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I. INTRODUCTION

The Open Authorization (OAuth) protocol [1] allows a user to grant a third-party Web site or application access
to the user’s protected resources, without necessarily revealing their long-term credentials, or even their identity.
For example, a photo-sharing site that supports OAuth could allow its users to use a third-party printing Web site
to print their private pictures, without allowing the printing site to gain full control of the user’s account.

OAuth is a fairly flexible protocol that can be deployed by third party websites as well as by downloadable
applications on end devices. The currently ongoing work in the IETF OAuth working group [2] aims to standardize
the core components, while other parts are left for further work (such as token encoding and token content) or are
outside the scope of IETF standardization (such as user-interface specifications).

With this position paper the authors would like to highlight the need to enhance the functionality of browsers
for better support of OAuth.

II. BROWSER ENHANCEMENTS

We believe that the following enhancements to the browser would be beneficial for more secure OAuth
deployments, as well as for more secure deployment of other identity and authorization frameworks — some of
the features we describe will be common and re-usable.

A. Authentication Mechanisms

Part of the OAuth protocol exchange requires the user to be redirected from the third party website back to
the protected resource for authorization. For an authorization dialog to be presented to the user, an authentication
exchange needs to have taken place.

Strictly speaking, the exchange to authenticate the user is outside the realm of standardization for OAuth (as is
also the case for many other identity management solutions, such as OpenlD and the SAML Web SSO profile). For
the security of the overall system, however, it is of critical importance that this step be performed in a secure way.
While one part of the overall security quality is related to the type of credential being used, the initial enrollment
step is also important. Once credentials have been enrolled and are available they need to be used by a specific
authentication and key exchange protocol. The variety of protocols available for this purpose reflects the different
requirements found in various environments. Clearly, there is no one-size-fits-all authentication and key exchange
protocol.
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Without recommending specific authentication and key exchange protocols or suggesting different types of
credentials to be used, it’s very important that a discussion takes place about how to improve the current Web
browser support for these security features.

Relevant work includes WebPKI [3], PSCK [4], and the ongoing work in the ABFAB working group [5], [6].

B. Authorization Interface

Once the authentication exchange described in the previous item is completed, a subsequent step is to present
the user with an authorization dialog. According to good privacy design, the user has to be informed about the
information he or she is about to share with another party, for what purpose, and under what conditions (e.g.
retention period).

Unfortunately, current practice shows that these dialogs are often misleading and do not provide the needed
minimum information to enable the user to make an informed decision. See [7] for an initial outline of these
concerns.

Clearly, user interface design is difficult but the current situation must be improved. Providing insufficient
information about what is being shared and with whom (and in some cases, none at all) is not a future-proof
option.

We therefore recommend conducting a survey of best current practices for user interface design for authorization
handling in OAuth. We believe that the insight gained will also be helpful with the work on other identity
management solutions since these types of dialogs are needed as a building block.

C. Standardized JavaScript Crypto Library Support

Many OAuth implementations make use of JavaScript, both in the browser and on the Web server side. The
development of OAuth requires that certain cryptographic functions be reused. Instead of re-implementing this
functionality in JavaScript, at the expense of both security and performance, we suggest standardizing crypto API
support in JavaScript.

A starting point for standardization activities could be [8].

D. Moving Crypto Into the Browser

OAuth requires clients (third parties) to use authenticated requests to protected resources. These requests use
different forms of authentication schemes for client/servers taking part in OAuth, such as bearer tokens [9] and
MAC authentication [10]. While the cryptographic functionality can be implemented in libraries, we believe that
cryptographic functionality should be moved into the browser implementation. Without baseline support in the
browser itself, Web application developers are tempted to implement their own crypto-support in their applications.
Historically, these attempts have led to weakened security. Implementing cryptographic algorithms is complex;
cryptographic routines must come from established, well tested sources, and not be written as needed.

[11] provides valuable input on this topic.

III. CONCLUSION

In this position paper we focus on a single Web identity management protocol. OAuth is a widely accepted
solution for securing cross-domain resource sharing on the Web. Improving the support in the browser will help to
increase security of the Web identity management eco-system.
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