W3C WebRTC WG
Meeting

January 14, 2016 8:00AM-9:30AM PDT

W3C WG IPR Policy

e This group abides by the W3C patent policy
https://www.w3.org/Consortium/Patent-Policy-20040205

e Only people and companies listed at https://www.w3.
0ora/2004/01/pp-impl/47318/status are allowed to make
substantive contributions to the WebRTC specs

https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/2004/01/pp-impl/47318/status
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!

e \Welcome to the interim meeting of the W3C
WebRTC WG!
e During this meeting, we hope to make

progress on some outstanding issues before
transition to CR

e Editor’s Draft update to follow meeting

About this Virtual Meeting

Information on the meeting:

e Hangouts Meeting

o Participatory Hangout Link
e Link to Slides has been published on WG wiki
e Scribe? IRC http://irc.w3.org/ Channel: #webrtc
e« The meeting is being recorded.

https://plus.google.com/hangouts/_/google.com/webrtc-interim
https://plus.google.com/hangouts/_/google.com/webrtc-interim
https://www.w3.org/2011/04/webrtc/wiki/January_14_2016
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

Heads Up: Contribution Guidelines

e PR 447 includes new line wrapping guidelines (webrtc-respec-ci)

e (Guide currently addresses:

o W3C Legal

o Line Wrapping

o Pull Request Names
o Linked Names

o JSEP References

o Refactoring: Moving Text

https://github.com/w3c/webrtc-pc/pull/447
https://github.com/w3c/webrtc-pc/pull/447

For Discussion Today

e Pull Requests

o
O
O
o

PR 434: Change Params to Async (Cullen)

PR 454: Voice Activity Flag (Bernard)

PR 462: Add PeerConnection.activateSender() and update early media example (Peter Thatcher)
PR 463/Issue 413/Issue 363: Rollback (Peter Thatcher)

e Issues
O Issue 441: RTClceTransportPolicy needs to be DOMString not enum? (Bernard Aboba)
o Issue 389: Should have a "closed" RTCPeerConnectionState (Peter Thatcher)
O Issue 412: Framerate knob for simulcast (PR 430 exists) (Bernard Aboba and Peter Thatcher)
o Issue 370: Add drop option for RTCDegradationPreference (Bernard Aboba)
O

Issue 442: Impossible to know if ICE agent is "finished checking", for "failed" and "completed" states

(Taylor-b & Peter Thatcher)

https://github.com/w3c/webrtc-pc/pull/434
https://github.com/w3c/webrtc-pc/pull/434
https://github.com/w3c/webrtc-pc/pull/454
https://github.com/w3c/webrtc-pc/pull/454
https://github.com/w3c/webrtc-pc/pull/462
https://github.com/w3c/webrtc-pc/pull/462
https://github.com/w3c/webrtc-pc/pull/463
https://github.com/w3c/webrtc-pc/issues/413
https://github.com/w3c/webrtc-pc/issues/363
https://github.com/w3c/webrtc-pc/pull/463
https://github.com/w3c/webrtc-pc/issues/441
https://github.com/w3c/webrtc-pc/issues/441
https://github.com/w3c/webrtc-pc/issues/389
https://github.com/w3c/webrtc-pc/issues/389
https://github.com/w3c/webrtc-pc/issues/412
https://github.com/w3c/webrtc-pc/pull/430
https://github.com/w3c/webrtc-pc/issues/412
https://github.com/w3c/webrtc-pc/issues/370
https://github.com/w3c/webrtc-pc/issues/370
https://github.com/w3c/webrtc-pc/issues/442
https://github.com/w3c/webrtc-pc/issues/442

PR 434 - setParams Async

- Promise can fail if:

- Changing any read-only parameters (.rtcp.cname, .rtcp.reducedSize, .
headerExtensions, .encodings|i].ssrc, encodingsJi].rtx.ssrc, encodingsJi].fec.
SSIC)

- Trying to change codecs other than reordering or removing (adding or changing
.payloadType, .mimeType, .clockRate, .channels, .sdpFmtpLine)

- Setting writable parameters to something invalid (scaleResolutionDownBy < 0,
invalid RID value)

- Actually, should RID be read-only?

