model, which is provided on request by the
provider broker. If specified by the rights model, a payment is made for use of the object,
via the purchaser broker, and access to the learning object is granted, which is then
returned to the infoseeker.

The process of assigning and employing rights is included in the overall eduSource
process diagram:

Proceedings of the First ODRL International Workshop

115

Figure 3. eduSource Process Model - Digital Rights Management. Paquet, et.al., 2003

The process diagram in figure 3 is more explicit about the payment and delivery
mechanism. What should be noted is that the payment is made, not directly to the
provider or even to the provider broker, but rather, to the purchaser broker. The purchaser
broker then notifies the vendor broker of the payment, which in turn returns a key that
provides access to the learning object.

5. Explanation of the Use Cases
The digital rights model proposed in the use cases introduces some major new features to
online digital rights management. First, it introduces the idea of the purchaser broker, in
addition to a vendor broker (which, under various names, may be found in other systems,
such as the Microsoft Rights Management Server). Second, instead of embedding digital
rights metadata in an object or object metadata, it stores only a pointer to that metadata.
These are depicted in figure 4.

116

Figure 4. Distributed Digital Rights Management Model. Downes, 2004

The purpose of these features is to instantiate some of the requirements set out in the
vision statement. In the vision statement, for example, it was proposed that eduSource be
designed not as a single software application, but rather, as a set of related components.
Thus, the various functions required of a digital rights system are displayed in the use
cases as separate actors. This proposal was adopted by the eduSource Vision Committee
in order to ensure that there are no sole-source components of the system. Any given
function performed by eduSource may be provided by any number of providers.

In practical terms, what this means is that, in eduSource, there is not only one vendor
broker; there can be many, each vendor broker representing one or more vendors. In a
similar manner, there is not only one purchaser broker, there may be many. This allows
both vendors and purchasers to choose the entity that will provide digital rights
management services. No vendor can lock in a purchaser to a given rights management
service, and no purchaser can require than a vendor employ a given rights management
service.

The division of the eduSource model into separate actors also allows some actors to be
bypassed if they are not needed. This performs a critical function for eduSource: it allows
for the distribution of both free and commercial content in the same system. Because the
digital rights management component, and in particular, the lock and key mechanism, is
not an essential part of any eduSource service, it can be bypassed if not needed. Thus,
even though free content is distributed through the same network as commercial content,
it is not encumbered by the needs of a locking and payment system.

Proceedings of the First ODRL International Workshop

117

The addition of a purchaser broker into the system, in addition to protecting a purchaser's
privacy and security, allows eduSource to "make it easier to buy than to steal." The price
of learning resources, and particularly small items such as images, may be very low.
Transactions involving such small amounts of money are called 'micropayments'. A
major objection to micropayments is that the effort required to make a payment is greater
than the payment is worth. There are financial transaction costs, and also what Szabi
(1996) calls "mental transaction costs," the hesitation a user experiences when deciding to
pay a minute amount for a learning resources.

Typically, the purchase of an inexpensive item occurs as a part of a purchase of a larger
item. This practice, known as 'bundling', typifies most online content sales. Corbis, for
example, sells not a single image but access to an image library. Elsevier sells access not
to a single journal article but to a journal library. However, this approach creates barriers
for both content providers and content consumers. Content providers must assemble and
market bundles of content, usually through a publisher, before they can enter the
marketplace. Moreover, free content is not bundled (since there is no need) and may be
excluded from the set of available content. And users, when accessing content through a
bundle, are able to search and use only resources provided by the vendor of a particular
bundle.

The eduSource digital rights management system addresses these problems by bundling,
not content, but financial transactions. Through the use of vendor and purchaser brokers,
many small transactions from different vendors may be lumped into a single payment. A
purchaser, therefore, may opt to use only one purchaser broker, making a single monthly
payment, and even pre-authorize transactions under a certain amount. A vendor, in turn,
may work with a single vendor broker, receiving (and managing) only a single monthly
payment, no matter how may purchasers are supplied.

118

Figure 5. Distributed Digital Rights Management Analogy. Downes, 2004

Though new to online management of digital rights, the use of vendor and purchaser
brokers is widespread in other commercial communities, as the analogy shown in figure 5
suggests. Vendors typically employ wholesalers to distribute their products. And
purchasers typically access goods from a wide variety of marketers through their local
store. It is rare, indeed, that a purchaser pays a provider directly for a good or service.

Finally, the use of a rights model, rather than an embedded description of rights, was
necessitated by the commitment to a distributed system. Once metadata is released by
content providers, it is beyond their reach. Thus, once an offer is made, through the
provision of rights metadata, it cannot be rescinded or amended. This makes it difficult
for vendors to adjust the prices of their products to react to changing consumer demand,
timeliness of the information, or changing economic needs. By maintaining the rights
metadata in a separate environment, one that is within the vendors control, the terms for
the use of an object may be changed at any time up to the point of purchase. Additionally,
the use of rights models allows one model to be applied to many objects, greatly
simplifying the creation and maintenance of rights metadata for the vendor.

6. The eduSource Architecture
In order to enable a distributed network of object repositories involving many different
search and distribution models, the eduSource architecture was designed around a set of
commonly available web services. At the heart of these services is the Edusource
Communications Layer (ECL). Instances of particular eduSource components, such as a

Proceedings of the First ODRL International Workshop

119

repository or search service, are expressed to the network as a whole through eduSource
registries. Common tasks, such as providing object identifiers, are provided by the same
means.

Figure 6. eduSource General Functional Diagram. Cogigraph Technologies, 2002

In the eduSource architecture, the digital rights management system is one of five major
software packages; the others are the ECL communications kernel, e-learning
middleware, metadata repository services, and resource management services. Since any
function from any service must be available to all eduSource instances, communication
and data transfer is handled through the use of web services. Thus the eduSource
architecture committed the digital rights management system to providing a certain set of
web services.

The eduSource architecture defines a 'broker' as "A software agent representing a person
that wants to publish a new Learning Object to a metadata repository or to modify rights
metadata of an existing LO. The Provider Broker presents a set of rights metadata models
to the Provider. Each model includes secondary metadata that specify conditions, for
example a certain form of payment that must be fulfilled in order to gain access to the
object. The Provider selects a model and fill out specific conditions that are associated by
the Provide Broker to the LO to be integrated by the Repository Builder."

120

In particular, a 'provider broker' is "A software agent representing a person that wants to
publish a new Learning Object to a metadata repository or to modify rights metadata of
an existing LO. The Provider Broker presents a set of rights metadata models to the
Provider. Each model includes secondary metadata that specify conditions, for example a
certain form of payment that must be fulfilled in order to gain access to the object. The
Provider selects a model and fill out specific conditions that are associated by the Provide
Broker to the LO to be integrated by the Repository Builder." And a 'purchaser broker' is
"A software agent acting on behalf of a person that want to buy access to an object,
obtains rights metadata and asks the purchaser (a utilizer) for payments prescribed in the
rights metadata. It sends any required payment to an External Payment System," where
an 'external payment system' is a "A computerized system that receives payment from a
infoseeker or its Purchaser Broker in a DRM system. It informs the Provider of the
learning object so that it can send a credential (a key) to the infoseeker." (Paquette, et.al.,
2003a)

7. eduSource DRM Architecture
Based on the eduSource architecture and use cases, eduSource DRM functionality was
expressed in greater detail through a set of DRM use cases. For example, figure 7
describes the requests that an LCMS must be able to make of the eduSource DRM
system.

Figure 7. Request Digital Rights Information. Babin, et.al., 2003

Use cased were incorporated into the overall architecture of the DRM system. This
architecture first captured in a sequence diagram to describe the steps of the DRM
process (figure 8). An system data flow architecture was employed to specify more
precisely the communications requirements between the various systems (figure 9). It
describes the two brokers along with the end user, learning object repository and external
broker system.

Proceedings of the First ODRL International Workshop

121

Figure 8. Digital Rights Management Sequence Diagram. Babin and Downes, 2003

122

The Sequence Diagram provides a preliminary understanding of how the digital rights
will flow within a network.

1. A Learning Resource Provider sets up an account with a Vendor System.
2. The Vendor System generates a username and a password for each Learning

Resource Provider.
3. After logging into the Vendor System, the Learning Resource Provider is

presented with an ODRL Wizard which can be used to express rights in a XML
format.

4. The generated ODRL File is stored on the Vendor Broker System and a REF# to
the record is generated.

5. Based on the requirements expressed in the ODRL file a Composite Key is
generated.

6. The REF# and in some cases a KEY are returned to the Learning Resource
Provider.

7. The Learning Resource Provider then associates the REF# to an object in a
Learning Object Repository.

8. The Learning Resource Provider also associates a KEY to an object in a Learning
Object Repository.

9. The REF# is be added to the LOM Metadata and the LOM is be stored in the
Learning Object Repository.

10. The metadata containing the REF# is harvested by some harvesters.
11. The harvester stores the metadata containing a pointer to the ODRL file in its

database.
12. An object consumer searches for Learning Objects via a search agent.
13. The search results contain MetaData, of which one element is a pointer to the

ODRL file
14. In some cases the Learning Object Consumer or his client software requests the

Digital Rights information .
15. The Vendor Broker System sends out the ODRL file for reading.
16. If a key is required (that is, there is some cost or condition of access expressed in

the ODRL) the Learning Object Consumer asks the Purchaser broker for a key.
17. The Purchaser Broker asks the vendor broker for the purchasing information and

compares this to the consumer's profile file.
18. The Purchaser Broker receives the information and acts accordingly, either acting

automatically or requesting confirmation from the consumer.
19. If necessary money will be requested from an external payment system.
20. The Purchaser Broker receives the money. Because of the small amounts the

Purchaser Broker may deduct from an account rather than conducting a
transaction with an external system every time a learning object is requested.

21. The Purchaser Broker then contacts the Vendor Broker System to buy the key.
22. The Vendor Broker request permission to withdraw from the purchaser broker's

account.
23. The Vendor Broker receives OK to withdraw
24. The Vendor Broker requests money from external system. Again this may be

done on an account basis if transaction costs exceed object costs.

