Modernize WebRTC

Simpler, safer, better

Reading prep for this presentation

JS Arrow functions are used for briefer examples:

pc.createOffer(function(stream) { }, function(reason) { }, options);

e

pc.createOffer(stream => { }, reason => { }, options);

They're still callback functions.

Reading prep for this presentation

Promise - unified primitive for asynchronicity.

foo(result => log("foo's callback called w/" + result), failure);

g g

foo().then(result => log("foo fulfilled w/" + result)).catch(failure);

Powerful standardized pattern/error-handling/prose

http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
Standard prose & good guide: https://w3ctag.github.io/promises-guide
WebIDL-supported: http://heycam.github.io/webidl/#idl-promise

Spec: http://people.mozilla.org/~jorendorff/es6-draft.html

http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
http://stackoverflow.com/questions/22539815/arent-promises-just-callbacks
https://w3ctag.github.io/promises-guide
http://heycam.github.io/webidl/#idl-promise
http://people.mozilla.org/~jorendorff/es6-draft.html

1. Why
2. What’s proposed
3. Compatibility

Paradigm shift has already happened

Anything new in the last year with async values
uses promises. WebRTC is main callback holdout.

http://w3c.qgithub.io/mediacapture-main

http://gmandyam.qgithub.io/image-capture

http://w3c.qithub.io/screen-orientation

http://w3c.github.io/push-api

http://html.spec.whatwg.org#dom-createimagebitmap

http://slightlyoff.qithub.io/ServiceWorker/spec/service_worker

http://w3c.github.io/mediacapture-main
http://w3c.github.io/mediacapture-main
http://gmandyam.github.io/image-capture
http://gmandyam.github.io/image-capture
http://w3c.github.io/screen-orientation
http://w3c.github.io/screen-orientation
http://w3c.github.io/push-api
http://w3c.github.io/push-api
http://html.spec.whatwg.org/#dom-createimagebitmap
http://html.spec.whatwg.org/#dom-createimagebitmap
http://slightlyoff.github.io/ServiceWorker/spec/service_worker
http://slightlyoff.github.io/ServiceWorker/spec/service_worker

6

Big reason: Our error-handling is broken

pc.createAnswer (answer => {

try {
doSomething(answer); what i doSome'Ihm fhrows? Thras stop, =0 say mhs!

pc.setLocalDescription(answer);
} catch(e) { failure(e); }
}, failure);

Error-handling in our current APl is fraught with peril and should
not be exposed to anyone. Promises fix this.

Plain callbacks without some exception-plan is not OK for async APls. Where do
exceptions go? Spec doesn’t say. Users must vigilantly try/catch everything.

What’s proposed - Offer/Answer

¥ it took callbacks, it now
pcl.createOffer(options) retumns & promise nstead
.then(offer => pc1.setlLocalDescription(offer))

.then(() => pc2.setRemoteDescription(pci.localDescription))
.then(() => pc2.createAnswer())

.then(answer => pc2.setlLocalDescription(answer))

.then(() => pcl.setRemoteDescription(pc2.localDescription))
.then(() => log(“Connected!"”))

.catch(reason => log(“Failed to connect! " + reason.message));

// A complete local-loop offer/answer-exchange in 8 lines of code!

https://github.com/w3c/webrtc-pc/pull/11

https://github.com/w3c/webrtc-pc/pull/11
https://github.com/w3c/webrtc-pc/pull/11

What’s proposed - signalingState

Promise attributes:
pc.havelLocalOffer
pc.haveRemoteOffer

//Instead of: pc.stable

pc.onsignalingstate = event => {
if (pc.signalingState == “have-local-offer”)
doSomething(pc.localDescription);

},

//You can write:
pc.haveLocalOffer.then(offer => doSomething(offer));

http://w3ctag.qgithub.io/promises-quide/#state-transitions
https://qithub.com/w3c/webrtc-pc/pull/11

http://w3ctag.github.io/promises-guide/#state-transitions
http://w3ctag.github.io/promises-guide/#state-transitions
https://github.com/w3c/webrtc-pc/pull/11
https://github.com/w3c/webrtc-pc/pull/11