- Does anything above require async?

https://github.com/w3c/webrtc-pc/pull/434
https://github.com/w3c/webrtc-pc/pull/434

PR 454 = Add contributing source voice activity flag

- For browser-browser communication, application may desire to
access the “V” flag, in addition to the audiolLevel.
- “V” flag only available in client-mixer header extension (RFC
6464).
- Use case: Application wishes to show which peers have “voice
activity”.
- Proposed change:

partial interface RTCRtpContributingSource {
readonly attribute boolean? V;

}s

https://github.com/w3c/webrtc-pc/pull/454
https://github.com/w3c/webrtc-pc/pull/454

PR 462/Issue 415: Add activateSender() method

void activateSender()

The activateSender() method activates the RTCRtpTransceiver.sender such that
future calls to createOffer() and createAnswer() will mark the corresponding media
description as sendrecv or sendonly, as defined in JSEP.

If the sender is not already active and the PeerConnection is in the stable state,
this will trigger onnegotiationneeded.

From Harald: Shouldn't this say "this will set the negotiation-needed flag", and leave off mentioning the stable
state?

From Peter: Yes, you are right. I'll fix it.

https://github.com/w3c/webrtc-pc/pull/462
https://github.com/w3c/webrtc-pc/issues/415
https://github.com/w3c/webrtc-pc/pull/462

PR 463/Issue 413/Issue 363: Rollback

Text was mostly already there:

e RtpSender.mid and RtpReceiver.mid are gone
e RtpTransceiver.mid is nullable

Just adding some updates like:

"The initial value of .mid is null. setlLocalDescription and setRemoteDescription
may change it to a non-null value, as defined in JSEP."

"If the value of a RTCRtpTransceiver.mid was set to a non-null value by
an SDP description that is rolled back, the RTCRtpTransceiver.mid will be
set to null, as defined by JSEP."

https://github.com/w3c/webrtc-pc/pull/463
https://github.com/w3c/webrtc-pc/issues/413
https://github.com/w3c/webrtc-pc/issues/363
https://github.com/w3c/webrtc-pc/pull/463

Issue 441: RTClceTransportPolicy

- In response to Issue 384, PR 432 changed RTClceTransportPolicy to
sync with JSEP Section 4.1.1:

enum RTCIceTransportPolicy { enum RTCIceTransportPolicy {
"none", "public",
"relay", = "relay",
"all" "all"

s s
- Raised concerns about backward compatibility, as well as future
extensibility.

- Harald suggested that RTClceTransportPolicy be a DOMString
instead of an enum.

https://github.com/w3c/webrtc-pc/issues/441
https://github.com/w3c/webrtc-pc/issues/441
https://github.com/w3c/webrtc-pc/issues/384
https://github.com/w3c/webrtc-pc/pull/432

Issue 389: Should have “closed”
RTCPeerConnectionState

- Jan-lvar: The spec says: [RTClceConnectionState's] "closed occurs only if
RTCPeerConnection.close() has been called." With "closed" having
more to do with the peer connection as a whole rather than the ICE agent
specifically, and the rationale AFAIR for connectionState being to cover
the peer connection as a whole more so than iceConnectionState, then
it seems to follow that "closed" needs to be surfaced in (moved to) the

RTCPeerConnectionState.

- Pete r? (Peter here: ORTC has IceTransport.close(). WebRTC has PeerConnection.close(), but the state still applies)

https://github.com/w3c/webrtc-pc/issues/389
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceConnectionState

Issue 412: Framerate knob for Simulcast

- At TPAC there was consensus for a “framerate knob” for simulcast.
Two knobs under consideration:

partial dictionary RTCRtpEncodingParameters {
double scaleFramerateDownBYy;
unsigned long maxFramerate;

- On-list “Consensus Call” produced only one response.

