PROV: The W3C PROVenance model

Tutorial plan -- 1.5 hours

Part I: The PROV Data Model and PROV Notation (PROV-N)
Part II: Constraints of the Provenance Model
Part III: Known extensions and applications

Paolo Missier, Newcastle University
Khalid Belhajjame, University of Manchester
James Cheney, University of Edinburgh

EDBT 2013, March 20, 2013
Provenance refers to the sources of information, including entities and processes, involving in producing or delivering an artifact (*)

Provenance is a description of how things came to be, and how they came to be in the state they are in today (*)

- Data dependencies -- from process or other data
- Activities that operate on data, and their temporal relationships
- Data integration: which fragments come from which source
- Who played what role in creating the data (responsibilities)
- ...

(*) Definitions proposed by the W3C Incubator Group on provenance: http://www.w3.org/2005/Incubator/prov/wiki/What_Is_Provenance
Why does provenance matter?

• To establish **quality, relevance, trust**
• To track **information attribution** through complex transformations
• To **describe** one’s experiment to others, for understanding / reuse
• To **provide evidence** in support of scientific claims
• To enable **post hoc** process analysis for **debugging, improvement, evolution**

...in such areas as:

• Open Information Systems
 - origin of the data, who was responsible for its creation
• Science applications
 - how the results were obtained
• News
 - origins and references of blogs, news items
• Law
 - licensing attribution of documents, data
 - privacy information
Provenance is not a new subject (*)

• There has been lot of work around
 – workflow systems
 – databases
 – knowledge representation
 – information retrieval

• Existing community-grown vocabularies
 – Open Provenance Model (OPM)
 – Dublin Core
 – Provenir ontology
 – Provenance vocabulary
 – SWAN provenance ontology
 – etc.

The W3C Working Group on Provenance: timeline

http://www.w3.org/2011/prov/wiki/

2009-2010

W3C Incubator group on provenance
Chair: Yolanda Gil, ISI, USC

April, 2011

W3C working group approved
Chairs: Luc Moreau, Paul Groth

April, 2013

Proposed Recommendations finalised

Main output:
“Provenance XG Final Report”
http://www.w3.org/2005/Incubator/prov/XGR-prov/
- provides an overview of the various existing approaches, vocabularies
- proposes the creation of a dedicated W3C Working Group

prov-dm: Data Model
prov-o: OWL ontology, RDF encoding
prov-n: prov notation
prov-constraints

...plus a number of non-prescriptive Notes
PROV: scope and structure

Recommendation track

- PROV-O
- PROV-XML
- Other Serialization
- PROV-DC
- PROV-LINKS
- PROV-AQ

plus: Prov-dictionary

source: http://www.w3.org/TR/prov-overview/
Recommendation track

PROV-O
PROV-XML
Other Serialization
PROV-DC
PROV-LINKS
PROV-AQ

PROV-CONSTRAINTS
PROV-DM
PROV-N

plus: Prov-dictionary

This tutorial

source: http://www.w3.org/TR/prov-overview/
PROV: scope and structure

Recommendation track

PROV-O
PROV-XML
PROV-CONSTRAINTS
PROV-DM

PROV-DM: The PROV Data Model

W3C Candidate Recommendation 11 December 2012

This version:
http://www.w3.org/TR/2012/CN-prov-dm-20121211/

Latest published version:
http://www.w3.org/TR/prov-dm/

Implementation report:
http://dvcs.w3.org/hg/prov/raw-file/default/reports/prov-implementation.html

Previous version:
http://www.w3.org/TR/2012/WD-prov-dm-20120724/ (color-coded diff)

Editors:
Luc Moreau, University of Southampton
Paolo Missier, Newcastle University

Contributors:
Khalid Belhajjame, University of Manchester
Reza B'Far, Oracle Corporation
James Cheney, University of Edinburgh
Sam Coppens, IBBT - Ghent University
Stephen Cresswell, legislation.gov.uk
Yolanda Gil, Invited Expert
Paul Groth, VU University of Amsterdam
Graham Klyne, University of Oxford
Timothy Lebo, Rensselaer Polytechnic Institute
Jim McCusker, Rensselaer Polytechnic Institute
Simon Miles, Invited Expert
James Myers, Rensselaer Polytechnic Institute
Satya Sahoo, Case Western Reserve University
Curt Tilmes, National Aeronautics and Space Administration

source: http://www.w3.org/TR/prov-overview/
An **entity** is a physical, digital, conceptual, or other kind of thing **with some fixed aspects**; entities may be real or imaginary.