Proceedings of the First ODRL International Workshop

123

25. The Vendor Broker receives money from the external system.
26. The Vendor Broker sends the key to the Purchaser Broker.
27. The key is forwarded to the object consumer (the one who did the search)
28. The object consumer presents a request for an object + the proper key to the LOR
29. The LOR validates the key and returns the object

Figure 9. System Data Flow Architecture Diagram. Babin and Downes, 2003

The DRM System works in conjunction with other Systems such Search Agents, LORs,
Harvesters, External Payment Systems. Keep in mind that this system is designed for a
near future where there will be many low cost or free objects available with most
transactions happening transparently at a machine level. A learning resource provider
(LRP) wishing to sell objects (LO) sets up an account on the Vendor System. The
Learning Resource Provider uses a wizard to create an ODRL XML rights description
file which is going to be stored on the Vendor System. The ODRL file is parsed and a
key token is created for every ODRL item requiring a key. The key tokens are aggregated
into a composite key. The ODRL file and key are stored the Vendor System Database
generating a REF# id. The Learning Resource Provider receives the REF# and the
Composite Key.

To transform a LO into a Rights Enabled Learning Object (RELO) the Learning
Resource Provider will associate the REF#/Composite Key to one or more of the

124

Learning Object Repository (LOR) Learning Objects. The Harvester plays an important
role in this model. As LOR get harvested the REF# become visible to end users thereby
making it possible to access the ODRL files from the Vendor Broker System. A Rights
Enabled Learning Object Repository (RELO) will be able to process keys and release
info upon presentation of a proper key. The REF# will be exposed to harvesters but the
composite key will not.

8. Provider Broker Web Interface
The Provider Broker providers a web interface where resource vendors may manage their
account. The Provider Broker demonstration is available at
http://drm.elg.ca/ProviderBrokerSystem/ProviderBrokerSystemLRP

The following figures demonstrate Provider Broker functionality. Figure 10 displays the
account management screen and the list of functions available in the eduSource Provider
Broker: Manage Account, ODRL Wizard, Manage ODRL Files, Search Report, Manage
Purchasing Agent Accounts, Manage Provider Accounts, Invoices, and Monthly
Cheques.

Figure 10. eduSource Provider Broker Manage Accounts.

In order to create an ODRL model, a provider accesses the ODRL wizard. This program
is available at http://drm.elg.ca/english/ODRLGenerator

Proceedings of the First ODRL International Workshop

125

The ODRL wizard allows the user to create a rights model automatically, by selecting
one of several preset options, as demonstrated in Figure 11.

Figure 11. eduSource Provider Broker ODRL Wizard Preset Options.

Additionally, the wizard allows a vendor to customize the present options or generate a
new offer or agreement from scratch by selecting from the web based form. A partial
screen shot is shown in figure 12.

Figure 12. eduSource Provider Broker ODRL Wizard Modify Options.

When the user desires, the Wizard generates ODRL for the current set of options. This
XML listing may then be edited at the source level, if desired (note: this is generally not
recommended). The output display is demonstrated in figure 13.

126

Figure 13. eduSource Provider Broker ODRL Wizard Generated ODRL Markup.

When the ODRL XML listing has been generated, the vendor may now save the file as an
ODRL model by giving the file a name and selecting key options. The model may also be
displayed in human readable form (English, French and Spanish output is currently
supported). Figure 14 demonstrates the creation of an ODRL model. Subsequent to
creation, a vendor may edit an ODRL file by selecting the rights model from a list
provided on the 'Manage ODRL Files' screen. A sample ODRL file generated by the
system may be found at http://drm.elg.ca/GetODRL?id=38

Figure 14. eduSource Provider Broker ODRL Wizard Create ODRL Model.

9. Provider Broker - Tagger Interaction
A 'tagger' is a tool used by learning object authors to create metadata for a learning
object. It may be a stand-along tool, or it may be incorporated as a part of a more
comprehensive authoring tool. The eduSource Repository in a Box includes a tagger as
part of the software set available to users.

Proceedings of the First ODRL International Workshop

127

Once a vendor has created an account with a Provider Broker, the functionality of the
Provider Broker may be accessed from within the tagging tool through the use of web
services. Figure 15 is a mock-up of what such an interface would look like. The list of
ODRL Models available is shown in the drop-down. The tagger obtains this list from the
Provider Broker using a web service.

Figure 15. eduSource Provider Broker Tagger Interface.

When the rights model is selected, a second web service is called by the tagger, and the
Provider Broker returns the address of the ODRL model. The tagger then inserts this
address into the rights description field of the Learning Object Metadata (or the
appropriate field if a different XML format is being used). The resulting rights XML is as
follows:

<lom>
 ...
 <rights>
 <cost>Yes</cost>
 <copyrightAndOtherRestrictions>Yes</copyrightAndOtherRestrictions>
 <description>http://drm.elg.ca/GetODRL?id=38</description>
 </rights>
 ...
</lom>

Figure 16. ODRL Model Reference in Learning Object Metadata.

10. Purchaser Broker

128

As described above, a purchaser broker acts as an agent for a content purchaser (or
'infoseeker'). To use the Purchaser Broker, the infoseeker creates a purchaser broker
account. Included as part of the account, as depicted in Figure 17, are conditions for pre-
authorized purchases. As noted, the creation of pre-authorized purchases eliminates the
mental transaction costs associated with micropayments.

Figure 17. eduSource Purchaser Broker Manage Account.

Though services offered from one Purchaser Broker to the next may vary, the idea is that
a purchaser may employ any number of payment methods, including monthly invoice,
addition to an Internet Service Provider billing, credit card payment, or online payment
service such as PayPal. Figure 18 displays this selection in the Purchaser Broker Account
Manager.

Proceedings of the First ODRL International Workshop

129

Figure 18. eduSource Purchaser Broker Manage Account.

11. Learning Object Browser
To demonstrate the functionality of the eduSource DRM system, a learning object
browser (LOB) has been created. The LOB conducts a search across the eduSource
network and displays the search results. http://drm.elg.ca/ObjectBrowser/ObjectBrowser

The LOB provides a user with access to Purchaser Broker functions. Figure 19 displays
the LOB search form, with a choice of Purchaser Brokers displayed (recall that a user
may opt to use one or more purchaser brokers). By selecting a purchaser broker, the user
determines which of these services will conduct transactions on his or her behalf.

130

Figure 19. Learning Object Browser Purchaser Broker Select.

12. LOB - Vendor Broker Interaction
When search results are returned and displayed to an infoseeker, client software should
also retrieve rights information automatically (using the URL located in of the metadata
to retrieve the ODRL rights file from the rights broker). Displays may vary, of course, but
an infoseeker would not typically click 'rights' -- they would select an action (view, print,
etc). *If* rights clearance is required in order to perform the action, then the rights
subroutines take effect; if no rights clearance is required, then the action simply happens.

For example, a person types in a search request that is sent to eduSource: 'Roman History'
eduSource returns a set of LOM records. In each LOM record is a reference to an ODRL
file. The person's client requests each ODRL file. This information is now displayed
together.

For example, imagine the possible set of search results:

History of the Roman Empire
Fred's Roman History $
New Edited Roman History
All the Romans in the World $$

Proceedings of the First ODRL International Workshop

131

No Romans No More $
Rome Are Us

We can see from this display that some resources have a cost, and others are free. You do
not need to click on anything to see this.

If a person clicks on the title of a free resource, it simply displays (that is, a request is
sent directly to the provider's learning object repository, the resource is returned, and then
displayed to the viewer).

If a person clicks on the title of a pay resource (indicated with $), then the request is sent
instead to the purchaser broker. The purchaser broker retrieves the ODRL file from the
vendor. In some cases, the payment is preapproved, so it simply conducts the transaction
and sends a key to the users client, which then presents the key along with the request to
the provider's learning object repository. In other cases, it must ask the user to select from
a set of one or more options (offers) to approve (or reject) payment. If payment is
rejected, the transaction terminates. If payment is made, then the transaction is conducted,
a key obtained, and sent to the client program, which makes the request from the learning
object repository.

We do not display ODRL information (except in rare cases). We use ODRL information
to make decisions.

13. DRM Security Model
Digital rights management has three major aspects:

• Expression — the description of the resource, ownership of the resource, and the
terms and conditions of use

• Authentication — verification that the person using the resource has the right to
use the resource, and

• Protection — means, such as encryption, to ensure only authorized users have
access

In addition, DRM may be applied in any of three domains:

• Resource — a particular document or digital resource — for example, a document
may be locked or encrypted

• Access Point — a content server, such as a website — for example, a website may
require a login

• Network — the connections between servers — for example, ATM network

This creates a DRM design decision metric, as displayed in figure 20.

132

Figure 20. DRM Design Decision Metric.

In the decision metric, it is possible to identify increasing degrees of security, as
demonstrated in Figure 21.

Figure 21. DRM Degrees of Security.

We may therefore distinguish between: weak DRM, where expression is in the resource
only, there is no authentication and no protection, as in a web page with a copyright
notice, book with a copyright page, property with a ?keep out? sign; and strong DRM,

Proceedings of the First ODRL International Workshop

133

where expression is in the resource, access point, or network, authentication is in the
network using a single login, and protection is network wide, as in the ATM Bank
Machine system requires that you provide credentials to use the system, and encrypts all
data and communication.

In the debates regarding DRM, two major positions have evolved, corresponding to these
degrees of security:

1. DRM is too weak: in networks like the web and Napster, expression alone is
insufficient to ensure that rights are respected

2. DRM is too strong: proposed DRM systems require a unique userid (eg., MS
Passport) and fully secured network (eg., Rights management server, “trusted”
applications), violate privacy, fair use

The DRM mechanism proposed by eduSource DRM is a 'middle way' between these two
extremes. Expression is supported at the network level through the use of a rights
expression language (and specifically, ODRL). Authentication is supported at the access
level through the use of keys. And protection is supported at the document level with
locks or encryption.

Criticism regarding the proposed system has, not surprisingly, originated from both
extremes. From one point of view, the eduSource DRM system is too strong. Advocates
of open content, for example, fear any DRM system will prevent people from freely
sharing content. However, it is arguable weak enough. In order to use free resources,
rights must be declared, and any further level of authentication and protection is at the
discretion of the resource owner. On the other hand, others have argued that the
eduSource DRM system is too weak. Commercial providers, for example, want stronger
protection, such as authentication at the network level, to prevent file sharing. But in
response, it may be argued that it’s strong enough. A key system makes it difficult to
obtain unauthorized access to content, but leaves it easier to buy content than to steal it.

