

ATSC 3.0 Update to W3C

26 October 2015

ATSC)

Background

- ATSC 1.0 first generation broadcast TV standard
- ATSC 2.0 backwards-compatible physical layer transport, signaling, and codecs – adding:
 - New A/V codecs
 - Non-real time file delivery
 - Interactivity services
 - Leveraged OIPF Declarative Application Environment (DAE)
- ATSC 3.0 next generation broadcast TV
 - Technology design started in late 2011
 - Backwards-compatibility is not a requirement
 - Clean break from ATSC 1.0 possible

ATSC

Background - Critical Areas

- Increasing peak throughput, robustness and spectral efficiency at Physical Layer
- Leveraging audio/video codec evolution
 - HEVC/UHD
 - New, immersive audio codecs
- New transport layer IP-based with 2 options:
 - ROUTE Real Time Object Delivery over Unidirectional Transport
 - Leverages FLUTE (RFC 6726)
 - MMT MPEG Multimedia Transport
- New runtime environment
 - Moving beyond the DAE (Declarative App. Environment)
 - Based mostly on existing deployed technology
- Hybrid services
 - Leveraging combined broadcast and broadband connections

ATSC)

Benefits of IP Transport

- Broadcasting no longer an independent silo
 - Take advantage of evolution speed of Internet
- Broadcast & Broadband as peer delivery mechanisms
 - Enables new types of hybrid services
 - Ability to seamlessly incorporate niche content
- Enable new business models
 - Localized Insertion
 - Ads or other content
 - Allows revenue model for broadcasters that has been available to cable or IPTV operators

ATSC 3.0 Organization

Plus:

TG3-5 AHG on Time

TG3-6 AHG on DASH-IF (DASH Interop)

TG3-7 AHG on Extensibility

ATSC 3.0 Transport Layer

- It was decided early in the process to support IP for broadcast transport
- Two modes of operation have been adopted for ATSC 3.0
 - ROUTE and MMT
 - Both may be used for streaming services
 - ROUTE leverages DASH for media segmentation/encapsulation and is a broadcast-optimized derivative of FLUTE (RFC 6726)
 - MMT uses MPEG-defined MPU (media processing units)
 - "non real-time" content (e.g., interactive apps, targeted ads to cache locally, etc) is exclusively delivered via ROUTE

ATSC 3.0 Transport Layer (cont.)

- Both modes leverage hybrid delivery
 - Use of UTC for synchronization
 - Streaming services over broadband must be DASH formatted

Relevant W₃C Technology

- ▶ TTML
 - IMSC1 Profiles used for captions & subtitles
 - Extensions under liaison discussion with TTWG:
 - 3D disparity
 - HDR/WCG
- HTML5 including:
 - APIs

Runtime Environment Overview

- Includes technology from:
 - HbbTV 2.0
 - OIPF
 - HTML5
 - ATSC 2.0 (HbbTV 1.5)
- Constraints/extensions as needed
- Based on OIPF DAE, but with additional HTML5 technologies also addressed
 - Extensions to OIPF Web Profile

Relevant W₃C Technology - APIs

- Additions to OIPF Web Standards TV Profile (i.e. leveraging W3C standards) including:
 - Geolocation
 - MSE
 - EME
 - Touch Events
- TV Control API (W3C CG work being investigated)
- Additional API sets identified and being refined

Going Forward

- Continue collaboration with TTWG
- Establish regular communication between Web & TV IG and ATSC
 - Task force under IG?
 - Assist in our evaluation of the Tuner Control APIs
- Expectation for ATSC 3.0 to achieve publication in 2016