
Modernize WebRTC
Simpler, safer, better

Reading prep for this presentation

JS Arrow functions are used for briefer examples:

pc.createOffer(function(stream) { }, function(reason) { }, options);

pc.createOffer(stream => { }, reason => { }, options);

They’re still callback functions.

2

Reading prep for this presentation

Promise - unified primitive for asynchronicity.

foo(result => log("foo's callback called w/" + result), failure);

foo().then(result => log("foo fulfilled w/" + result)).catch(failure);

Powerful standardized pattern/error-handling/prose
http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
Standard prose & good guide: https://w3ctag.github.io/promises-guide
WebIDL-supported: http://heycam.github.io/webidl/#idl-promise
Spec: http://people.mozilla.org/~jorendorff/es6-draft.html

3

http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
https://w3ctag.github.io/promises-guide
http://heycam.github.io/webidl/#idl-promise
http://people.mozilla.org/~jorendorff/es6-draft.html

1. Why
2. What’s proposed
3. Compatibility

4

Paradigm shift has already happened

Anything new in the last year with async values
uses promises. WebRTC is main callback holdout.

● http://w3c.github.io/mediacapture-main
● http://gmandyam.github.io/image-capture
● http://w3c.github.io/screen-orientation
● http://w3c.github.io/push-api
● http://html.spec.whatwg.org#dom-createimagebitmap
● http://slightlyoff.github.io/ServiceWorker/spec/service_worker

5

http://w3c.github.io/mediacapture-main
http://w3c.github.io/mediacapture-main
http://gmandyam.github.io/image-capture
http://gmandyam.github.io/image-capture
http://w3c.github.io/screen-orientation
http://w3c.github.io/screen-orientation
http://w3c.github.io/push-api
http://w3c.github.io/push-api
http://html.spec.whatwg.org/#dom-createimagebitmap
http://html.spec.whatwg.org/#dom-createimagebitmap
http://slightlyoff.github.io/ServiceWorker/spec/service_worker
http://slightlyoff.github.io/ServiceWorker/spec/service_worker

Big reason: Our error-handling is broken
pc.createAnswer(answer => {
 try {
 doSomething(answer);
 pc.setLocalDescription(answer);
 } catch(e) { failure(e); }
}, failure);

Error-handling in our current API is fraught with peril and should
not be exposed to anyone. Promises fix this.
Plain callbacks without some exception-plan is not OK for async APIs. Where do
exceptions go? Spec doesn’t say. Users must vigilantly try/catch everything.

6

What if doSomething throws? Things stop, so say why!

What’s proposed - Offer/Answer
pc1.createOffer(options)
.then(offer => pc1.setLocalDescription(offer))
.then(() => pc2.setRemoteDescription(pc1.localDescription))
.then(() => pc2.createAnswer())
.then(answer => pc2.setLocalDescription(answer))
.then(() => pc1.setRemoteDescription(pc2.localDescription))
.then(() => log(“Connected!”))
.catch(reason => log(“Failed to connect! ” + reason.message));

// A complete local-loop offer/answer-exchange in 8 lines of code!

https://github.com/w3c/webrtc-pc/pull/11

7

If it took callbacks, it now
returns a promise instead

https://github.com/w3c/webrtc-pc/pull/11
https://github.com/w3c/webrtc-pc/pull/11

What’s proposed - signalingState

//Instead of:
 pc.onsignalingstate = event => {
 if (pc.signalingState == “have-local-offer”)
 doSomething(pc.localDescription);
 };

//You can write:
 pc.haveLocalOffer.then(offer => doSomething(offer));

http://w3ctag.github.io/promises-guide/#state-transitions
https://github.com/w3c/webrtc-pc/pull/11

8

 Promise attributes:
 pc.haveLocalOffer
 pc.haveRemoteOffer
 pc.stable

http://w3ctag.github.io/promises-guide/#state-transitions
http://w3ctag.github.io/promises-guide/#state-transitions
https://github.com/w3c/webrtc-pc/pull/11
https://github.com/w3c/webrtc-pc/pull/11