An **activity** is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, ..., **using, or generating** entities.

An **agent** is something that bears some form of responsibility for an activity taking place, for the existence of an entity, or for another agent's activity.
Generation is the completion of production of a new entity by an activity. This entity did not exist before generation and becomes available for usage after this generation.

Usage is the beginning of utilizing an entity by an activity. Before usage, the activity had not begun to utilize this entity.

PROV is based on a notion of *instantaneous events*, that mark transitions in the world - generation, usage (and others)

Ordering constraints amongst events: -- see part II of this tutorial

“generation of e must precede each of usages”

“a can only use / generate e after it has started and before it has ended”
Concepts and relations

Generation of “draft v1” expressed as relation:

\[\text{wasGeneratedBy(“draft v1”, ...)} \]

Usage of “draft v1” by “commenting” expressed as relation:

\[\text{used(“commenting, “draft v1”,...)} \]

Table 2: Mapping of PROV core concepts to types and relations

<table>
<thead>
<tr>
<th>PROV Concepts</th>
<th>PROV-DM types or relations</th>
<th>Name</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity</td>
<td>PROV-DM Types</td>
<td>Entity</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td>Activity</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>Agent</td>
<td></td>
<td>Agent</td>
<td>Section 2.1.3</td>
</tr>
<tr>
<td>Generation</td>
<td></td>
<td>WasGeneratedBy</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>Usage</td>
<td></td>
<td>Used</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>WasInformedBy</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>Derivation</td>
<td></td>
<td>WasDerivedFrom</td>
<td>Section 2.1.2</td>
</tr>
<tr>
<td>Attribution</td>
<td></td>
<td>WasAttributedTo</td>
<td>Section 2.1.3</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td>WasAssociatedWith</td>
<td>Section 2.1.3</td>
</tr>
<tr>
<td>Delegation</td>
<td></td>
<td>ActedOnBehalfOf</td>
<td>Section 2.1.3</td>
</tr>
</tbody>
</table>
document

prefix prov <http://www.w3.org/ns/prov#>
prefix ex <http://www.example.com/>

entity(ex:draftComments)
entity(ex:draftV1, [ex:distr='internal', ex:status = "draft"])
entity(ex:paper1)
entity(ex:paper2)

activity(ex:commenting)
activity(ex:drafting)
wasGeneratedBy(ex:draftComments, ex:commenting, 2013-03-18T11:10:00)
used(ex:commenting, ex:draftV1, -)
wasGeneratedBy(ex:draftV1, ex:drafting, -)
used(ex:drafting, ex:paper1, -)
used(ex:drafting, ex:paper2, -)

endDocument
An activity **association** is an assignment of responsibility to an agent for an activity, indicating that the agent had a role in the activity.

Attribution is the ascribing of an entity to an agent.
An activity **association** is an assignment of responsibility to an agent for an activity, indicating that the agent had a role in the activity.

Attribution is the ascribing of an entity to an agent.

```
entity(ex:draftComments, [ ex:distr='internal' ])
activity(ex:commenting)
agent(ex:Bob, [prov:type = "mainEditor"]
agent(ex:Alice, [prov:type = "srEditor"])

wasAssociatedWith(ex:commenting, Bob, -, [prov:role = "editor"])
actedOnBehalfOf(Bob, Alice)
wasAttributedTo(ex:draftComments, ex:Bob)
```
Q.: what is the relationship between attribution and association?