- When track frame rate changes:
- scaleFramerateDownBYy produces simulcast streams with different framerates.
- maxFramerate produces streams below a maximum framerate (which could
converge).

https://github.com/w3c/webrtc-pc/issues/412
https://github.com/w3c/webrtc-pc/issues/412

Framerate Knob Use Cases

Screen sharing conference with devices of different capabilities (e.g. PC and mobile c
differing screen sizes and maximum framerates).
o scaleResolutionDownBYy generates streams with different resolutions.
o maxFramerate generates streams within device maximum framerate.
o Example:
m PC stream: (scaleResolutionDownBYy: 1.0, maxFramerate: 30)
m Mobile stream: (scaleResolutionDownBy: 2.0, maxFramerate: 15)
Video conference with speaker stream + thumbnail streams.
o Speaker stream: (scaleResolutionDownBy: 1.0, scaleFramerateDownBy: 1.0)
o Thumbnails: (scaleResolutionDownBy: 4.0, scaleFramerateDownBy: 4.0)

Issue 370: Add drop option for RTCDegradationPreference

e How and when does a simulcast sender stop sending simulcast layers? Ways this
can happen:
e Application-driven:
o Application can set encodingsfj].active to “false”
e Browser-driven:
o Browsers MUST implement circuit breakers or congestion control.
o Can browser decide to drop an encoding? If so, how does the application know
it has been dropped?
e SFU-driven:
o SFU can signal application to drop a layer, application then sets encodings|j].
active = false.
o draft-ietf-avtext-rtp-stream-pause provides TMMBR/TMMBN mechanism (no
browser plan to implement?)

https://github.com/w3c/webrtc-pc/issues/370
https://github.com/w3c/webrtc-pc/issues/370

Issue 370: Add drop option for RTCDegradationPreference

® Existing knobs:

o degradationPreference (resolution/framerate tradeoff)
o priority (relative importance of encodings)

enum RTCDegradationPreference { enum RTCPriorityType {
"maintain-framerate”, "very-low",
"maintain-resolution”, "low",
"balanced" "medium”,

¥ "high”

}s

http://w3c.github.io/webrtc-pc/#idl-def-RTCPriorityType.very-low
http://w3c.github.io/webrtc-pc/#idl-def-RTCPriorityType.low
http://w3c.github.io/webrtc-pc/#idl-def-RTCPriorityType.medium
http://w3c.github.io/webrtc-pc/#idl-def-RTCPriorityType.high
https://github.com/w3c/webrtc-pc/issues/370
https://github.com/w3c/webrtc-pc/issues/370

degradationPreference & priority

e degradationPreference indicates framerate/resolution preference of an
RTCRtpSender:

partial dictionary RTCRtpParameters {
sequence<RTCRtpEncodingParameters> encodings;
RTCDegradationPreference degradationPreference = "balanced";

¥
o priority indicates the relative importance of an encoding:

partial dictionary RTCRtpEncodingParameters {
boolean active;

RTCPriorityType priority;

1

In the event of congestion....

e parameters.degradationPreference indicates whether the RTCRtpSender encoder

EE I 1

should “maintain-resolution”, “maintain-framerate” (or be “balanced”).
o All encodings have the same degradationPreference.
e parameters.encodingsfj].priority indicates the relative importance of each encoding.

O

O

Determines QoS marking of each encoding.
Does it also guide encoder behavior (preference of encodings to drop if all
cannot be sent simultaneously)?

Example: “base” encoding at “high” priority, “medium” encoding at “medium”
priority, best encoding at “low” priority.

m Best encoding dropped first, then medium encoding, then base encoding.