Critics of eduSource DRM must ask themselves, "What causes file sharing?" There are
two answers. When DRM is too weak, there is no incentive to go through the extra work
and cost to pay for content; commercial content is not viable. But when DRM is too
strong, free content is not viable, and the transaction cost is too high, so it is easier to
look elsewhere for the same content.

References
Babin, et.al., 2003. EduSource DRM Statement of Requirement. Version 2.0 Final.
Gilbert Babin, Stephen Downes and Luc Belliveau. May 25, 2003. eduSource,
http://www.edusource.ca

Cogigraph Technologies, 2002. Software Development and Integration Work Package
Plan. Version 0.3. eduSource. http://www.edusource.ca

134

Downes, et.al., 2002. EduSource Vision. Version 3. Stephen Downes, Toni Roberts, Rory
McGreal, Norm Friesen, John King, Terry Anderson, Michael Magee, Mike Mattson,
Gilbert Paquette, Griff Richards. eduSource. http://www.downes.ca/files/vision3.doc

Downes, 2004. Distributed Digital Rights Management. Presentation to TeleEducation
Online Forum, January 27, 2004. Power Point Slides.
http://www.downes.ca/files/ddrm.ppt

Ianella, 2002. Open Digital Rights Language (ODRL) Version 1.1 W3C Note 19
September 2002. Renato Ianella. http://www.w3.org/TR/odrl/

LGPL, 1999. GNU Lesser General Public License. Version 2.1, February 1999. Free
Software Foundation, Inc. http://www.gnu.org/copyleft/lesser.html

McGreal, et.al., 2003. eduSource: Creating learning object repositories in Canada. Rory
McGreal, Griff Richards, Norm Friesen, Gilbert Paquette and Stephen Downes. Learning
Technology, Volume 5, Issue 1. IEEE Computer Society Learning Technology Task
Force. http://lttf.ieee.org/learn_tech/issues/january2003/#1

Paquette, et.al., 2003. eduSource Suite of Tools Use Cases Specifications Version 0.6.
Gilbert Paquette, Anis Masmoudi, Gérard Lévy, Terry Anderson, Chris Hubrick, Stephen
Downes, Gilbert Babin, Mike Matson, Marek Hatala and Griff Richards. June 7, 2003.
eduSource. http://www.edusource.ca

Paquette, et.al., 2003. eduSource Suite of Tools Glossary of Terms Version 1.0. Gilbert
Paquette, Karin Lundgren-Cayrol, Gérard Levy and Stephen Downes. eduSource.
September 29, 2003. http://www.edusoruce.ca

Szabo, 1996. The Mental Accounting Barrier to Micropayments. Unpublished.
http://szabo.best.vwh.net/micropayments.html

Proceedings of the First ODRL International Workshop

135

136

Towards a Formal Semantics for ODRL

(Extended Abstract)

Markus Holzer, Stefan Katzenbeisser, Christian Schallhart

Institut für Informatik
Technische Universität München

Boltzmannstrasse 3
D–85748 Garching

{holzer,katzenbe,schallha}@in.tum.de
April 17, 2004

Abstract

We give a brief overview of a new way to model the semantics of ODRL
permissions in a formal manner by using finite-automata like struc-
tures. The constructed automata capture the sequence of actions that
a user is allowed to perform according to a specific permission. In con-
trast to previous approaches, our semantics is able to model sell and
lend permissions.

1 Introduction

With the increasing availability and distribution of media in digital form,
the protection of intellectual property faces new challenges. Popular file
formats (like MPEG and MP3) facilitate the exchange of digital videos or
sound clips, books are published electronically and films are distributed on
DVDs. The possibility to easily and cheaply reproduce digital content with-
out permission has raised the concern of the music, film and entertainment
industries. Although classical analogue storage media (like VHS video or
audio cassettes) can also be copied, the inevitable quality loss present in
all analogue copies naturally limits the illegal distribution of copyrighted
content. In the digital age, however, thousands of lossless copies can be
produced easily and distributed over public networks.

In the past few years various techniques for preventing copying or re-
stricting the access to copyrighted material (called copy protection mecha-
nisms) were implemented. Examples of copy protection include encrypted

Proceedings of the First ODRL International Workshop

137

digital TV broadcast (conditional access systems), access controls to copy-
righted software through the use of license servers and technical copy protec-
tion mechanisms on the media (like the content management mechanism on
DVDs). A copy protection scheme is a special flavor of a digital rights man-
agement system, which attempts to enable secure distribution of copyrighted
content via open networks.

An integral part of a DRM system is a contract between the parties
involved. This contract may (among other things) describe the permissions
granted on an object distributed over a network, together with constraints
and requirements to be met before the permission can be executed. For
example, a typical constraint limits the number of times an object can be
displayed or printed. A requirement may express that a certain fee has to be
paid before executing the permission. Rights expression languages, such as
ODRL [2] and XrML [5], allow to express such contracts in a formal manner.
In this paper we deal with ODRL, but the construction is applicable to a
large class of rights expression languages. Currently, the semantics of ODRL
is described in the specification as English language text, whereas the syntax
is expressed in XML. Unfortunately, the lack of a precisely defined formal
semantics results in possible ambiguities. For example, ODRL allows a
copyright holder to lend an object to another user; however, the specification
does not precisely describe the the act of lending (and later returning) an
object. Ambiguities can only be avoided if there exists a formal semantics
for ODRL, specifying in an exact way the operations that are allowed by
the contract.

This year, Pucella and Weissman [3, 4] presented a semantics for a frag-
ment of ODRL (specifying agreements between two or more parties about
one fixed object) based on many-sorted first order logic with equality. In
this paper, we follow an alternative approach. More precisely, we give a
semantics that models the actions that are allowed according to a contract;
technically, this model is given in terms of automata. Each trace through
the automaton describes a valid sequence of actions for one participant.
Our model also enables to express sell and lend actions, where the object
is transfered to different users. In Section 2 we introduce the fragment of
ODRL that we are attempting to model in our semantics. Section 3 gives
an informal overview of the model we propose for the semantics of ODRL.
Finally, we present future research topics in Section 4.

2 A fragment of ODRL

ODRL is an extremely rich language that contains many different opera-
tions, requirements and constraints. For the sake of simplicity, we deal only
with a fragment of ODRL in this paper. In fact, we are merely concerned
with modeling offers that are not bound to a particular person. However,

138

extensions of our model to the complete ODRL language (except descriptive
elements like the ODRL context, which have no operational semantics) are
possible.

In this work, we concentrate on the following permissions:

• play, print, display, execute. If no constraints are specified, a play,
print, or display permission enables a party to play, print or display
an object an arbitrary number of times. Similarly, execute allows an
executable file to be processed on a computer.

• sell, give. Here, one party is allowed to transfer all rights over an
object to a different party (either with or without paying a fee).

• lend, lease. Here, one party transfers for a certain period of time
all rights over an object to a different party (either with or without
paying a fee). After the specified time period, the object is returned
to the original person.

In addition, we allow the following constraints that restrict the rights
listed above:

• user. A right is bound to a specific user.

• device. A right can only be executed on a specific output device.

• bound. A right can be executed a maximum number of times.

• transfer. The transfer constraints specifies the permissions that are
associated to an object after it is transferred with the sell, give, lend
or lease action. By default, no permission is granted on the transferred
object unless it is stated in a transfer constraint.

• temporal. A right is constrained to a specific time period.

From the list of ODRL requirements, we only consider payment; a per-
mission that has an associated payment requirement can only be executed
if a certain fee is paid in advance. Again, our model can be extended to
cover other requirements as specified in the ODRL language definition.

For more information on the syntax of ODRL, we refer to [2]. As XML
documents are hard to parse for humans, we deviate from the official ODRL
syntax and present all examples in this paper in a more “human-readable”
format.

In the rest of this work, we consider the following offers:

Proceedings of the First ODRL International Workshop

139

Example 1 A user is granted a print and display permission; no constraints
are imposed on the number of times these actions may be performed.

<offer>
...
<permission>

<display/>
<print/>

</permission>
</offer>

Example 2 A user is allowed to display an object at most three times.

<offer>
...
<permission>

<display>
<constraint>

<count>3</count>
</constraint>

</display>
</permission>

</offer>

Example 3 A user is allowed to display an object at most two times in the
(fictive) time interval 2–5.

<offer>
...
<permission>

<display>
<constraint>

<interval>2-5</interval>
<constraint>
<count>2</count>

</constraint>
</constraint>

</display>
</permission>

</offer>

Example 4 A user is allowed to display and print the object; furthermore,
he can sell it to a different user in such a way that the recipient is able to
print and display the object.

140

<offer>
...
<permission>

<display>
<print>
<sell>
<constraint>
<transferPerm>

<display>
<print>

</transferPerm>
</constraint>

</sell>
</permission>

</offer>

Example 5 A user is allowed to display and print the object; furthermore,
he can lend it to a different user in such a way that the recipient is able to
print and display the object. The ODRL code is similar to the code above,
except that <sell> is replaced by <lend>. In addition, a temporal constraint
describes the time period for the lending process.

Example 6 A user is allowed to display and print the object; furthermore,
he can sell it to a different user, who has the same permissions (i.e., display,
print and sell).

<offer>
...
<permission id="perm">

<display/>
<print/>
<sell>
<constraint>
<transferPerm

downStream="equal"
idref="perm">

</constraint>
</sell>

</permission>
</offer>

Example 7 A user is allowed to display and print the object; furthermore,
he can lend it to a different user, who has the same permissions (i.e., display,
print and lend).

Proceedings of the First ODRL International Workshop

141

3 A Semantics based on Automata

As said previously, we model the semantics of an ODRL contract in terms
of an automaton. First we outline the construction for ODRL expressions
that do not contain sell and lend permission; an extension that handles
these permissions will be given in Sections 3.1 and 3.2.

The states of the automaton implicitly code the “state” of the license, i.e.,
which actions are allowed at which point in time, considering the actions that
have occurred “in the past”; each edge of the automaton specifies an action
that can be performed at a specific license state, according to a contract.
In addition, there is a special null-action, called τ , which is applicable in
(almost) each state. We make the simplifying assumption that each party
can only perform one action at a time, where all actions of the party are
atomic and take a fixed amount of time (a tick). By this convention, the τ
action specifies a tick in which no action is performed by the user.

