RtpTransceivers

at TPAC 2015

What’s been added

A 1:1 mapping between an RtpTransceiver, m-line, RtpSender, and RtpReceiver

e PeerConnection.addTransceiver(“video”,
{send: bool, receive: bool})
PeerConnection.addTransceiver(track)
PeerConnection.ontrack has a .transceiver
PeerConnection.getTransceivers()

RtpTransceiver.mid, .sender, .receiver, .stopped
o .sender and .receiver are never null/undefined, even if {send: false}.

e RtpTransceiver.stop()
© Turns the m-line into “port 0”

What's been removed or changed

e offerToRecieveAudio and offerToReceiveVideo are gone
o Replaced with PeerConnection.addTransceiver(kind, {send: false, receive: true})

e addTrack may activate an RtpSender rather than adding one
o And add one otherwise

e removeTrack deactivates an RtpSender rather than removing one
o Transceivers are never removed (except perhaps because of rollback... TBD)

Warmup Example

var track = null;
var sender = pc.addTransceiver(“video”).sender;
var reallyAnswered = false;
getUserMedia(...).then(stream => {
track = stream.getVideoTracks()[0];
if (reallyAnswered) {
sender.replaceTrack(track);

}

1)

pc.createOffer().then(pc.setLocalDescription).then(signalOffer).then(answer => {
pc.setRemoteDescription(answer);
// At this point, ICE, DTLS, and RTP are all warming up.

1)
onReallyAnswered = function() {
reallyAnswered = true;

if (track) {
sender.replaceTrack(track);
}
}s

Media before signalling example

var audio = pc.addTransceiver(“audio”);
var video = pc.addTransceiver(‘“video”);
videoTag.srcObject = new MediaStream([audio.track, video.track]);

// We are ready to receive media even before an answer comes back
pc.createOffer().then(pc.setLocalDescription);

Remaining Questions to answer in the API

e When do we reuse an RtpSender?
o Proposed rule (in the spec already): Only “reuse” an RtpSender that has never been used before.
o More details in later slides

e Should we add an API to activate an RtpSender?
o More details on later slides

e How do we handle rollback?
o 2?7

Question 1: When does addTrack reuse a sender?

This question comes up because we want the following situation to “just work”:

Offerer:
pc.addTrack(...);
pc.createOffer(...);

Answerer:

pc.setRemoteDescription(offer);

pc.addTrack(...); // Attach track to sender created by setRemoteDescription
pc.createAnswer(...);

One sendrecv m-line. No re-offer needed. RtpSender needs to be reused.

Option A: Reuse sender if it's currently “inactive”

Pros:
e Satisfies the common scenario
Cons:

e If you call addTrack, then removeTrack, then addTrack, the remote
RtpReceiver will be reused, which means the remote track should be also,
which isn’'t what’s intended by the sender.

Option B: Reuse sender if inactive and created by
setRemoteDescription

Pros:
e Satisfies the common scenario explained on the previous slide.
Cons:

e Perhaps too restrictive. For example:
pc.addTransceiver(kind, {receive: true, send: false});
pc.addTrack(track);

e Should that be one m-line or two?

e Have to keep track of how it got created, which is awkward.

Option C: Reuse sender if it has never been active

Pros:

e Satisfies the common scenario
e Simple rule

Cons:

e Have to track whether it was ever active (not so bad)

Recommended! And already in the spec.

Question 2: API for activating a sender?

This is relevant to the “early warmup” scenario.

offerer:
pc.addTransceiver(kind);
pc.createOffer();

answerer:

pc.setlLocalDescription(offer);

// A seperate m-line requires a re-offer!

var sender = pc.addTransceiver(“video”);

// Can’t call pc.addTrack because we don’t have a track yet.

getUserMedia(...).then(function(stream) {
sender.replaceTrack(stream.getVideoTracks()[0]);

1)

Option A: Add RtpSender.setActivate(bool)

pc.ontrack = function(e) {
e.transceiver.sender.setActive(true);
getUserMedia(...).then(function(stream) {
e.transceiver.sender.replaceTrack(track);

1)
}

Pros:
e Gives flexible control to the app.
Cons:

e May require renegotiation (when nothing else on RtpSender does)
e We wanted to keep SDP-isms in RtpTransceiver, not RtpSender.

Option B: Add RtpTransceiver.activateSender()

pc.ontrack = function(e) {
e.transceiver.activateSender();
getUserMedia(...).then(function(stream) {
e.transceiver.sender.replaceTrack(track);

1)
}

Pros:

e Gives flexible control to the app.
e Doesn’t mess up RtpSender with SDP-isms and renegotiation

Cons:

e s alittle bit of a one-off.

Option C: Allow replaceTrack to activate a sender

pc.ontrack = function(e) {
e.transceiver.sender.replaceTrack(null);
getUserMedia(...).then(function(stream) {
e.transceiver.sender.replaceTrack(track);

1)
}

Pros:

e No new API surface
® Doesn’t mess up RtpSender with SDP-isms and renegotiation

Cons:

e Really kind of ugly and implicit

Question 3: Rollback transceiver created by setRemoteDescription

pc.setRemoteDescription(offer); // Transceiver created
pc.addTrack(track); // Track attached to sender
videoTag.srcObject = new MediaStream([pc.getReceivers()[@].track)]);

Now what happens to that transceiver if we do a rollback?
Isitin pc.getTransceivers()?

Option A: Never remove transceivers in a rollback

Pros:

e Simple.
e No problems with use of transceiver before rollback.

Cons:

e Transceivers might pile up with lots of rollbacks.
e Doesn'’t fully restore to a pre-setRemoteDescription state.

Option B: Always remove transceivers in a rollback

Pros:

e Simple.
e Transceivers won't pile up.

Cons:

e Any operations that affected the transceiver (such as addTrack, in the
previous example) will be thrown away.

Option C: Always remove transceiver with rollback, but don’t
activate sender until setLocalDescription.

Pros:
e Addresses both the common use cases and the corner cases.
Cons:

e We have to redefine addTrack to not activate a sender, but instead to propose
activating it in createAnswer, and then actually activate it in
setLocalDescription. Which is a lot like addTrack was before addTransceiver
was added.

Option D: Only remove if unmodified since setRemoteDescription

Pros:
e Addresses both the common use cases and the corner cases.
Cons:

e More complex (define what “modified” means)

Option E: RtpTransceiver not in getTransceiver until setLocalDesc

Pros:
e Addresses both the common use cases and the corner cases.
Cons:

e The transceiver from .ontrack doesn’t show up in getTransceivers() until later,
which is kind of weird.

Option F: Put in special text about addTrack

Something like “if addTrack in a state with an offer which is then rolled back, re-
apply the same addTrack once an offer is reapplied”

Pros:
e Addresses both the common use cases and the corner cases.
Cons:

e Complex in the spec, and perhaps somewhat in the impl. Maybe some more
edge cases.

Option G: getCurrentTransceivers()/getPendingTransceivers()

Pros:

e Addresses both the common use cases and the corner cases.
e Matches local and remote description

Cons:

e Add additional complexity for the JS. But maybe that’s a good thing.

Option H: Don’t support rollback of remote offer

Pros:

e Really simple: Avoids the problem altogether.
Cons:

e Apps can no longer rollback remote offers.

But... what's the use case of rolling back a remote offer anyway?