Example: Sign language interpretation

e Framerate more important than resolution
o Possible use for minimum framerate constraint in gUM (overconstrained excepti
minimum is unattainable)
o parameters.degradationPreference = “maintain-framerate”;
e Two simulcast streams sent (one for PC, one for mobile)
o In event of congestion, degrade resolution in both streams first, then drop the hig
resolution stream entirely.

encodings[0].scaleResolutionDownBy = 1.0;
encodings[0].priority = “low”; // Drop high resolution simulcast stream if need
encodings[1].scaleResolutionDownBy = 2.0;
encodings([1].priority = “high”; // Keep low resolution simulcast stream if poss

Issue 442: Impossible to know if ICE
agent is “finished” checking
The problem:
The ICE failed state is defined as:

The ICE Agent is finished checking all candidate pairs and failed to
find a connection for at least one component.

However, “finished checking” is somewhat ambiguous. We could be
“finished checking” all existing candidate pairs, but then get a new ICE
candidate (either local or remote), and start checking again.

https://github.com/w3c/webrtc-pc/issues/442

What trickle ICE says about this

In section 8.1, the trickle ICE spec says that the Failed state is reached when:

e all candidate harvesters have completed and the agent is not expecting to discover any new
local candidates;

e the remote agent has sent an end-of-candidates indication for that check list as described in
Section 9.3.

However, besides doing another offer/answer with “a=end-of-candidates”, there’s no way to tell the ICE
agent it can expect no more remote candidates.

https://tools.ietf.org/html/draft-ietf-mmusic-trickle-ice-02#section-9.3
https://tools.ietf.org/html/draft-ietf-mmusic-trickle-ice-02#section-9.3
https://tools.ietf.org/html/draft-ietf-mmusic-trickle-ice-02#section-9.3

Question 1: Should “failed” only occur after local and remote
gathering is done?

Pros:
e “failed” is now definitive. It can only be recovered through an ICE restart.

e |t matches the trickle ICE definition of “Failed”.

e |t allows the ICE agent to speed up ICE conclusion (in the case of non-aggressive nomination)

Cons:
[)
[)

If someone forgets to signal remote end-of-candidates, they’ll never see “failed”.
For most cases, this change won’t make a difference, since gathering is usually finished by the time

the “failed” state is reached anyway.
Applications can already determine this condition themselves, so this change doesn’t give app

developers much advantage.

Question 2 (if answer to question 1 is “yes”):
How does an application indicate end of remote candidates?

In order from smallest to biggest change:
1. Just rely on “a=end-of-candidates”. If someone wants to see “failed”, they need to do another
offer/answer when they see gathering is done.
2. Have atimeout (no candidates for 30 seconds == done)
3. Allow passing in a special candidate to “addlceCandidate” (perhaps with an mid and ufrag)
4. Add a new method (“candidatesComplete()”, for example)

Question 2b (if answer to question 1 is “no”):
Is this an acceptable definition of “failed™?

The ICE Agent is done gathering, and finished checking all known candidate pairs, and failed to
find a connection. If a new remote candidate is added while in this state, the state may return to
“checking”.

Question 3: Should “failed” also occur if permanently
“disconnected”?

“Disconnected” is defined as:

Liveness checks have failed for one or more components. This is more aggressive than failed, and
may trigger intermittently (and resolve itself without action) on a flaky network.

However, if the 30-second consent interval elapses for all connections, “disconnected” becomes
unresolvable (without an ICE restart). Should “disconnected” become “failed” in this case?

Pros:
e Gives applications a way to know when an ICE restart is absolutely needed.
Cons:
e By the time 30 seconds have passed, applications should probably have already done an ICE
restart. Or the user has already refreshed the browser tab.
e ‘“failed”s meaning becomes even more complex.

And what about “completed”?

Most of the answers to these questions also apply to “completed”.
If we decide “failed” means “finished gathering and checking and failed to find a connection”, then
“completed” should probably mean “finished gathering and checking and found a connection”.

What if one side never stops gathering?

If one side or the other decides it will keep trickling as new networking interfaces come up, then it will
never signal "end of candidates", and the failed/completed state will never happen.

Thank you

Special thanks to:
Google - for the Hangout

WG Participants, Editors & Chairs