To illustrate this concept, consider Example 1; based on the above men-
tioned model, we can model its semantics as:

τ,print,display

Here, the automaton has only one state and a self-loop. Printing and dis-
playing the document once does not affect the state of the license; therefore,
we only need one automaton state to code the permission. It is thus al-
lowed to print and display an object an arbitrary number of times (by our
convention, we also allow the null operation τ).

Formally, the actions that are allowed by an automaton (i.e., its “com-
putation”) is defined in terms of a labeling function f that assigns each
state s ∈ S of the automaton a finite set of integers, f : S �→ 2N. For the
moment, assume that each state of the automaton is labeled either with the
set ∅ or the set {1}; only the modeling of lend permissions will require more
complex labels. The state that is labeled with a nonempty set is called the
active state. Intuitively, the numbers in the labels represent a person. At a
specific point in time, a person can only perform the actions that are rep-
resented as transitions from an active state that contains its identity (i.e.,
number) in the label. The construction of the automaton will assure that
all labels are mutually disjoint sets.

The labeling function changes with each tick. Initially, only the ini-
tial state of the automaton is labeled with {1}, each other state with ∅.
Whenever the user (encoded with the symbol “1”) performs an action, the

142

labeling function changes. In particular, the label {1} is erased from the
currently active state (it is replaced by ∅) and applied to the state that can
be reached by the edge representing the action. This way we get, for each
possible sequence of transitions, an infinite sequence of labeling functions
f1, f2, . . . representing the “status” of the license at each point in time.

Requirements and some of the constraints are modeled as labels that
are associated to edges; such an edge can only be taken if the annotated
constraint or requirement is fulfilled. For example, if we augment Example
1 with a payment requirement, we get the following automaton:

τ,print,display [payment]

Let us turn to example 2; here, the automaton is more complex, as it
requires to count the number of times an object was displayed “in the past.”
This can be done by using four different states:

τ τ τ

τ

display display

display

Here, the second state can only be reached from the initial state by a display
action. It is easy to see that from this state each (infinite) sequence of actions
that is allowed by the automaton contains at most two other display actions,
which shows that each path through the automaton contains at most three
display actions. Note that the license also allows users not to make use of
their display rights at all; this is modeled by the self loop in the initial state.

Modeling of time constraints may require to introduce a large number of
different states; for example, the following automaton represents Example 3;
for space reasons we abbreviate display by d:

Proceedings of the First ODRL International Workshop

143

τ

τ τ τ,d

d
τ

d

τ

τ

d

τ,d

Here, the number of states increases dramatically, as it is necessary to count
both the elapsed time as well as the number of times the object was dis-
played. Again, it is easy to see that the number of display actions on each
path throughout the automaton is at most two, as required by the license.

3.1 Extending the model to support SELL and GIVE

So far, we only had to consider one person that is active in the automaton.
This changes if we model the sell and give permissions. Once a person
(say, 1) performs a sell action, this person loses all rights on the object; the
rights are transferred to a new person (say, 2). Once person 1 performed
the sell action, he cannot perform any more actions and is removed from
further considerations. In the automaton, both the sell and give actions
are modeled by two dashed transitions, connected with a trigger:

s0 s2

s1

sell

Consider the last figure. The trigger and the dashed transitions have the
following intuitive meaning: Suppose that state s0 is labeled with {1}, i.e.,
person 1 is active. If person 1 performs a sell action, the label {1} disappears

144

in the next tick and is replaced with ∅ (you can think of 1 moving into the
dead-end state s1, where he is removed, yielding to label ∅ for s1). In the
same tick, a different person (say, 2) appears in state s2, yielding to the
label {2} for s2. That is, dashed transitions triggered by other transitions
introduce a new person, whereas dashed transitions that are not triggered
remove a person.

Using this convention, we can model Example 4 as:

τ,print,display τ,print,display

sell

Here, we have a self-loop in the initial state, as the user 1 is allowed to print
and display the object an arbitrary number of times. Once he chooses the
sell action, the user 1 disappears and the triggered transition introduces a
new person (2) in the state on the right. This new user can print and display
the object, but is not allowed to sell it a second time.

Example 6 differs from Example 4 in the way that the sell action may
be performed an arbitrary number of times. That is, person 1 can sell the
object to person 2, who in turn can sell it to 3, etc. This situation can be
modeled by a second self-loop in the initial state that is triggered by the
sell transition:

τ,print,display

sell

Note that, up to now, the labels of each state contain at most the identity
of one person.

Proceedings of the First ODRL International Workshop

145

3.2 Extending the model to support LEND and LEASE

It turns out that the lend and lease permissions are more complex to handle
semantically; in our semantics, both lend and lease are modeled in the same
manner. In contrast to sell, where the identity of a person is removed from
the labels after a sell action has occurred, this cannot be done in case of
lend or sell, as the person can perform other actions after the object is
returned.

We model this situation with two triggers:

s0 s1

s2 s3

s4

τ

release

lend

Suppose person 1 is in state s0 (i.e., s0 is labeled with {1}) and performs
a lend action; now, 1 moves into state s2, where it loops without action (note
that there is only the null action that can be performed by 1) until the object
is returned. The lend action triggers a dashed transition, indicating that
a new person (say, 2) is created, whose identity is placed in state s1 (now,
state s1 is labeled with {2}). This new person can use the object until it
gives it back to the original user; in the automaton, we model this action
by the operation release. Once person 2 returns the object, its identity is
destroyed, as indicated by the dashed transition between states s1 and s4.
The release action triggers a transition that “frees” person 1 from state s1

(the identity of 1 moves to a different state, in this case s3).
Using this convention, we can model Example 5 in the following manner:

τ,print,display τ

τ,print,display

lend

146

In fact, this is only half of the truth, since arbitrarily long chains of lend
actions cannot be modeled this way. Consider the following example: person
1 lends an object to person 2, who in turn lends it to person 3, etc. Now, as
the object must be returned to the person that initiated the lend operation,
3 must return it to 2 who can eventually give the object back to 1. If there
is no upper bound on the lend operations, it is not possible to model this
behavior by finite automata (intuitively, we had to construct an automaton
that accepts the word wwR, where wR denotes the mirror image of w, which
is impossible). In order to overcome this situation, we propose to introduce
a pushdown (stack) that controls the update of the labeling function when
the object is returned. Returning to the above example, when person 1 lends
the object to 2, the number 1 is stored (with some appropriate additional
information) on the pushdown; the same is done if 2 lends to 3. When 3
gives the object back, the top element of the pushdown holds the necessary
information for the user 2 to be activated. This topic is subject of current
research.

4 Conclusion

We have shown in this paper that finite-automaton like structures are a
promising tool to formally define the semantics of rights expression lan-
guages. We have seen that most ODRL expressions can intuitively be mod-
eled as automata. However, the lend permission turns out to be the most
complex operation in ODRL; to model infinite chains of model operations,
one has to go beyond finite automata.

We believe that the automata resulting out of our construction can be
used to intuitively visualize the meaning of an ODRL expression. In addi-
tion, once automata can be constructed automatically from ODRL expres-
sions, it becomes possible to verify properties of the ODRL contract by logics
like CTL or LTL that are commonly used in current verification software
[1].

References

[1] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.

[2] R. Ianello, Open Digital Rights Language (ODRL), Specification, Ver-
sion 1.1, available at www.odrl.net, 2002.

[3] R. Pucella and V. Weissman, “A Logic For Reasoning about Digital
Rights”, Proceedings of the Computer Security Foundations Work-
shop, 2002.

Proceedings of the First ODRL International Workshop

147

[4] R. Pucella, V. Weissman, “A Formal Foundation for ODRL”, in Work-
shop on Issues in the Theory of Security (WITS), 2004.

[5] eXtensible rights Markup Language (XrML) 2.0, Specification, avail-
able at www.xrml.org, 2001.

148

Proceedings of the First ODRL International Workshop

149

150

Nonius: Implementing a DRM Extension to an XML Browser

Olli Pitkänen∗, Ville Saarinen, Jari Anttila, Petri Lauronen, Mikko Välimäki

Helsinki Institute for Information Technology HIIT
P.O. Box 9800, 02015 HUT, Finland

http://www.hiit.fi/

∗ e-mail: olli.pitkanen@hiit.fi

Abstract

The paper describes experiences, ideas, and problems that were discovered while developing a digital rights
management (DRM) extension to an XML browser. The supported rights description language is ODRL. The
most significant implemented features are restrictions related to an individual, time, and usage-counts. On the
other hand, some interesting features were intentionally left out. They include for example, aspect and target
constraints as well as many security features. The most difficult tasks in implementing a DRM system are related
to security and parsers. A secure DRM system requires the support of hardware devices. A DRM document
parser depends profoundly on a flexible software architecture. Merging certificates and implementing an
interface for creating certificates are also demanding. The three most challenging features in ODRL specification
are logical operators, documents’ internal links to its elements, and the requirement that child elements may
depend on ancestor elements’ children. General technical problems that are discussed in the article, but largely
left unanswered, include how we can make secure software in open source model, on which layer DRM should
be supported, and how secure the system should be.

Keywords

Digital rights management (DRM), open source implementation, XML browser, rights description languages,
Open Digital Rights Language (ODRL)

1 Introduction

1.1 Background

The concept of digital rights management (DRM) is very timely, but also ambiguous. It is a kind of buzz word
and often includes a lot of hype. It can refer to rather broad set of actions, procedures, policies, product
properties, and tools that an entity uses to manage its rights in digital information. Actually, the term “digital
rights management” is somewhat misleading. Rights are not digital. In general, they do not have much to do with
digits, but they are rather analog. The word “digital” refers supposedly to the subject matter, to information in
digital form, not to rights in that information. It is also possible to think that the word “digital” refers to the fact
that digital information technology is often used to manage the rights. Yet, DRM does not refer to computer-
aided rights management in general. [10], [16]

In this article, DRM is used in a quite narrow sense. It refers to technologies that control copyright in
information products in a digital environment. It usually requires that the content is encrypted and can be safely
distributed. Decrypting and using the product, then again, is allowed only if the user has a suitable certificate for
the product. The certificate gives the right to use the content. It can include various restrictions. DRM enables
new ways to publish information. For example, a user can buy instances of use or a limited usage-time for a
product. In general, such restrictions are not feasible in the material world.