This is inference rule 13 in the PROV-CONSTR document
See part II of this tutorial

entity(e)
agent(Ag)
activity(a)
wasAttributedTo(e, Ag)
wasGeneratedBy(e, a)
wasAssociatedWith(a, Ag)
Communication is the exchange of some unspecified entity by two activities, one activity using some entity generated by the other.

activity(ex:commenting)
activity(ex:drafting)
wasInformedBy(ex:commenting, ex:drafting)
Q.: what is the relationship between communication, generation, and usage?

∃ e ∈ Entity such that:

activity(ex:commenting)
activity(ex:drafting)
entity(e)
wasInformedBy(ex:commenting, ex:drafting)
wasGeneratedBy(e, ex:drafting)
used(ex:commenting, e)

This are inference rules 5 and 6 in the PROV-CONSTR document
Summary of the PROV Core model
A **derivation** is a transformation of an entity into another, an update of an entity resulting in a new one, or the construction of a new entity based on a pre-existing entity.

```
entity(ex:draftV1)
entity(ex:draftV2)
wasDerivedFrom(ex:draftComments, ex:draftV1)
```

Q.: what is the relationship between derivation, generation, and usage?
Relations may be given identifiers

Relation IDs make it possible to refer to relations in other relations

```
entity(ex:draftComments)
entity(ex:draftV1)
activity(ex:commenting)
wasedGeneratedBy(gen1; ex:draftComments, ex:commenting, -)
used(use1; ex:commenting, ex:draftV1, -)
```

gen1 denotes a generation event

use1 denotes a usage event

General derivation relation:

```
wasDerivedFrom(id; e2, el, a, g2, u1, attrs)
```
wasDerivedFrom(draftV1, draftComments, a, use1, gen1)

⇒ wasGeneratedBy(gen1; draftComments, a)

⇒ used(use1; a, draftV1)
Derivation, Generation, Usage

Given:

\[
\text{wasDerivedFrom(id; e2, e1, a, g2, u1, attrs)}
\]

where \(a, g2, u1\) are not placeholders ‘\(-\)’, we can infer:

\[
\text{used(use1; a,e1,_t1,[])}
\]

and

\[
\text{wasGeneratedBy(gen2; e2,a,_t2,[]).}
\]

for some time stamps \(_t1, _t2\).

If any of the optionals are placeholders, then no inference occurs, i.e.:

\[
\text{wasDerivedFrom(id; e2, e1, -, -, -, -, attrs)}
\]
PROV-DM relations at a glance

<table>
<thead>
<tr>
<th>Subject</th>
<th>Entity</th>
<th>Activity</th>
<th>Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WasDerivedFrom</td>
<td>WasGeneratedBy</td>
<td>WasAttributedTo</td>
</tr>
<tr>
<td></td>
<td>Revision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PrimarySource</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlternateOf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SpecializationOf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HadMember</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WasStartedBy</td>
<td>WasInformedBy</td>
<td>WasAssociatedWith</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>WasEndedBy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>—</td>
<td>—</td>
<td>ActedOnBehalfOf</td>
</tr>
</tbody>
</table>
PROV-DM relations at a glance

<table>
<thead>
<tr>
<th>Subject</th>
<th>Entity</th>
<th>Activity</th>
<th>Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entity</td>
<td></td>
<td>Agent</td>
</tr>
<tr>
<td></td>
<td>WasDerivedFrom</td>
<td>WasGeneratedBy</td>
<td>WasAttributedTo</td>
</tr>
<tr>
<td></td>
<td>Revision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PrimarySource</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlternateOf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SpecializationOf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HadMember</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activity</td>
<td>WasInformedBy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used</td>
<td>WasStartedBy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WasStartedBy</td>
<td>WasEndedBy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WasEndedBy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agent</td>
<td></td>
<td>ActedOnBehalfOf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary optional elements in PROV-DM Relations