Promise use-case #1: addIceCandidate
var pc1 = new RTCPeerConnection();
var pc2 = new RTCPeerConnection();

pc1.onicecandidate = obj => {
 pc2.haveRemoteOffer.then(() =>
 !obj.candidate || pc2.addIceCandidate(obj.candidate)).catch(failed);
};
pc2.onicecandidate = obj => {
 pc1.stable.then(() =>
 !obj.candidate || pc1.addIceCandidate(obj.candidate)).catch(failed);
};
//Caches ICE candidates until peer is ready in this local-loop setup.

https://github.com/w3c/webrtc-pc/pull/11

9

 Promise attributes:
 pc.haveLocalOffer
 pc.haveRemoteOffer
 pc.stable

https://github.com/w3c/webrtc-pc/pull/11
https://github.com/w3c/webrtc-pc/pull/11

function dial(pc, signal) {

 return mediaDevices.getUserMedia(constraints)

 .then(stream => pc.addStream(stream))

 .then(()=> pc.createOffer(options))

 .then(offer => pc.setLocalDescription(offer))

 .then(() => signal.then(answer =>
 pc.setRemoteDescription(answer)));

}

function pickup(pc, signal) {

 return mediaDevices.getUserMedia(constraints)

 .then(stream => pc.addStream(stream))

 .then(() => signal.then(offer =>
 pc.setRemoteDescription(offer)))

 .then(() => pc.createAnswer(options))

 .then(answer => pc.setLocalDescription(answer));

}

 var alice = new RTCPeerConnection(), bob = new RTCPeerConnection();

 Promise.all([dial(alice, bob.stable), pickup(bob, alice.haveLocalOffer)])

 .then(() => log("Connected!"))

 .catch(failed); // 1-line error handling in this faster local-loop call-setup

Promise use-case #2: concurrency
10

Compatibility expiry

1. Spec it
All future browsers must implement it as truth for all eternity. Spec is ugly.

2. Deprec it
Browsers have hybrid interface for 2 years with deprecation warnings.
Other browsers not required to adopt. Spec is clean.

3. Wreak it
Browsers break users now, because prefixes! Spec is clean. 3 month train.

(* Combine expiry with one of two approaches on the following two slides)

11

Compatibility approach #1: Prefixes
 var pc = RTCPeerConnection(); // promise
 var pc = webkitRTCPeerConnection(); // callbacks
 var pc = mozRTCPeerConnection(); // callbacks

 var PeerConnection = window.RTCPeerConnection || // BAD! breaks!
 window.webkitRTCPeerConnection ||
 window.mozRTCPeerConnection;

 var PeerConnection = window.webkitRTCPeerConnection ||
 window.mozRTCPeerConnection ||
 window.RTCPeerConnection; // GOOD!

12

Upside: fixing
is trivial +
compatible.

Compatibility approach #2: Hybrid
 var pc = RTCPeerConnection(); // promise and callbacks

 pc.createAnswer(success, fail); // OK
 var promise = pc.createAnswer(); // OK
 var promise = pc.createAnswer(success, fail); // OK

Trivial to implement. Ugly if we “spec it”, createOffer esp. icky:

 pc.createOffer(success, fail, options); // OK
 var promise = pc.createOffer(options); // OK
 var promise = pc.createOffer(optionsOrSuccess, fail, options); // OK

https://github.com/w3c/webrtc-pc/pull/12

13

https://github.com/w3c/webrtc-pc/pull/12
https://github.com/w3c/webrtc-pc/pull/12

Backwards-compatible pseudo polyfill
// for setLocalDescription, setRemoteDescription & addIceCandidate
var _foo = RTCPeerConnection.prototype.foo;
RTCPeerConnection.prototype.foo = function(arg, success, fail) {
 return (success || fail)? _foo(arg).then(success, fail) : _foo(arg);
}

// for icky createOffer (createAnswer is trivial)
var _bar = RTCPeerConnection.prototype.bar;
RTCPeerConnection.prototype.bar = function(argOrSuccess, fail, arg) {
 return (!argOrSuccess || isArg(argOrSuccess))?
 _bar(argOrSuccess) : _bar(arg).then(success, fail);
}

14

Summary

● Remove our broken error-handling.
● Simpler and safer to use. Better API. Modern.
● Synergy with MediaCapture and ImageCapture.
● WebRTC = super-asynchronous = super-benefits.
● Inevitability. In a year’s time we’ll regret not having

done this (proof: a year ago).
● TODO: Choose Compatibility approach and expiry.

15