Promise use-case #1: addlceCandidat;

. Promise atributes:
var pcl = new RTCPeerConnection(); pc.haveLocalOffer
var pc2 = new RTCPeerConnection(); pc.haveRemoteOffer

pc.stable

pcl.onicecandidate = obj => {
pc2.haveRemoteOffer.then(() =>
lobj.candidate || pc2.addIceCandidate(obj.candidate)).catch(failed);
F
pc2.onicecandidate = obj => {
pcl.stable.then(() =>
lobj.candidate || pcl.addIceCandidate(obj.candidate)).catch(failed);
F

//Caches ICE candidates until peer is ready in this local-loop setup.

https://qithub.com/w3c/webrtc-pc/pull/11

https://github.com/w3c/webrtc-pc/pull/11
https://github.com/w3c/webrtc-pc/pull/11

10

Promise use-case #2: concurrency

var alice = new RTCPeerConnection(), bob = new RTCPeerConnection();
Promise.all([dial(alice, bob.stable), pickup(bob, alice.havelLocalOffer)])
.then(() => log("Connected!"))

.catch(failed);
function dial(pc, signal) { function pickup(pc, signal) {
return mediaDevices.getUserMedia(constraints) return mediaDevices.getUserMedia(constraints)
.then(stream => pc.addStream(stream)) .then(stream => pc.addStream(stream))
.then(()=> pc.createOffer(options)) .then(() => signal.then(offer =>

.then(offer => pc.setlLocalDescription(offer)) pc.setRemoteDescription(offer)))

.then(() => signal.then(answer => .then(() => pc.createAnswer(options))

pc.setRemoteDescription(answer))); .then(answer => pc.setlLocalDescription(answer));

11

Compatibility expiry

1. Spec it

All future browsers must implement it as truth for all eternity. Spec is ugly.

2. Deprec it
Browsers have hybrid interface for 2 years with deprecation warnings.
Other browsers not required to adopt. Spec is clean.

3. Wreak it

Browsers break users now, because prefixes! Spec is clean. 3 month train.

(* Combine expiry with one of two approaches on the following two slides)

12

Compatibility approach #1: Prefixes

var pc = RTCPeerConnection();

var pc = webkitRTCPeerConnection();

var pc = mozRTCPeerConnection();

var PeerConnection = window.RTCPeerConnection || // BAD! breaks!
window.webkitRTCPeerConnection ||
window.mozRTCPeerConnection;

var PeerConnection = window.webkitRTCPeerConnection || 8 trividl +

window.mozRTCPeerConnection || compaticie,
window.RTCPeerConnection;

13

Compatibility approach #2: Hybrid

var pc = RTCPeerConnection();

pc.createAnswer (success, fail);
var promise = pc.createAnswer();
var promise = pc.createAnswer(success, fail);

Trivial to implement. Ugly if we “spec it”, createOffer esp. icky:

pc.createOffer(success, fail, options);
var promise = pc.createOffer(options);
var promise = pc.createOffer(optionsOrSuccess, fail, options);

https://github.com/w3c/webrtc-pc/pull/12

https://github.com/w3c/webrtc-pc/pull/12
https://github.com/w3c/webrtc-pc/pull/12

Backwards-compatible pseudo polyfill

var _foo = RTCPeerConnection.prototype.foo;
RTCPeerConnection.prototype.foo = function(arg, success, fail) {
return (success || fail)? _foo(arg).then(success, fail) : _foo(arg);

var _bar = RTCPeerConnection.prototype.bar;
RTCPeerConnection.prototype.bar = function(argOrSuccess, fail, arg) {
return (!argOrSuccess || 1isArg(argOrSuccess))?
_bar(argOrSuccess) : _bar(arg).then(success, fail);

15

Summary

Remove our broken error-handling.

Simpler and safer to use. Better APl. Modern.
Synergy with MediaCapture and ImageCapture.
WebRTC = super-asynchronous = super-benefits.
Inevitability. In a year’'s time we’ll regret not having
done this (proof: a year ago).

e TODO: Choose Compatibility approach and expiry.