<table>
<thead>
<tr>
<th>Secondary Object</th>
<th>Entity</th>
<th>Activity</th>
<th>Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity</td>
<td>—</td>
<td>WasDerivedFrom (activity)</td>
<td>—</td>
</tr>
<tr>
<td>Subject</td>
<td>WasAssociatedWith (plan)</td>
<td>WasStartedBy (starter)</td>
<td>—</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td>WasEndedBy (ender)</td>
<td>—</td>
</tr>
<tr>
<td>Agent</td>
<td>—</td>
<td>ActedOnBehalfOf (activity)</td>
<td>—</td>
</tr>
</tbody>
</table>
Most relation types have two arguments which are \{ Entity, Activity, Agent\}

Derivation is one exception:

\[
\text{wasDerivedFrom}(id; e2, e1, a, g2, u1, attrs)
\]

Two other notable exceptions:

- Associations with a plan
- Delegation with an activity scope

\[
\text{wasAssociatedWith}(id; a, ag, pl, attrs)
\]

A **plan** is an entity that represents a set of actions or steps intended by one or more agents to achieve some goal.
A plan plays a role in an association

A plan plays a role in an association

A plan plays a role in an association
A plan is an entity having `prov:type` "prov:plan"

activity(ex:_aProgramExecution, [ex:execTime="22.5sec"])
agent(ex:_aJVM, [prov:type = “JVM-6.0”])
entity(ex:myCleverProgram,
 [prov:type='prov:Plan', ex:label="Program 1"])

wasAssociatedWith(ex:_aProgramExecution, ex:_aJVM, ex:myCleverProgram,
 [prov:role="defaultRuntime",
 ex:accessPath="webapp"])

Plans are optional.

Constraint 50.13: if a plan argument pl is specified, then pl must be of type Entity
Delegation within an activity scope

Alice

Bob

wasAssociatedWith

commenting

actedOnBehalfOf

type=person
ex:role=sr_editor

ex:role=main_editor

commenting

Alice

Bob

wasAssociatedWith

commenting

actedOnBehalfOf

type='line management'

type=person
ex:role=sr_editor

ex:role=main_editor
Real-world artifacts vs provenance entities

“What do I know about the car I see in this Cambridge street today?”

- It was bought by Joe in 2011
- Joe drove it to Boston on March 16th, 2013. The car has now got 10,000 miles on it
- Joe drove it to Cambridge on March 18th, 2013.

“Same” car, but different provenance at each stage of its evolution

An entity that is a specialization of another shares all aspects of the latter, and additionally presents more specific aspects of the same thing as the latter.

Two alternate entities present aspects of the same thing. These aspects may be the same or different, and the alternate entities may or may not overlap in time.

Semantic notes:
1. Specialization implies alternate: $\text{IF specializationOf}(e_1, e_2) \text{ THEN } \text{alternateOf}(e_1, e_2)$.
2. Alternate is symmetric: $\text{IF alternateOf}(e_1, e_2) \text{ THEN } \text{alternateOf}(e_2, e_1)$.
3. Specialization is transitive: $\text{IF specializationOf}(e_1, e_2) \text{ and specializationOf}(e_2, e_3) \text{ THEN } \text{specializationOf}(e_1, e_3)$.

...But, this is still *that* car!
Reserved attributes and types

A small set of reserved attributes, with some usage restrictions

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Allowed In</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:label</td>
<td>any construct</td>
</tr>
<tr>
<td>prov:location</td>
<td>Entity, Activity, Agent, Usage, Generation, Invalidation, Start, and End</td>
</tr>
<tr>
<td>prov:role</td>
<td>Usage, Generation, Invalidation, Association, Start, and End</td>
</tr>
<tr>
<td>prov:type</td>
<td>any construct</td>
</tr>
<tr>
<td>prov:value</td>
<td>Entity</td>
</tr>
</tbody>
</table>