Proceedings of the First ODRL International Workshop

151

Helsinki Institute for Information Technology (HIIT) had MobileIPR research project that studies problems
related to the rights management of information products on the mobile Internet from legal, technical and
economic perspectives. The project started in 2000 and ended in the beginning of 2004. [16]

In connection with MobileIPR, a student group called Nonius made a DRM extension to X-Smiles XML-
browser. This article contains some ideas and describes experiences and difficult areas that appeared in the
Nonius-project. Of the article’s authors, Olli Pitkänen is the project manager of MobileIPR and he supervised
Nonius team with help of his colleague Mikko Välimäki. Ville Saarinen, Jari Anttila, and Petri Lauronen were
members of Nonius team – the other members were Jani Poikela, Kalle Anttila, Arto Jalkanen, and Jarno
Salimäki. The students accomplished the project as a part of T-76.115 Software Project class at Helsinki
University of Technology. [14]

1.2 Digital Rights Management Systems

The intention of a DRM system, as defined above, is to protect digital content so that it cannot be used without a
valid certificate. It separates information from the right to access it. The certificate can be sent to the users either
in connection with the content or separately.

This kind of a DRM system requires strong encryption. The certificate includes a secret key needed to decrypt
the content data. The encryption algorithm must be strong enough so that it is not broken easily. The data
encryption, however, is not the weakest link of a certificate-based DRM system. The problem is that in order to
be viewed, the encrypted data has to be decrypted by the legitimate customer. In an open environment, like a
standard personal computer, users are able to do anything they wish with the decrypted data, including copying
and further distributing it. This problem must be dealt with by applying regulations in either software or
hardware. [18]

The easiest way to control the copying of decrypted data is to make a special browser or player for the content,
so that it will decrypt and play the data on an analog device like a monitor or a loudspeaker system, but it will
not output the decrypted data in a digital form. Analog outputs are not that big a problem, since analog copy is
never the same quality as the original, unlike the perfect digital copies. The special software browser is currently
the most commonly used DRM implementation. [4], [13]

Software regulations are usually easy to circumvent. By special debugger and disassembler software, crackers
can monitor the execution of a program and get their hands on the decrypted content. A hardware
implementation of the copy prevention mechanism is a lot harder to break. A special hardware device that
decrypts the data and gives it out only through an analog output is very hard to break since the decrypted digital
content exists only inside the device.

A hardware copy prevention system does not necessary have to be a separate player device. Some computer
industry companies, like Intel and IBM, have made a proposal to include special digital rights management
schemes in computer hard drives and operating systems that would make it possible to mark a file as
copyrighted, and all copy operations for the file would then be denied by the operating system. This proposal is
known as Content Protection for Recordable Media (CPRM). This kind of arrangement is problematic since all
hard drive manufacturers and all operating system manufacturers would have to co-operate in order to effectively
force the restrictions. Making all major manufacturers work together is a task close to impossible, especially
since it would require a lot of new technology to be developed and the hardware manufacturers do not really
have much to gain in the decreased piracy problem. Open-source operating systems are also a problem. If the
users have the source code, they can modify it and bypass the restrictions. [5]

There is also a proposal for applying the digital rights management scheme closer to the user, in the output
devices which make the actual conversion of digital data to some analog signal like sound or picture (monitors,
loudspeakers, and other similar devices). Since the encrypted content data would be decrypted for example
inside a monitor, there is no way a user could get his hands on the decrypted data with software. Only minimum
co-operation would be required from the operating system, but there are still some disadvantages. If the content
data is in encrypted form all the way to the output device, only an output device that supports the technology can
show it. This would require all end-users to update their hardware, which is not an easy process. The new
hardware will be a noteworthy cost to customers, and a lot of opposition would be encountered. Even at best, it
will take years before a significant number of potential buyers have the hardware needed to use the protected
content.

 152

The digital rights management for output devices can also be done in a more backwards-compatible way. The
data itself does not have to be encrypted, the content producer only needs to mark it copyrighted through a
watermarking scheme like the SDMI (Secure Digital Music Initiative) watermarking. All compliant output
devices would then detect the watermark and apply whatever restrictions the content producer wants for the use
of the material. Using this kind of approach, people would still be able to view the content without authorization
using old output devices, but since any digital device gets old pretty quick the older devices would be pretty
much history in five or ten years after all new devices started to include the required restrictions. The problem is
that all new devices would have to include the digital rights management features in order to make them actually
work, and it is not easy to include a restriction in all output devices by different manufacturers. There is certainly
consumer demand for a player without the restrictions. So unless it is illegal, some manufacturer will surely
create a player without the limits and make good profits.

Creating a completely unbreakable copy prevention system is impossible. The user, or at least some component
in the user’s hardware, must have a proper key to decrypt the digital content in order to actually view it. And if
digital data can be read and viewed, it can also be copied. If the security measures are done in software, it is easy
for an experienced hacker to break the software and get the decrypted content data. And even if the security
measures are done by hardware, some hacker or a professional pirate will have enough resources to analyze how
the hardware works and modify it to bypass the security measures. But the professional pirates are not such a big
problem as long as the average user pays for the product.

Besides making copying harder, a good DRM system has also other functions that create possibilities for
completely new business models. For example, a DRM certificate may limit the user’s right to view the
document so that he can only view it one or two times. This is very practical for giving out free samples of the
product – user can see what the content is like but if he wants to continue using it he has to buy a new certificate.
Other limitations that are good for free samples are limited period of time (for example the product can only be
accessed during May 2004) or limited cumulative usage time (the user can view the content for one hour). The
DRM system may also limit the usage by user, hardware, physical location or many other rules. [4], [13]

1.3 Rights Description Languages

The technical implementation of a DRM system requires a language to describe the rights granted to users. There
are many competing rights description language standards. We selected three of them for a closer look: XMCL
(eXtensible Media Commerce Language) [21], XrML (eXtensible rights Markup Language) [23], and ODRL
(Open Digital Rights Language) [9].

All the candidates had enough expressive power for our needs and they all have numerous supporters in the
technology and content producing industry. However, the industry support was not essential for us since we were
not developing a commercial product, but had a more academic perspective to the problem. We decided to use
ODRL, mainly because it is an open standard and therefore more flexible than the other candidates. The current
version of ODRL when we made our choice was 1.0 thus the implementation is based on that version. Since we
had made our choice, both ODRL and XrML have achieved considerable victories over the others. For example
XrML won the competition for rights expression language for MPEG-21 media distribution standard and ODRL
has been the choice of Open eBook Forum. The overall winner of the rights description language competition is
yet to remain unsettled. [3], [7]

2 Nonius implementation

2.1 The design of the program

The intention of Nonius implementation project was to enrich our rather theoretical MobileIPR research project
with more practical experiences on digital rights management. We had already studied legal, technical, and
economic issues related to rights management on the Mobile Internet, [8] but we were willing to find out what
kind of challenges come up when putting rights management into operation. Luckily, we had a “sister-project”,
XML Devices that was creating a Java based XML browser, X-Smiles. The browser was intended for both
desktop use and embedded network devices and to support multimedia services. It did not have any support for
DRM, but it formed an excellent platform to develop a DRM extension. [20], [22] Another HIIT’s project,
STAMI, gave us background support in security technologies, which were the project’s speciality. [17] The

Proceedings of the First ODRL International Workshop

153

Nonius project started in September 2001 and was finished in April 2002. It took a total of 1218 working hours
including the overhead required by the software project class. [15]

X-Smiles is an open source XML browser implemented in Java. It supports several XML technologies such as
SMIL, XSL, and XForms [20], [22]. X-Smiles is continually developed further. X-Smiles version 0.5 was used in
Nonius. The majority of the extension’s functionality was implemented as separate modules. Only a couple of
changes to the GUI code of X-Smiles itself were made. The development environment was running JDK 1.3.1
on Microsoft Windows 2000 and Windows XP operating systems.

X-Smiles offers an easy-to-use interface for connecting tailored modules for handling different types of XML
documents. These modules are called MLFCs (Markup Language Functional Components) in the X-Smiles
terminology. Basically, to connect an MLFC to X-Smiles, one first writes the implementing class and support
classes for the needed functionality. After this, a mapping between the wanted XML document type (namespace)
and the name of the implementing MLFC class is added in the X-Smiles configuration file. After this, the
browser core automatically calls the module when that type of XML document is requested.

Figure 1. Concepts modeled by ODRL in a broad context [6]

In our case, an MLFC for handling ODRL documents was written. The architecture of Nonius extension consists
of the following components:

• DRMMLFC, the interface to X-Smiles;

• DRMStore, a certificate database;

• HandlerDRMOffer for displaying the asset;

• HandlerDRMAgreement for displaying and saving a certificate into the database;

• AssetDecode for enforcing the correct handling of rights and possibly decryption;

• SecurityModule for security functions.

What comes to implementation of ODRL, the most interesting module is AssetDecode, which essentially
consists of the parser of ODRL documents. Our aim was that the parser should be highly modular. The
architecture should allow a change of the underlying DRM language by implementing a common set of

 154

interfaces. The interfaces were designed using ODRL as a basis: the conceptual model for the architecture
follows very closely what is presented in the ODRL 1.0 specification [6].

Figure 1 presents the most important concepts of ODRL and is explained in more detail in the ODRL 1.0
specification. Similar concepts are common in all DRM scenarios. An Asset is the product or work that DRM
aims to protect. An Agreement is a contract between some parties that defines the terms under which a party may
use the Asset. An Agreement is essentially a certificate in many contexts. An Offer is like an Agreement, but it
does not specify any user. An Offer may be freely distributed for viewing what kind of usage terms are related to
an Asset.

In the implementation, each conceptual class was modeled as a Java interface with accessor methods for reading
business logic related data and some standardized methods for constructing objects from general XML elements.
After we had designed the interfaces, we wrote implementing classes with ODRL specific parser functionality.

The concepts of the DRM language are presented in practice inside XML documents as XML elements. The
basic idea in the parser architecture was that each class knows what kind of term or restriction it represents in the
DRM scenario. Each class represents one XML element in the DRM language, and knows what kind of
information it should extract from the XML element when constructed. Further, each class needs to know what
elements might be related to it and knows to pass the request for verifying a term to the relating child elements if
it does not know how to verify it directly itself. An additional requirement was that the certificates should be
viewed in a more humanly understandable way than XML: for this purpose, each class was assigned the
responsibility to be able to represent the information it contains in a human language. These common features
were implemented in one common interface, which was extended by all the other interfaces. The responsibility
to create objects was given to separate factory classes when this was feasible, thus enabling easy development
and rollover of new functions.

