
W3C Considerations for 

WebRTC and DASH for 

Interactive Streaming

April 5, 2022



Agenda

Background on DASH-IF exploration

WebRTC requirements and proposed extensions

Moving from requirements to technical proposals



DASH + WebRTC Use Cases

Fallback
Real-time WebRTC with 

fallback to DASH

Interleaved
Real-time WebRTC 

interleaved with DASH

Device doesn't support WebRTC.

Network connection is not good enough to sustain a very low latency stream.

A real-time live event using WebRTC while the ad periods are delivered with DASH.

Main content delivered via DASH and periods for interactive programs delivered 
via WebRTC.

Concurrent
Real-time WebRTC 

concurrent with DASH

A real-time event using WebRTC with supplemental pre-recorded content delivered 
with DASH.

Pre-recorded DASH content delivered with supplemental live WebRTC streams.

Premium real-time experience using WebRTC not enabled for this user.

Co-watching synchronized streams with audio/video/text chat. 



Related WebRTC Next Version (NV) Use Cases

3.2 Low latency P2P broadcast

3.6 Funny Hats

1. Captioning

2. Transcription

3. Language translation

4. Funny hats

5. Background removal or blurring

6. In-browser compositing

7. Voice effects

8. Stress detection



WebRTC "Broadcast"

Alice Bob

Alice Bob
Media 

Server

Sue

Miguel



Standardizing Workflow, From Discovery to Streaming

Vendor C - Proprietary Manifest Proprietary Session Negotiation

Standard WebRTC 

Stream

Standard Manifest
Standard Session 

Negotiation

Standard WebRTC 

Stream

Current state of Real-Time Streaming

Goal for Real-Time Streaming

Vendor A - Proprietary Manifest Proprietary Session Negotiation

Vendor B - Proprietary Manifest Proprietary Session Negotiation



Work for WebRTC Extensions

● Define and select appropriate session management/signaling protocol 
○ Define control protocol for dynamic stream switching that does not require SDP renegotiation

● Continue development of methods for additional security of streams

● Define a standardized means to deliver subtitles, closed captions, and other 

events

● Continue development of a mechanism for time synchronization of timed 

metadata and DASH periods

● Collection of metrics and client metadata for WebRTC sessions and 

translation to existing metrics and client metadata, transmission via APIs



Session Negotiation

Current issues:

● Specific transport method for signaling and session negotiation is left up to 

each application developer. 

● Negotiation requires a number of round trips to establish a connection.

Requirements:

● Interoperability: Standard and specific transport methods for signaling and 

session negotiation

● Minimize the time to the first frame (TTFF)

● Not preclude the use of other protocols such as WebSockets



WHIP: WebRTC-HTTP Ingestion Protocol

WHIP proposes a simple protocol for supporting WebRTC as media ingestion method that:

● Is easy to implement,

● Is as easy to use as current RTMP URIs.

● Is fully compliant with WebRTC and RTCWEB specs.

● Allows for both ingest in traditional media platforms and ingest in WebRTC end-to-end 

platforms with the lowest possible latency.

● Lowers the requirements on both hardware encoders and broadcasting services to support 

WebRTC.

● Is usable both in web browsers and in native encoders.

Companion access protocol: WHAP (https://github.com/x186k/whip-whap-js) 

https://datatracker.ietf.org/doc/html/draft-ietf-wish-whip

https://github.com/x186k/whip-whap-js
https://datatracker.ietf.org/doc/html/draft-ietf-wish-whip


WHSNP: WebRTC HTTP Session Negotiation Protocol

WHSNP is an HTTP-based protocol for establishing WebRTC communications that:

● Allows WebRTC endpoints to publish to media servers or subscribe to content 

from media servers, using uniform communication for both subscribing and 

publishing.

● Uses tokens containing capabilities to streamline negotiation.

● Can be used in both web browsers and native applications.

● Allows manual tuning.

● Is simple to implement.

● Is built on commonly-available standards such as HTTP and JSON.

● Is optimized to minimize TTFF.

Still in development, needs a better acronym.



Securing WebRTC

Current: Secure Real-time Transport Protocol (SRTP) - Transport-level protocol 

that provides encryption, message authentication and integrity, and replay attack 

protection to the RTP data in both unicast and multicast applications. This 

encryption is node-to-node.

Future: end-to-end encryption (E2EE) using Insertable Stream to E2EE, which 

allows customization or manipulation of the data prior to sending it over the wire or 

E2EE with secure frame (SFrame).



DRM

Goal is end-to-end encryption with secure key exchange

Current options: 

● WebRTC DataChannel to MSE/EME 
● WebSockets to MSE/EME (head-of-line blocking). 

Future options 

● Insertable Stream to MSE/EME (see how FaceTime using insertable streams for 
end-to-end encryption) 

● WebTransport to MSE/EME (requires CMAF, and has some latency issues in 
different browsers)



Stream Security: Recommended Options

● WebCodecs + EME (without CMAF packaging). Bridge gaps between 

WebCodecs and EME

● DataChannel or WebTransport or Insertable Streams to WebCodecs and 

EME (without CMAF packaging)

● Client-side demuxing

● AES-128 CBCS encryption of only the elementary stream

● Following a single encode and encryption path and multi-package approach 

compatible with DASH



Developing Technical Proposals

Seek advice from experts

Determine best options for standardization

Draft and test



Further Reading

DASH-IF Report Summary: https://dashif.org/webRTC/

Full Report: https://dashif.org/webRTC/report

Interest survey: https://forms.gle/Yy89GGeMsXYQixBZ6

https://dashif.org/webRTC/
https://dashif.org/webRTC/report
https://forms.gle/Yy89GGeMsXYQixBZ6

