
W3C Workshop on Identity in the Browser

The Need for a Web Security API

Submitters

Sean Turner, IETF Security Area Director
Stephen Farrell, IETF Security Area Director
Peter Saint-Andre, IETF Applications Area Director

Abstract

Today, web applications are constructed from a combination of server-side code and
dynamically-downloaded client-side code (primarily HTML and JavaScript). The pro-
gramming environment available to client-side JavaScript developers is provided by
web browser implementations and various popular JavaScript libraries. Unfortunately,
the "standard" JavaScript Application Programming Interfaces (APIs) do not include
cryptographic functions. This position paper advocates creation of a native, in-browser
API that will give developers access to cryptographic algorithms and other security
methods already present in today's web browsers, similar to what is available to
application programmers developing directly on common operating systems.

Motivations

More and more applications are moving to the "web" (i.e., HTTP, HTML, JavaScript, and
the like). Developers are working within the confines of various web browsers to secure
these applications, and most use Secure Sockets Layer (SSL)/Transport Security Layer
(TLS) to do so. This reliance is sub-optimal for applications whose architectures are not
strictly client-server (e.g., IM and VoIP). For example, for some applications there is a
need to apply data-origin message-level authentication and possibly encryption to
objects exchanged between the browser and other network entities. As a workaround,
developers are investigating the use of JavaScript Object Notation (JSON) as a format
for signed and encrypted objects. They are also working to implement various
cryptographic functions directly in JavaScript libraries (which are typically stored at
well-known web addresses and fetched as needed by any web application needing
them). Although these approaches make some sense in an application layer security
protocol, it makes less sense for web developers to roll (and deliver) their own
cryptographic algorithms. Not only is this practice wasteful, it's also dangerous when
the browser's security "goodies" (i.e., the cryptographic algorithms) are just an API
away.

Downloading cryptographic algorithms is wasteful in terms of bandwidth used.
Application and browser developers are both very interested in ensuring their
applications are speedy in the eyes of users; nobody wants to lose a speed war on

CNET. If web developers end up rolling their own cryptographic algorithms and libraries
to support a JSON application layer security protocol, the code may end up being
downloaded during application initialization. Such cryptographic code could include
message digest/hash algorithms, digital signature algorithms, content encryption
algorithms, key wrap algorithms, and keyed-Hash Message Authentication Code
(HMAC) algorithms. This kind of code is typically not small because of the significant
math involved in producing strong security.

However, the greatest danger here is not a waste of bandwidth, but possible security
breaches. Obviously, downloading cryptographic algorithms is an easy attack vector if
not done over SSL/TLS. But the real challenge is that security is hard. As Steve
Bellovin pointed out in RFC 5406, the design of security protocols is a subtle and
difficult art. In fact, coding security protocols is even more subtle and difficult than
designing security protocols. There is no doubt that some developers will get it right the
first time, but there is also no doubt that some will get it wrong. Given that
cryptographic functions are already implemented in browsers (and that some of them
have already been evaluated by the U.S. National Institute of Standards and Technol-
ogy (NIST) for compliance with Federal Information Processing Publication (FIPS PUB)
140), it seems unnecessarily risky to not make use of the cryptographic algorithms
already present in the browser.

The development of such an API should involve web developers (who often desire
simplicity) as well as browser security experts (who often desire resistance to attack).
Although it can be difficult to balance these goals, a consistent API for access to
cryptographic algorithms and related security functions would provide a strong
foundation for securing the web.

Goals

We propose that a web security API would support the following algorithms and
security functions:

o Hash/message digest algorithms (e.g., SHA-256)
o Digital signatures algorithms (e.g., RSA PKCS#1 v1.5, ECDSA)
o Confidentiality algorithms (e.g., AES)
o Key transport/agreement algorithms (e.g., RSA PKCS#1 v1.5, ECDH)
o HMAC algorithms (e.g., HMAC-SHA1, HMAC-SHA256)
o Extracting keys from TLS sessions (e.g., using RFC 5705)
o PKI path validation (e.g., input/output of validation base64 certificate/CRL blobs and
 providing/receiving validation algorithm inputs/outputs)
o Generation and processing of Cryptographic Message Syntax (CMS)
o Generation of public/private key pairs
o Establishment of TLS channel bindings (e.g., using RFC 5056 and RFC 5929)
o Use of local resources to generate random (or pseudo-random) numbers of
 cryptographic strength