2.2 Assumptions and alternative solutions

At first, we planned that the opening of any Asset in the browser would trigger the validation of DRM rules that
were related to it. This immediately proved impossible, since X-Smiles only allows us to map the execution of
our module with certain XML documents, not all. Of course, this obstacle would have been possible to
circumvent by changing X-Smiles’ code so that it would always call our module first. One of the goals of the
project was to be able to implement DRM functionality with as few changes in the X-Smiles itself as possible, so
this solution was rejected.

Another problem is that each Asset needs to be uniquely identified, and a plain URL is not enough for this
purpose. As a solution, we thought of defining and implementing an own XML based language. The new
language would have contained metadata and execution instructions for opening ODRL documents. After we
examined ODRL closer, we found out that an Offer document contains all the information necessary to
implement the same functionality. Only four assumptions needed to be made, and they were quite reasonable, so
this is the solution we chose.

The following assumptions were made:

1. Each Asset is always accessible via a URL (which may be local as long as X-Smiles supports it) and
points to an XML document that X-Smiles can display.

2. Displaying of an Asset is initiated by opening an Offer document

3. Offers need to contain a URL pointing to the Asset

4. Offers need to contain a unique identifier for the Asset

Once an ODRL Offer document is opened (by assumption 2, each protected asset is opened this way), our
module is loaded. Then it may identify the Asset that is being opened (by assumption 3). After this, it can search
for the corresponding Agreement in the database. If an Agreement is found, the DRM terms are validated and, if
everything is acceptable, the module can ask X-Smiles to open the Asset (by assumption 1) pointed to by the
URL in the Offer (by assumption 3).

Proceedings of the First ODRL International Workshop

155

2.3 DRM features implemented in Nonius

ODRL defines lots of DRM capabilities. The purpose of this project was not to implement them all. In the
requirements capture phase, the most important capabilities and functionalities were chosen and prioritized. We
also chose to implement some general functionality not directly related to ODRL, such as user data management
features or saving DRM documents in a user’s system. The implemented ODRL features are:

• viewing the content of Offers and Agreements in a human understandable way,

• restricted time of validity of certificates,

• restricted individual (only a specific user may use an Asset),

• restricted software (only the specific instance of X-Smiles browser may use an Asset),

• restricted instances of use,

• restricted accumulated time of use,

• restricted geographical area, and

• any combination of these (AND –operator).

In order to implement these, a lot of the basic ODRL concepts – such as Permission, Constraint, Context and
Party – also needed to be implemented.

In contrast, some of the most interesting ODRL features that were left out include:

• different usage types (such as view, print, modify, sell): we implemented only display, since this is
currently the only act that X-Smiles supports;

• super distribution (X-Smiles does not support any such methods),

• device constraints other than software (printer, CPU, screen etc.),

• aspect constraints such as quality or watermark,

• target constraints such as the purpose of use,

• combination of constraints using OR and NOT operators, and

• secure encryption methods, such as public key cryptography (security was not the focus area of this
project).

3 Experiences

This chapter discusses the problems we faced and experiences we gathered during the implementation project.
Some of the problems are specific to the technical environment, some relate to the architecture we chose, and
some derive from the ODRL specification. We are also discussing about more general issues related to DRM.
However, although we are aware of numerous non-technical challenges related to DRM, like the lack of
common standards, patent problems, consumer protection, privacy, user rights, and so on, we have excluded
them from this article. (For more information on the non-technical issues, see e.g. [10], [16].)

 156

3.1 Experiences from the programming process

One goal of the project was to design a scalable and modular architecture for the parser, one that might even
allow a change of DRM language if necessary. Scalability was important for the process point of view:
functionality was added in iterations and we had planned only two or three weeks for the implementation per
iteration.

The team found that the ODRL specification was well written and relatively easy to understand. From it,
business logic aspects of the architecture were quite easy to design and it did not require many modifications
once designed.

On the other hand, other parts of the architecture such as the parser framework and utility classes were quite
dynamic and hard to freeze. We did not have any prior experience in implementing DRM systems. The
inexperience of the team in implementing parsers that create object structure from XML documents caused many
changes during the project. Requirements for new XML parsing utility functions were discovered one by one.
Luckily, these features had been implemented in a separate class that was easy to improve when new
requirements arose.

We did not test the modularity of the architecture by changing the DRM language. Basically, it should be a
straightforward task as long as the new language is XML based and its concepts can be unambiguously mapped
to ODRL’s concepts. Interpreting the interfaces correctly might require some knowledge of ODRL, though.

3.2 Shortcomings in the implementation

The implementation in itself is far from perfect: certificates are easily accessible in a human readable and
modifiable format. All the user related data is also easy to change. This could be done in a more secure way by
sealing the certificates. For example, hash values could be used for verifying integrity.

Another problem comes from the implementation of the software constraint. For this purpose, the program
chooses a random device ID when it is first needed. This, along with other user data, is stored in a user’s hard
disk. If X-Smiles needs to be reinstalled, the device ID vanishes and certificates containing software constraint
will not work, since the ID has changed. This could be fixed by storing the ID, for instance, in a remote server,
where it could be retrieved during reinstallation.

The only “encryption” method supported is gzip. It was good enough solution for our demonstration as its only
purpose was to make the documents unreadable for humans. Public key cryptography could be used, but to be
effective in practice, it should be supported by the hardware.

These shortcomings are decisions that were deliberately made during the project implementation. For the most
part, these do not lessen the product’s usability for demonstrating DRM capabilities.

Two X-Smiles specific problems are related to the implementation of accumulated time constraint. Firstly, there
is no way of stopping the displaying of a document once the viewing has started. This means that if the
certificate allows a certain period of accumulated time, users may still view the document for as long as they
like, if they never shut the browser down or load a different document. A workaround could be implemented, for
example, with a specific timer thread that tells the X-Smiles to load a blank page after the certain period of time,
but we did not consider this as good design and a lasting solution. Therefore it was not implemented.

The program starts the timer that counts accumulated time already before it tries to load the asset, although it can
take a long time to load a large document over a slow connection. Again, X-Smiles does not have an “afterLoad”
event that could trigger the accumulated timer for this purpose.

An X-Smiles bug prevented the program to display other than SMIL documents. This, however, does not affect
the usability of the program for demonstration purposes. SMIL documents are good enough with music, image,
video and sound effect capabilities.

Proceedings of the First ODRL International Workshop

157

3.3 Difficult areas

ODRL specification states that if the software comes across some DRM restriction that it does not know how to
validate, it should not allow the action. With our architecture, this is a challenging area. It has been implemented
where possible. Easy places to add this kind of functionality are the factory classes. If a factory class gets an
XML element that it has not got a mapping for, a DRMParseException with an explanatory message is thrown.
When such an exception is thrown, the user will not be able to perform the action and an error message is
presented. DRMParseExceptions are thrown also if there is something wrong with the data parsed (wrong type,
missing information etc.). But, since the program uses the XML DOM approach for parsing, when an object is
being constructed from an XML element, it asks the DOM object for the information it needs. If there is an extra
element in a place that some factory does not handle, it goes unnoticed. This violates the ODRL specification. A
simple solution would be to write a custom XML schema file for the implemented subset of ODRL, and use that
to verify documents. This was not implemented in the project.

The program currently supports only one certificate per asset. No certificate merging was implemented. This
means that if a user gets another certificate for an asset, the latter automatically overwrites the previous one. The
merging of certificates is not a trivial task especially if the certificates are complicated. The biggest problem is
that when merging two DRM documents, one would need to consider the semantics of the XML elements. The
merging problem has been studied in software configuration management, especially in relation to version
control. There exists dozens of algorithms for textual based merge (line per line comparison), and some for
syntactic or semantic merge for a specific programming language [2], but studying and implementing one of
these for ODRL would be a project in itself.

One challenging feature was adding support for incremental requirements. These are requirements that are not
necessarily known when a user wants to use an asset but may come up later disallowing the use of the asset. We
designed the framework for adding such requirements and implemented one: pay per view. As the result of the
query to open a document passes on through the object structure, each DRM component may add its own
additional constraint to the result. The additional constraints are implemented as a class that knows how to merge
itself with another object of the same class. These objects gather together like streams into a river, and in the end,
if there are additional constraints, the user will be asked to fulfill the requirements before the document is used.
One problem here is the order of additional constraints. For example, if there are two pay-per-view constraints in
the document and the user agrees to pay when the first constraint is displayed, but when the second one pops up,
the user decides to back off. Now, the first payment has already been made and cannot be returned without a
comprehensive rollback mechanism.

3.4 Challenges in the ODRL specification

The ODRL specification 1.0 defines a huge amount of functionalities and places a lot of requirements for an
implementation. We found that three requirements were more challenging than others. These should be carefully
studied when starting to implement an ODRL based DRM software product. We implemented none of these
features. All of them would require some changes in the software architecture, and combined they would require
a serious refactoring effort to keep the design complexity from rising exponentially. Also, implementing these
would easily triple or even square the amount of work needed to run thorough tests. These requirements
basically make it easier to write certificates, but they also make the implementation of a software tool that parses
DRM documents quite a bit more complex.

The first requirement that complicates implementation is logical operators. AND is the easiest operator to
implement with the architecture that we used: every object validates the action and if there is a conflict, an
exception is thrown. AND is the only operator we implemented. NOT operator would also be easy to implement.
Even though we did not implement it as such, it can be implemented by the one who writes the certificates by
inverting the rules. An OR is difficult. Even though in theory it can be implemented by the certificate writer by
the rule A OR B == NOT A AND NOT B, this makes the job of writing the certificates very difficult. Our
architecture does not bend easily to support OR, it would require some kind of transactional support: if one rule
fails (throws an exception), another may still be valid and “roll back” the exception.

Another challenging requirement in the ODRL specification is document’s internal references to its elements.
The specification states that any element may be linked from any other place of a document. This is fine as long
as the semantics of the element does not depend on its context. The third requirement presented in the next
paragraph destroys this assumption, thus making this requirement very hard to implement. A reasonable way to

 158

implement this would be to run the document through a preprocessor before handing it over to the parser. The
preprocessor would expand internal links to full XML elements and the parser would not need to know anything
about the links.

