
© 2020 Akamai1

WebTransport
Will Law

W3C WebTransport WG Co-Chair
Akamai - Chief Architect

September 7, 2021

© 2020 Akamai2

What real-time data applications would we like to
build on the web?
• Real time audio and video communications apps with improved

privacy, performance & simplicity.
• Multiplayer game play communication & orchestration.
• Cloud Game Streaming.
• Low latency video delivery, for sports, news and industrial camera

analysis.
• IOT sensor and analytics data transfer, such as vehicle location.
• Pub/Sub messaging platforms.
• Input & response for real-time speech translation.

© 2020 Akamai3

Core requirements across all these use-cases

• The security protections of the modern web (TLS encryption, congestion
control, CORS)

• Client-server architecture
• Bi-directional communication
• Send reliable and ordered data (streams) with minimal latency
• Send unreliable and unordered datagrams with minimal latency
• Continuously maintain consent to send data (back pressure)
• Identifiable using a URI

© 2020 Akamai4

Protocol Options
REST API (HTTPS) • Slow connection establishment

• Lossless delivery requires retransmission which increases latency
• High header overhead for small amount of data
• No option for fast, unreliable delivery

WebSockets • Head of line blocking - all messages must be sent and received in
order even if they are independent and some of them are no longer
needed

• No option for fast, unreliable delivery

WebRTC Data
Channel

• High connection establishment overhead due to p2p foundation

Roll your own UDP
transport

• Poor interoperability since you must support an SDK in every client
and server

Chunked encoded
segment media via
H1/H2

• Slow connection establishment
• Segments must be requested, RTT between each request

© 2020 Akamai5

Unbundling to achieve specialization

© 2020 Akamai6

Unbundling WebRTC

Codec support

Compute intensive logic

P2P connection
establishment

Secure streams of real-
time data

W3C WebCodecs

W3C WebAssembly

Not needed if
client-to-server

?? – we need a real-time
transport for the web

© 2020 Akamai7

Welcome to WebTransport

WebTransport solves the real-time data problem for the internet.
It is a transport protocol (specified by the IETF) and an easy-to-use
Web API (specified by the W3C), that enables clients operating under
the Web security model to communicate with a remote server using
a secure, multiplexed, real-time transport.
WebTransport provides:
• multiple uni-directional and bi-directional streams of reliable and

ordered data.
• an unreliable flow of UDP-like datagrams
• operation over HTTP/3 with fallback to HTTP/2

© 2020 Akamai8

The stack

NETWORK (IP)

TCP

TLS (optional)

HTTP1.x/2

NETWORK (IP)

TCP

TLS (optional)

HTTP1.x/2

WEBSOCKET

NETWORK (IP)

UDP

ICE, STUN,TURN

DTLS

SCTP
SRTP

Data Media

NETWORK (IP)

UDP

HTTP/3

TLS 1.3

QUIC

HTTP1.x/2 HTTP/3 WEBSOCKET WebRTC

NETWORK (IP)

UDP

TLS 1.3QUIC (streams +
datagrams)

WebTransport

Http3Transport

TCP

TLS

HTTP/2

HTTP/3
(streams + datagrams)

WEBTRANSPORT

© 2020 Akamai9

WebTransport transfer modes

WebTransport connection
SERVER CLIENT

123 Stream #1 123 Ordered and
reliable

123 Datagrams 31
Unordered,
unreliable &
fast

79 Stream #2 79

810 Stream #3 810

Unordered but
reliable. Use to
send objects
larger than
one packet
quickly

© 2020 Akamai10

API Overview
• The API is in Public Working Draft status

and available at
https://w3c.github.io/webtransport/

• Offered under Secure Context (https) only
• A modern API that leverages web

platform primitives such as Streams and
Promises and works well with async and
await.

• WebTransport URLs must begin with
https and must specify the port.