Table 9: PROV-DM Predefined Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Core concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Bundle</td>
<td>Section 5.4.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:Collection</td>
<td>Section 5.6.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:EmptyCollection</td>
<td>Section 5.6.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:Organization</td>
<td>Section 5.3.1</td>
<td>Agent</td>
</tr>
<tr>
<td>prov:Person</td>
<td>Section 5.3.1</td>
<td>Agent</td>
</tr>
<tr>
<td>prov:Plan</td>
<td>Section 5.1.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:PrimarySource</td>
<td>Section 5.2.4</td>
<td>Derivation</td>
</tr>
<tr>
<td>prov:Quotation</td>
<td>Section 5.2.3</td>
<td>Derivation</td>
</tr>
<tr>
<td>prov:Revision</td>
<td>Section 5.2.2</td>
<td>Derivation</td>
</tr>
<tr>
<td>prov:SoftwareAgent</td>
<td>Section 5.3.1</td>
<td>Agent</td>
</tr>
</tbody>
</table>
Reserved attributes and types

A small set of reserved attributes, with some usage restrictions

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Allowed In</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:label</td>
<td>any construct</td>
</tr>
<tr>
<td>prov:location</td>
<td>Entity, Activity, Agent, Usage, Generation, Invalidation, Start, and End</td>
</tr>
<tr>
<td>prov:role</td>
<td>Usage, Generation, Invalidation, Association, Start, and End</td>
</tr>
<tr>
<td>prov:type</td>
<td>any construct</td>
</tr>
<tr>
<td>prov:value</td>
<td>Entity</td>
</tr>
</tbody>
</table>

Table 9: PROV-DM Predefined Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Core concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Bundle</td>
<td>Section 5.4.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:Collection</td>
<td>Section 5.6.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:EmptyCollection</td>
<td>Section 5.6.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:Organization</td>
<td>Section 5.3.1</td>
<td>Agent</td>
</tr>
<tr>
<td>prov:Person</td>
<td>Section 5.3.1</td>
<td>Agent</td>
</tr>
<tr>
<td>prov:Plan</td>
<td>Section 5.1.1</td>
<td>Entity</td>
</tr>
<tr>
<td>prov:PrimarySource</td>
<td>Section 5.2.4</td>
<td>Derivation</td>
</tr>
<tr>
<td>prov:Quotation</td>
<td>Section 5.2.3</td>
<td>Derivation</td>
</tr>
<tr>
<td>prov:Revision</td>
<td>Section 5.2.2</td>
<td>Derivation</td>
</tr>
<tr>
<td>prov:SoftwareAgent</td>
<td>Section 5.3.1</td>
<td>Agent</td>
</tr>
</tbody>
</table>
A **bundle** is a named set of provenance descriptions, and is itself an entity, so allowing provenance of provenance to be expressed.

```
bundle pm:bundle1

entity(ex:draftComments)
entity(ex:draftV1)

activity(ex:commenting)
wasGeneratedBy(ex:draftComments, ex:commenting, -)
used(ex:commenting, ex:draftV1, -)
endBundle
...

entity(pm:bundle1, [ prov:type='prov:Bundle' ])
wasGeneratedBy(pm:bundle1, -, 2013-03-20T10:30:00)
wasAttributedTo(pm:bundle1, ex:Bob)
```
- Provenance statements are combined by different systems
- An application may not be able to align the times involved to a single global timeline

Therefore, PROV minimizes assumptions about time

Instead, the PROV data model is implicitly based on a notion of instantaneous events, that mark transitions in the world (*)

Events:
- activity start, activity end,
- entity generation, entity usage, entity invalidation

\[
\text{wasStartedBy}(id; a2, e, a1, t, attrs)
\]

\[
\text{wasEndedBy}(id; a2, e, a1, t, attrs)
\]

(*) PROV-CONSTR http://www.w3.org/TR/prov-constraints/#events (non-normative)
- Are all possible temporal partial ordering of events equally acceptable?
- How can we specify the set of all valid orderings?

More generally, how do we formally define what it means for a set of provenance statements to be valid?

On to part II...