
Video editing in the browser

• Yash Khandelwal (Software developer, Microsoft)

• Steve Becker (Principal Software Eng Manager, Microsoft)

• Harneet Sidhana (Principal Program Manager, Microsoft)

• Current workarounds/issues

• MediaBlob

• WebCodecs

Topics:

Video editing on the web is painful

Client-side workarounds

Client-side

JavaScript/WASM libraries

• Usually in several MBs

• Affects bandwidth

• May not be optimized

Client-side

Using MediaRecorder

Client-side

1x playback

30 minute video

Client-side

1x playback

Trim by 15 minutes

Client-side

1x playback

Takes 15 minutes

Server-side issues

Server-side

Increased bandwidth
Upload -> Edit -> Download

Server-side

Compute cost
Dedicated servers for doing the video edits

Server-side

Queue Delay
Bottlenecks on the server resulting in an editing queue

MediaBlob
High level video editing API that inherits from Blob

• new MediaBlob(blob); // Mime sniffing to detect whether the blob is a valid media object or not.

MediaBlob properties:

MediaBlob.duration
readonly attribute long long duration;

Example:

let mediaBlob = new MediaBlob(blob);

console.log(mediaBlob.duration) // print the duration in ms

Proposed editing operations (MediaBlobOperation):

trim
void trim(long long startTime, long long endTime);

concat
void concat(<Sequence<MediaBlob>);

split
void split(long long time);

finalize
Promise<Sequence<MediaBlob>> finalize(optional DOMString mimeType);

Example:

let mbo = new MediaBlobOperation(new MediaBlob(blob1));

mbo.trim(4000, 10000);

mbo.concat(new MediaBlob(blob2));

mbo.finalize().then(function(mediaBlobs) {

// mediaBlobs[0] will be a concatenated MediaBlob of blob1 (which will be trimmed) and blob2

});

ms
Time taken to trim a 30 min video to 15 mins using MediaBlob

• Easy to use with existing MediaRecorder and File API

• No detailed knowledge of media concepts needed by

developers

• Developers need not worry about codecs licensing

• Provides hardware optimizations when available

External libraries

1x record time

Queue Delay

Increased bandwidth

Compute Cost

External libraries

1x record time

Queue Delay

Increased Bandwidth

Compute Cost

WebCodecs
Low level API that allows web apps to encode and decode media

• Powerful API that provides support for live gaming,

real time communication among other things

• For video editing, it provides transcoding

• Does not provide a way to demux/mux media file.

Must rely on external demuxers/muxers

Demuxer.js Muxer.js
Webcodecs

(used for re-encoding
the media)

Video file with H264
codec Trimmed video file with

VP9 codec

Demuxer.js Muxer.js
Video file with H264

codec Trimmed video file with
H264 codec

MediaBlob
(will re-encode on

finalize)

Video file with H264
codec Trimmed video file with

VP9 codec

MediaBlob
(no re-encoding needed

here)

Video file with H264
codec Trimmed video file with

H264 codec

With WebCodecs

With MediaBlob

Current status:

• MediaBlob exists on the Edge browser and can be used

with Origin Trials

• Intent to prototype has been posted to chromium

blink-dev
• Ongoing discussion about whether we need MediaBlob when

WebCodecs is already being implemented

Thank you !

Links:

WebCodecs: https://github.com/WICG/web-codecs/blob/master/explainer.md

MediaBlob: https://github.com/WICG/video-editing/blob/master/readme.md

Intent to prototype: https://groups.google.com/a/chromium.org/forum/#!topic/blink-

dev/3eac-HVygFY

https://github.com/WICG/web-codecs/blob/master/explainer.md
https://github.com/WICG/video-editing/blob/master/readme.md
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/3eac-HVygFY

Update 7/6/20

• After discussion on the intent-to-prototype, it was

concluded that the JavaScript implementation of muxer

is efficient.

• Based on the feedback from the group here and on the

explainer, we are looking into how to adapt MediaBlob

to a “playlist” model.

https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/3eac-HVygFY