• Can run in Web Workers

https://w3c.github.io/webtransport/

© 2020 Akamai11

Code example #1: Sending a buffer of datagrams

async function sendDatagrams(url, datagrams) {
const wt = new WebTransport(url);
const writer = wt.datagrams.writable.getWriter();
for (const datagram of datagrams) {

await writer.ready;
writer.write(datagram).catch(() => {});

}
}

© 2020 Akamai12

Code example #2: Receiving datagrams

async function receiveDatagrams(url) {
const wt = new WebTransport(url);
for await (const datagram of wt.datagrams.readable) {

processTheData(datagram);
}

}

© 2020 Akamai13

Code example #3: Sending data over a stream

async function sendData(url, data) {
const wt = new WebTransport(url);
const writable = await wt.createUnidirectionalStream();
const writer = writable.getWriter();
await writer.write(data);
await writer.close();

}

© 2020 Akamai14

Code example #4: Receiving a stream and leveraging piping

async function receiveText(url, createWritableStreamForTextData) {
const wt = new WebTransport(url);
for await (const readable of wt.incomingUnidirectionalStreams) {

try {
await readable
.pipeThrough(new TextDecoderStream("utf-8"))
.pipeTo(createWritableStreamForTextData());

} catch (e) {
console.error(e);

}
}

© 2020 Akamai15

Give it a try …

• Server examples
• AIOQuic (will be used for Web Platform Tests)

https://github.com/aiortc/aioquic/blob/main/examples/http3_server.py
• Google Chrome samples

https://github.com/GoogleChrome/samples/tree/gh-pages/webtransport

• Client examples
• Chrome https://webrtc.internaut.com/wt/ (Chrome has had a WebTransport

origin trial since v84+)
• Client demo

https://googlechrome.github.io/samples/webtransport/client.html

https://github.com/aiortc/aioquic/blob/main/examples/http3_server.py
https://github.com/GoogleChrome/samples/tree/gh-pages/webtransport
https://webrtc.internaut.com/wt/
https://googlechrome.github.io/samples/webtransport/client.html

© 2020 Akamai16

What doesn’t WebTransport provide?

WebTransport is not the answer to everything. It does not give you:
• Support of p2p connections – WebRTC is still best for that
• A built-in messaging framework, a la WebSockets.onmessage
• Native framing for audio or video payloads – no RTP or RTCP

provided as part of the spec.

These omissions are by design. The creators want it to be a low-level
tool. They envisage flexible libraries being used to implement
application specific behaviors.

© 2020 Akamai17

What is exciting about WebTransport?
• A chance to unify the transport and API between

• Video conferencing & telephony applications
• Gaming
• Low latency & live media delivery

• It will look like Http/3 to firewalls, proxies, network switches etc. This
can greatly facilitate its reach and robustness.

• Browser support gives you billions of addressable clients (in
addition to native OS support).

• Datagram access in JavaScript J
• When combined with WebCodecs and WebAssembly, closes the

gap between native and browser RTC applications.

© 2020 Akamai18

Status as of Sept 2021

• Chrome have signaled intent to ship WebTransport around Nov
2021. Firefox are implementing but have not yet announced a
release date.

• An echo server for Web Platform Tests will soon be available.
• Experimentation and feedback are welcome!
• IETF and W3C are planning the first interop event as soon as public

server(s) are available. We’ll be communicating more about that
shortly.

© 2020 Akamai19

WebTransport summary
• WebTransport is solving the real-time data problem for the internet
• WebTransport is a protocol (specified by the IETF) and a Web API (specified by the

W3C), that enables clients constrained by the Web security model to communicate
with a remote server using a secure, multiplexed, real-time transport.

• WebTransport provides for uni-directional and bi-directional streams of reliable
ordered data between a client and server, as well as an unreliable flow of UDP-like
datagrams.

• WebTransport uses modern Web Platform features such as streams, promises and
Http/3 and provides more flexible solutions than those currently provided by
WebSockets and WebRTC.

• The W3C WebTransport API is currently in First Public Working Draft status. An
initial browser implementation is available, along with a server for Web Platform
Tests. Experimentation is encouraged and feedback can be provided by filing a
github issue at https://github.com/w3c/webtransport/issues

https://github.com/w3c/webtransport/issues

© 2020 Akamai20

Live demo

© 2020 Akamai21

Thank you for
your time.

Questions?

