
WebRTC Data
Streams
Justin Uberti
IETF 82.5

Recap
Add support to the PeerConnection API to let
apps exchange arbitrary data with low latency
and either reliable or unreliable delivery
semantics.

This data exchange may be performed with or
without transfer of audio/video media.
Applications may establish multiple data
channels.

Some Use Cases
● Real-time games (player state updates)
● Real-time text
● Co-browsing (mouse pointer updates)
● Remote desktop (mouse/keyboard events)
● File transfer
● P2P broadcast

Many of these cases will be multiparty (i.e.
messages will be sent/received to/from many
remote parties)

Requirements for API
from [I-D.jesup-rtcweb-data-02]
1. Multiple simultaneous datagram streams, in

conjunction with 0 or more media streams
2. Reliable and unreliable
3. Congestion control
4. Prioritization

Changes Since Last Draft
● Tied DataStreams to a PeerConnection
● BaseStream base class
● DataStreams are unidirectional
● Added MTU for unreliable streams
● Better WebSocket alignment

○ Other send() variants
○ bufferedAmount replaces onreadytosend()
○ onsendresult removed

DataStream Design
● Familiar semantics, similar to MediaStream

○ Unidirectional
○ Label
○ Multiplexing
○ Signaling
○ Notifications

● Specific new features to satisfy use cases
○ Sending data (of course)
○ Reliable/unreliable support
○ Prioritization

● Reuses WebSocket idioms, where possible
○ Some fundamental differences (unreliable,

unidirectional)

DataStream and
MediaStream
● BaseStream class added to unify streams

○ removeStream
○ localStreams, remoteStreams
○ onaddstream, onremovestream

● addStream needs to be distinct
(MediaStreamHints)

Changes to
PeerConnection

interface PeerConnection {
 [...]
 // Creates an adds a data stream, either reliable or unreliable.
 // Label and reliability cannot be changed for a stream after it is created.
 // Will trigger new signaling.
 void addDataStream (in DOMString label, in boolean reliable);
 // Removes a media or data stream from this PeerConnection.
 // Will trigger new signaling.
 void removeStream (in BaseStream stream);
 readonly attribute BaseStream[] localStreams;
 readonly attribute BaseStream[] remoteStreams;
 [...]
};

http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-PeerConnection-addStream-void-MediaStream-stream-MediaStreamHints-hints
http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-PeerConnection-addStream-void-MediaStream-stream-MediaStreamHints-hints
http://dev.w3.org/2011/webrtc/editor/webrtc.html#widl-PeerConnection-removeStream-void-MediaStream-stream
http://dev.w3.org/2011/webrtc/editor/webrtc.html#idl-def-MediaStream
http://www.w3.org/TR/webrtc/#idl-def-MediaStream
http://www.w3.org/TR/webrtc/#widl-PeerConnection-localStreams
http://www.w3.org/TR/webrtc/#idl-def-MediaStream
http://www.w3.org/TR/webrtc/#widl-PeerConnection-remoteStreams

DataStream API
interface BaseStream {
 // Type of stream, either "media" or "data".
 readonly attribute DOMString type;
};

interface DataStream {
 [NoConstructor]
 // Label, like MediaStream's |label|. Maps to lower-level stream id.
 readonly attribute DOMString label;
 // Whether this stream has been configured as reliable.
 readonly attribute boolean reliable;
 // The relative priority of this stream.
 // If bandwidth is limited, higher priority streams get preference.
 attribute long priority;
 // States, as in MediaStream.
 const unsigned short LIVE = 1;
 const unsigned short ENDED = 2;
 readonly attribute unsigned short readyState;
 ...

DataStream API
 ...
 // Indicates the amount of buffered data, as in WebSockets.
 // Only applicable in reliable mode.
 readonly attribute unsigned long bufferedAmount;
 // Indicates the maximum size, in bytes, of outbound messages.
 // Only applicable in unreliable mode.
 readonly attribute unsigned long maxMessageSize;
 // Sends the supplied datagram, as in WebSockets.
 // Returns a nonnegative message id if the message can be sent.
 // Throws a TBD exception if the message is too large.
 long send(in DOMString message);
 long send(in ArrayBuffer data);
 // Called when a message is received, as in WebSockets.
 // Arguments: DOMString/ArrayBuffer message (depending on type of message)
 // object metadata (with seqnum, timestamp)
 attribute Function onmessage;
 };

Basic Flow
● ls = pc.addDataStream (type, label)
● <signaling>
● [remote] onaddstream (rs)
● ls.sendMessage (send datagram)
● [remote] onMessage (datagram received)

Full Example
// create and attach an unreliable data stream
var aLocalDataStream = local.addDataStream("myChannel", false);

// outgoing SDP is dispatched, including a media block like:
m=application 49200 <TBD> 127
a=rtpmap:127 application/html-peer-connection-data
a=datachannel:1 label:myChannel

// this SDP is plugged into the remote onSignalingMessage, firing onAddStream
// of a new unreliable DataStream with label "myChannel"
[remote] onAddStream(aRemoteDataStream);

// signaling completes, and the data stream goes active on both sides;
// we start sending data on the data stream
aLocalDataStream.send("foo"); // sends with seqnum S, timestamp T0

// the message is delivered
[remote] onmessage("foo", { seqnum: S, timestamp: T0 });

// the data stream is discarded
local.removeStream(aLocalDataStream)

// new signaling is generated
 m=application 49200 <TBD> 127

a=rtpmap:127 application/html-peer-connection-data

// resulting in onRemoveStream for the remote
[remote] onremovestream(aRemoteDataStream);

Multiparty Example
// create and attach a data stream
var aLocalDataStream = local.addDataStream("myChannel", false);

// outgoing SDP is dispatched, including a media block like:
m=application 49200 <TBD> 127
a=rtpmap:127 application/html-peer-connection-data
a=datachannel:1 label:myChannel

// remote side later replies with its own SDP
m=application 49200 <TBD> 127
a=rtpmap:127 application/html-peer-connection-data
a=datachannel:2 label:BsChannel
a=datachannel:3 label:CsChannel

// this results in onaddstream being fired for each data stream
onaddstream(remoteDataStreamB);
onaddstream(remoteDataStreamC);

// we start sending data on the data stream
aLocalDataStream.send("foo");

// the message is delivered to B and C
[remote-B] onmessage("foo", { seqnum: S1, timestamp: T0 });
[remote-C] onmessage("foo", { seqnum: S2, timestamp: T0 });

Open Issues
● Simple vs full API

○ Stefan's proposal
● Signaling

○ Consensus for multi-channel and reliability to be
handled in browser

○ This implies some signaling of channels is needed,
to ensure local and remote have agreement

○ Does SDP approach make sense?
● CC feedback to app

○ Reliable can use bufferedAmount
○ Can return error for unreliable
○ Is this sufficient?

Questions?