The third challenge is that some deeper level element may depend on its ancestor elements’ data. For example,
“if a Requirement appears at the same level as a number of Permissions, then the Requirement applies once to all
of the Permissions” [6]. From the parser point of view, this is one special case more: when parsing a Permission,
the parser should also check the parent element if it has a requirement. If it has, then append it as it had been a
child of the Permission. Alternatively, a preprocessor could be the solution to this one, too: move all
Requirements that are not under any Permission, under all the Permissions that they are on same level with.

3.5 Technical problems with DRM

Major issues in implementing the DRM extension were security and open source. These issues are also close to
user rights and user needs. From the security perspective it should be stressed that rights description languages
hardly touch security issues. Secure packaging of the content and secure transfer is an independent issue of the
content usage rights and rules. It is anyhow central because users must trust on both the availability and usability
of the information they receive for consumption.

Security is always a problematic issue. The copyrighted material should be encrypted so that it cannot be
illegally used. The main problem is that information should not be decrypted by the application itself, because
then the decrypted information would reside in digital format in the memory of the operating environment. For
example, if digital music is decrypted by the player application, another application can read the decrypted
digital music data and create a perfect copy. If decryption is done by hardware, in this situation by sound adapter
or a loudspeaker, it makes unauthorized copying significantly more difficult.

Surely, unauthorized copying, usage, and distribution can be forbidden by laws and agreements, but those hardly
affect evil users. As long as the source code is open, it has to be assumed that anyone may modify it to capture
decrypted content. Even if the source code is not publicly distributed, it is possible to decompile and debug the
executable code, insert hooks and affect what the program does. Therefore these problems do not touch open
source only, but because open source code is so easy to modify, the challenges in connection with it are most
serious.

X-Smiles browser and our DRM implementation are open source software. Also, ODRL language is documented
and developed in open source fashion. This means that any user can download the source code of our DRM
system and ODRL specifications of rights certificates we use. From user perspective open source is as easy (or
difficult) to market as for example Linux operating system. For content owners, it is a further question if one can
ever trust on a DRM system from which any would-be hacker can download the source code. However, some
studies imply that from security perspective it is not relevant if the source code of a DRM system is open or not.
Therefore, we would be eager to suggest that open source has only positive impacts from both user and copyright
holder perspectives.[1]

DRM should be supported by the operating system and hardware. That would be a much better approach than
application layer. If the implementation is made on the application layer, it is too easy to circumvent. If an
operating system supported DRM, it would, for example, guarantee that no other application can read or change
saved certificates information. However before DRM will be supported by operating systems and hardware,
there must be a widely supported standard. Somebody must also pay for these features, so the market must be
ready and interested about DRM.

4 Conclusions

In the digital world, immaterial products are cheap to distribute through fast, global data networks. This
introduces a lot of business potential, but also raises a big piracy problem. A digital rights management system
separates information from the right to use it. With a DRM system, a content publisher can limit the usage of an
information product so that it can be used only in accordance with defined rules.

So far there is no widely used standard for rights description languages. We studied three competing standard
proposals and selected ODRL to be used in our project. We succeeded in implementing an XML browser

Proceedings of the First ODRL International Workshop

159

extension that demonstrates DRM features. The most important implemented features enable usage rules based
on identity, time of validity, and counts of use. Some of the interesting features that were left out are aspect and
target constraints.

Based on our experiences, merging certificates and developing an interface for editing certificates are among the
most challenging tasks in implementing a DRM system. The ODRL specification includes also challenges. In
our opinion the three most challenging features in the specification are logical operators, documents’ internal
links, and the requirement that in some cases child elements may depend on some ancestor elements’ children.

All in all, Nonius project succeeded in its main goal of producing a piece of software for demonstrating DRM
functions although DRM in itself is a very complex and largely controversial subject including many non-
technical problems not discussed in this article.

5 Acknowledgements

MobileIPR project is funded by Tekes – the National Technology Agency of Finland, Elisa Communications,
Nokia, Sonera, and Finnish Broadcasting Company (YLE). In addition to the authors, especially Mr. Ville
Oksanen participated in defining the project objectives and gave useful comments on this article. Discussions
with XML Devices project team that has created X-Smiles browser and STAMI project team focusing on security
issues were most important. Nonius team was also guided by the teachers of Helsinki University of
Technology’s T-76.115 Software Project class, especially by Mr. Risto Sarvas and Mr. Jari Vanhanen.

Bibliography

[1] R. Anderson: Security in Open versus Closed Systems -- The Dance of Boltzmann, Coase and Moore,
Conference on the Economics, Law and Policy of Open Source Software, Toulouse, France, 2002,
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf

[2] J. Buffenbarger: Syntactic Software Merging, Seattle, June 1995, pp153-172.

[3] R. Cover: The XML Cover Pages: XML and Digital Rights Management (DRM), 13.5.2002,
<http://xml.coverpages.org/drm.html>

[4] Features of DRM, Microsoft Corporation.
<http://www.microsoft.com/windows/windowsmedia/WM7/DRM/features.asp>

[5] J. Gilmore: What’s wrong with copy protection, 2001,
<http://www.linux.it/GNU/articoli/whatswrong.shtml>

[6] R. Iannella: ODRL Specification, 2002, <http://www.odrl.net/1.0/ODRL-10.pdf>

[7] N. McAllister Freedom of Expression: Emerging standards in rights management, March 2002,
<http://www.newarchitectmag.com/documents/s=2453/new1011651985727/index.html>

[8] MobileIPR homepage, 2003, <http://www.hiit.fi/de/mobileipr/>

[9] ODRL standard homepage, <http://www.odrl.net/>

[10] O. Pitkänen: Managing Rights in Information Products on the Mobile Internet, HIIT Publications 2002-4,
Helsinki Institute for Information Technology HIIT, 2002.

[11] O. Pitkänen, M. Välimäki: Towards A Digital Rights Management Framework. IeC2000 Proceedings,
UMIST, Manchester, UK, 2000.

[12] O. Pitkänen, M. Mäntylä, M. Välimäki, J. Kemppinen: Assessing Legal Challenges on the Mobile
Internet, International Journal of Electronic Commerce, Fall 2003, Vol. 8, No. 1, pp. 101-120, 2003.

 160

[13] A. Pruneda: Windows Media Technologies: Using Windows Media Rights Manager to Protect and
Distribute Digital Media, Microsoft Corporation (white paper)
<http://msdn.microsoft.com/msdnmag/issues/01/12/DRM/DRM.asp>

[14] V. Saarinen, J. Anttila, P. Lauronen, O. Pitkänen: Implementing a DRM System, HIIT Technical Reports
2002-3, Helsinki Institute for Information Technology HIIT, 2002

[15] V. Saarinen, J. Poikela: Nonius Final Report, (in Finnish) 2002, <http://jt7-
332.tky.hut.fi/nonius/lu/loppuraportti/loppuraportti.doc>

[16] A. Soininen (ed.), O. Pitkänen, M. Välimäki, V. Oksanen, T. Reti: MobileIPR Final Report, HIIT
Publications 2003-3, Helsinki Institute for Information Technology HIIT, 2003.

[17] STAMI project homepage, 2003, <http://www.tml.hut.fi/Research/STAMI/>

[18] Understanding DRM Systems, Intertrust Corporation (white paper).
<http://www.intertrust.com/main/research/index.html>

[19] H. Varian, C. Shapiro: Information Rules, 1999, Harvard Business School Press

[20] P. Vuorimaa, T. Ropponen, N. von Knorring, M. Honkala: A Java based XML Browser for Consumer
Devices, Proceedings of SAC, Madrid, Spain, 2002.

[21] XMCL standard homepage, <http://www.xmcl.org/>

[22] X-Smiles homepage, 2004,
<http://www.x-smiles.org>

[23] XrML standard homepage, <http://www.xrml.org/>

Proceedings of the First ODRL International Workshop

161

162

First ODRL International Workshop

Invited Talks

Proceedings of the First ODRL International Workshop

163

164

��������	�
���

����������	

	������
����	�����������������

��

��������
����

��������	�
���

�������

� ���������������������
����

� ����������!�������

� "#������������$

� "#����	�

� ��������������

� 	����!�

Proceedings of the First ODRL International Workshop

165

��������	�
���

��������
����

� "������������$#����%����&���������

� ��������������������'�����(�)����*

� ��������������

�
������������
����

� �����%�(�������
��������(��������

� ������������������������������+

��������	�
���

����,��������

� �

��������
���������

����������������������

���-���%������$�����.

� ����������������������

%��#�-���/����.�

0 "��!��������!��
��#��

����!�

� ,��������������������%��#�

-�����1�/��#����$�.

0 2������������������

166

��������	�
���

-���%������$�����.

� ,�����������������

� �

�������������'�3$3����	�
�������*

� �������������)����
������������

� �

������������!

� 	�����)������������������

� 4�����%���������)����������

� 	�$#���
���$�������������������
���
�������'�
�����%���#��)�������*

��������	�
���

���/�����
�������%������
-"��!��������!��
��#������!�.

� ���������%��#�����5,�������������

� 6���������������
������������

� ��������������

� �������������)����
������������

� �

�����'��%�����*��������!

� ,����������)������)��

� ������7���%�����������#�����)����

Proceedings of the First ODRL International Workshop

167

��������	�
���

/��#����$�

� ����������	
�8����������������

� ,����������������-�������.

� �������������)����
������������

� �������'��������$*�����

�����'��������*��������!

� ,����������)������)�������)���,/�

� ��������
������	
�����$�����

� ���!��$������)���������������$������'9
�:*

��������	�
���

 ����������!���������

	�1���������7

� ��������

� �����������

� 9���������

�
�������������������������

168

��������	�
���

 ����������!����������

�

������

�������

	
��
���

������

���������	�

��
�		���

��������	�
���

 ����������!�����������

�	
�	�$#���9���������

� ;��������������������!��������

� "#��������%#��

� ';�����������*��������������
�

� �����������'�������(���$���������*

� ,���������

Proceedings of the First ODRL International Workshop

169

��������	�
���

"#������������$��

�������

< ��
����

< /��������

� �����
�����������

��
��������

� 6������1��������

6������=���!��

��������

� ����$������������

� 	���������

��
��������

< /��������

��������	�
���

"#������������$���

6�%�������7���������

� ;���������

� "#��������"#��

� ����������

� ������
�������

170

��������	�
���

"#������������$����

�������������������������%��#��������

����������$��������������������������������

������������ ����������;������������

4$�������

������������7

�
�����������

� 9���������������

� �����������������
��������

��������	�
���

"#����	�

� ���������������#������

� ����(������#���������������������

'#���
����*

� �����%��#�����������
���$#���#����������

������������������'�3$3����������������*

� 9���������

� �������>�����������!��&

Proceedings of the First ODRL International Workshop

171

��������	�
���

����������������

��
�����������$�����!�(����������7

� 4�����

� ��������������

���

� 4$��������

� ;������

��������	�
���

�����������������

>���%������$�����&���������

� ,������������������'/����������������(�
����%��*

� /�����

� ��#���	�����������

0
���������������
��������!

