Media Stream Track
Suspend/Resume/Remove/Stop

Adam Roach
Tuesday, November 12, Shenzen, China

Monday, November 11%, Kirkland, WA, USA

What are the operations we care
about here?

1. Hardware or OS mute/unmute

2. Javascript disables/enables a track
3.

(-

avascript suspends/resumes RTP for a
track

4. Javascript stops a track or removes it from
the session

User Presses Hardware or OS
“Mute” Button on Camera or Mic

» Application in sending browser receives
“onmute” event

— Assuming the browser can figure out that the user
did this
» Sending browser may either:

— Continue to feed whatever is coming off the
hardware into the codec, or

— Encode black frames / silence / comfort noise
« RTP flows as normal

* Receiving party receives no events, produces
no state changes.

Sender Blacks Out/Silences Media

» Javascript sets “enabled=false” on sending
MediaStreamTrack

» RTP keeps flowing, but encodes black
frames or silence / comfort noise, according
to media type

* No events are triggered on sending end

* Recelving party receives no events,
produces no state changes

Receiver Blacks Out/Silences Media

» Javascript sets “enabled=false” on receiving
MediaStreamTrack

» RTP keeps flowing, but playout (e.g. into
<audio> or <video> tag) is suspended

— Browser may elect to generate comfort noise
* No events are triggered on receiving end

» Sending party receives no events, produces
no state changes, cannot detect this
condition at all.

Sender Suspends RTP

» Javascript twiddles “new thing” on sending track

* “onnegotiationneeded” is triggered; media direction
is updated in SDP

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=recvonly

* On receipt of this offer, the other side triggers
“onmute.”

Receiver Suspends RTP

» Javascript twiddles “new thing” on receiving track

* “onnegotiationneeded” is triggered; media direction
is updated in SDP

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=sendonly

* On receipt of resulting answer, this side triggers
“onmute.”

 Other side doesn’t trigger any events

RTP Suspended Both Ways

* Javascript twiddles “new thing” on both sending and receiving
track

« “onnegotiationneeded” is triggered; media direction is updated
in SD

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=1lnactive

 On receipt of this offer, the other side triggers “onmute” for
stream we're sending

* On receipt of resulting answer, this side triggers “onmute” for
stream we're receiving

Remove Sending Track

» Javascript calls stop() or removeStream on sending track

* “onnegotiationneeded” is triggered
— MSID is removed
— Media direction is updated in SDP

m=audio 25384 RTP/SAVPF © 96
a=msid-ma—ta
a=recvonly

e Other side calls “onended”

» If the track is later re-added, it triggers an onaddstream
— Does this cause issues? It’'s not clear that anything breaks.

Remove Received Stream

* Javascript calls stop() or removeStream on received stream

* “onnegotiationneeded” is triggered; media direction is updated
in SD

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=sendonly

* Other side doesn’t trigger any events

* Issue: SDP signaling is indistinguishable from suspended RTP
— Do we care?

Remove Both Streams

» Javascript calls stop() or removeStream on both streams
— Although not necessarily at the same time

 “onnegotiationneeded” is triggered; port is set to O

m=audio © RTP/SAVPF ©
a=sendrecvw

* Other side calls “onended” for stream it was receiving

e Issue: Is there some event called on the stream it had
been sending?

Event Summary

Operation Local Event Remote Event
HW or OS Mute onmute -
HW or OS Unmute onunmute -

Disable sending MST - _
Enable sending MST - _
Disable receiving MST - _
Enable receiving MST - _

Suspend sending MST onnegotiationneeded onmute

Resume sending MST onnegotiationneded onunmute

Suspend receiving MST onnegotiationneded, ?
onmute

Resume receiving MST onnegotiationneded, ?
onunmute

Stop or remove sending MST onnegotiationneeded onended

Stop or remove receiving MST ~ onnegotiationneeded ?