0
���������������
���������������

0 9��3

172

��������	�
���

�����������������

���/�����
�������%�����

� ��
������������������

� ���������1�����������!�����#��
������

��������

� �
�������1������������������'��$���������(�

�����������3*���������������������

4$������������������#��������������

��������	�
���

������������������

�����1�/��#����$��������������������
�

���)��������������(�����7�

0 #���%�������
������#����������

0 ����$���������!��$��������
����������

Proceedings of the First ODRL International Workshop

173

��������	�
���

����������

��������
�����

�����������
��

%��#�

��	�+

174

Proceedings of the First ODRL International Workshop

175

176

An Interoperable and Flexible An Interoperable and Flexible
Infrastructure for DRMInfrastructure for DRM

Invited TalkInvited Talk

Dr. Mariemma I. Yagüe
Computer Science Department

University of Málaga

e-mail: yague@lcc.uma.es

The Open Digital Rights Language Initiative. International WorksThe Open Digital Rights Language Initiative. International Workshop. hop.
Vienna, Austria, 22Vienna, Austria, 22--23 April 200423 April 2004

ODRL International Workshop. Vienna, Austria, 2004 2ODRL International Workshop. Vienna, Austria, 2004 2

MotivationMotivation

lRights management applies to a wide
variety of systems and objects.

– Almost impossible to consider all potential application scenarios.

– The approach must be developed in an open an extensible way.

lMost DRM systems are very complex.

– the underlying framework tries to capture all possible details and
features of the targeted scenarios

Proceedings of the First ODRL International Workshop

177

ODRL International Workshop. Vienna, Austria, 2004 3ODRL International Workshop. Vienna, Austria, 2004 3

MotivationMotivation

Flexibility and extensibility

A general framework capable of
supporting very heterogeneous

DRM applications and scenarios

A general framework capable of
supporting very heterogeneous

DRM applications and scenarios

ODRL International Workshop. Vienna, Austria, 2004 4ODRL International Workshop. Vienna, Austria, 2004 4

MotivationMotivation

lRights enforcement involving an access decision
about a resource subject to intellectual property
rights in highly dynamic, open and
heterogeneous scenarios, with very large
numbers of users, resources and stakeholders.

lCurrent access control models are not
appropriate for the DRM and other open,
heterogeneous and dynamic scenarios.

– Access Control erroneously considered to
apply to “locations” instead of “resources”.

178

ODRL International Workshop. Vienna, Austria, 2004 5ODRL International Workshop. Vienna, Austria, 2004 5

MotivationMotivation

lNeed to manage access control parameters, in a
distributed, dynamic and transparent way.

– Automatic stablishment of access conditions
based on semantics

lA DRM system must also deal with digital
content protection.

– production of self-protected software objects
that convey contents (software or data) and
access control, rights and obligations
enforcement mechanisms.

ODRL International Workshop. Vienna, Austria, 2004 6ODRL International Workshop. Vienna, Austria, 2004 6

ObjectivesObjectives

l Extensibility.

l Interoperability.

l Scalability.

l Interoperable Access Control Scheme.

lCopyright agreements, payment, and other
operations bound to access to the contents.

l Persistent Protection

Proceedings of the First ODRL International Workshop

179

ODRL International Workshop. Vienna, Austria, 2004 7ODRL International Workshop. Vienna, Austria, 2004 7

FundamentalsFundamentals

Independence of the certification of attributes
function

it allows attributes to be safely
communicated avoiding the necessity of

being locally emitted by the system
administrator

it allows attributes to be safely
communicated avoiding the necessity of

being locally emitted by the system
administrator

Interoperability

ODRL International Workshop. Vienna, Austria, 2004 8ODRL International Workshop. Vienna, Austria, 2004 8

FundamentalsFundamentals

The security requirements of all processes
related to the secure transmission and

commerce of digital contents can be fulfilled
if we guarantee that the software running at
the other side of the communication line is

it is neither possible to discover nor to
alter the function that the software

performs and it is also impossible to
impersonate the software

it is neither possible to discover nor to
alter the function that the software

performs and it is also impossible to
impersonate the software

protected

180

ODRL International Workshop. Vienna, Austria, 2004 9ODRL International Workshop. Vienna, Austria, 2004 9

ContributionContribution

l Development of an infrastructure (XML-based Secure
Content Distribution, XSCD) providing distributed access
control, fulfillment of obligations (payment, etc) and
persistent protection on the basis of:
– A new access control model based on semantics

(Semantic Access Control, SAC), implemented with a
policy language (SPL) and a set of smart tools for the
easy specification and automatic validation of access
control criteria.

– A mechanism for the semantic integration of a PMI
(Source of Authorization Description meta-model) with
the access control.

– A software protection mechanism (SmartProt) [Maña, 2001]
for mobile environments which enables to implement
active containers for the contents to distribute.

ODRL International Workshop. Vienna, Austria, 2004 10ODRL International Workshop. Vienna, Austria, 2004 10

MainMain AdvantagesAdvantages ofof SmartProtSmartProt

Robustness against different attacks
– bypassing the check,
– code substitution and
– attacks to the license management protocols.

lConfidence for the user,
– efficient use of the computational resources of

the smart cards,
– free distribution and copy of the software,
– selective license transfer,
– control of the expiration of the licenses and
– applicable in distributed computing.

Proceedings of the First ODRL International Workshop

181

ODRL International Workshop. Vienna, Austria, 2004 11ODRL International Workshop. Vienna, Austria, 2004 11

MainMain AdvantagesAdvantages of SACof SAC

l Simple Specifications.

lHigh expressiveness.

lUnambiguous specifications.

lModular policies, with dynamically instantiated
parameters.

l Semantic validation of access control criteria.

lContent-based access.

lHigh Scalability.

ODRL International Workshop. Vienna, Austria, 2004 12ODRL International Workshop. Vienna, Austria, 2004 12

MainMain AdvantagesAdvantages of SACof SAC

l Fully distributed scheme based on attribute
certificates.

lNo subscription required.

lHigh level of interoperability.

l Transparent and dynamic modification of policies
in distributed env.

lGeneral applicability: software and data objects.

l Integration with external authorization entities.

l Support of payment and other actions/obligations
bound to access.

182

ODRL International Workshop. Vienna, Austria, 2004 13ODRL International Workshop. Vienna, Austria, 2004 13

SmartProt

Content Server

…

Free Distribution

Server 1

Mobile Policy
Generator

Mobile
Policy

License

Server 2
SOA 1 SOA 2

Policy
Assistant

Administrator

PMI

SPL
Semantic Policy

Language

Policies

PAS

SRR

Context

SOAD SOAD

PCO

Client

Client

Access
Request

Access Control
System based on

SAC

Composed,
Instantiated
&Validated

Policy

Heterogeneous Contents

Semantic
Integration of
PMI

XSCDXSCD DigitalDigital RightsRights ManagementManagement InfrastructureInfrastructure

ODRL International Workshop. Vienna, Austria, 2004 14ODRL International Workshop. Vienna, Austria, 2004 14

SmartProt

Content Server

…

Free Distribution

Serve r 1

Mobile Policy
Generator

Mobile
Policy

Licen se

Serve r 2
SOA 1 SOA 2

Policy
Assistant

Administrator

PMI

SPL
Semantic Policy

Language

Policies

PAS

SRR

Context

SOAD SOAD

PCO

Client

Client

Access
Request

Access Control
System based on
SAC

Compos ed,
Instantiated
&Validated

Policy

Heterogeneous Contents

Semantic
Integration of
PMI

XSCDXSCD DigitalDigital RightsRights ManagementManagement InfrastructureInfrastructure

MP

PCOPCO

Proceedings of the First ODRL International Workshop

183

ODRL International Workshop. Vienna, Austria, 2004 15ODRL International Workshop. Vienna, Austria, 2004 15

XSCDXSCD AppliedApplied toto EE--newsnews

ODRL International Workshop. Vienna, Austria, 2004 16ODRL International Workshop. Vienna, Austria, 2004 16

l Flexible and Interoperable DRM Solution that enables
content owners to enforce access control policies,
copyright agreements, payments and other obligations,
to digital objects in a distributed environment.
– Is not dependant of Autentication Infrastructures
– Semantic integration of PMI

– Access control based on semantics of the resourcesand the
context

– We can define access conditions and obligations for each piece
of information

• Non subscription, identification needed.

– Applied to different scenarios such as
• E-commerce, Digital libraries, Web Services, Grid computing,...

– Supports pay per use and pay per adquisition business models.

ConclusionsConclusions

184

ODRL International Workshop. Vienna, Austria, 2004 17ODRL International Workshop. Vienna, Austria, 2004 17

Dr. Mariemma I. YagDr. Mariemma I. Yagüüe e
ComputerComputer ScienceScience DepartmentDepartment

UniversityUniversity of Mof Máálagalaga
e-mail: yague@lcc.uma.es

An Interoperable and Flexible An Interoperable and Flexible
Infrastructure for DRMInfrastructure for DRM

Proceedings of the First ODRL International Workshop

185

	TextTotal.pdf
	TextTotal.pdf
	Acr1CE.tmp
	Acr1B5.tmp
	12Pitkaenen.pdf
	12Pitkaenen.pdf
	Ville Saarinen,
	Abstract
	Keywords
	Introduction
	Background
	In connection with MobileIPR, a student group called Nonius

	Digital Rights Management Systems
	Rights Description Languages

	Nonius implementation
	The design of the program
	Assumptions and alternative solutions
	DRM features implemented in Nonius

	Experiences
	Experiences from the programming process
	Shortcomings in the implementation
	Difficult areas
	Challenges in the ODRL specification
	Technical problems with DRM

	Conclusions
	Acknowledgements
	Bibliography

