

● PeerConnection.addTransceiver(“video”,

 {send: bool, receive: bool})

● PeerConnection.addTransceiver(track)

● PeerConnection.ontrack has a .transceiver

● PeerConnection.getTransceivers()

● RtpTransceiver.mid, .sender, .receiver, .stopped
○ .sender and .receiver are never null/undefined, even if {send: false}.

● RtpTransceiver.stop()
○

What’s been removed or changed

●
○

●
○

●
○ …

Warmup Example

var track = null;

var sender = pc.addTransceiver(“video”).sender;

var reallyAnswered = false;

getUserMedia(...).then(stream => {

 track = stream.getVideoTracks()[0];

 if (reallyAnswered) {

 sender.replaceTrack(track);

 }

});

pc.createOffer().then(pc.setLocalDescription).then(signalOffer).then(answer => {

 pc.setRemoteDescription(answer);

 // At this point, ICE, DTLS, and RTP are all warming up.

});

onReallyAnswered = function() {

 reallyAnswered = true;

 if (track) {

 sender.replaceTrack(track);

 }

};

var audio = pc.addTransceiver(“audio”);

var video = pc.addTransceiver(“video”);

videoTag.srcObject = new MediaStream([audio.track, video.track]);

// We are ready to receive media even before an answer comes back

pc.createOffer().then(pc.setLocalDescription);

●
○
○

●
○

●
○

pc.addTrack(...);

pc.createOffer(...);

pc.setRemoteDescription(offer);

pc.addTrack(...); // Attach track to sender created by setRemoteDescription

pc.createAnswer(...);

Option A: Reuse sender if it’s currently “inactive”

Pros:

● Satisfies the common scenario

Cons:

● If you call addTrack, then removeTrack, then addTrack, the remote
RtpReceiver will be reused, which means the remote track should be also,
which isn’t what’s intended by the sender.

Pros:

● Satisfies the common scenario explained on the previous slide.

Cons:

● For example:
pc.addTransceiver(kind, {receive: true, send: false});

pc.addTrack(track);

●
●

Option C: Reuse sender if it has never been active

Pros:

● Satisfies the common scenario
● Simple rule

Cons:

● Have to track whether it was ever active (not so bad)

Recommended! And already in the spec.

Question 2: API for activating a sender?

This is relevant to the “early warmup” scenario.

offerer:
pc.addTransceiver(kind);

pc.createOffer();

pc.setLocalDescription(offer);

// A seperate m-line requires a re-offer!

var sender = pc.addTransceiver(“video”);

// Can’t call pc.addTrack because we don’t have a track yet.

getUserMedia(...).then(function(stream) {

 sender.replaceTrack(stream.getVideoTracks()[0]);

});

Option A: Add RtpSender.setActivate(bool)

pc.ontrack = function(e) {

 e.transceiver.sender.setActive(true);

 getUserMedia(...).then(function(stream) {

 e.transceiver.sender.replaceTrack(track);

 });

}

●

●
●

Option B: Add RtpTransceiver.activateSender()

pc.ontrack = function(e) {

 e.transceiver.activateSender();

 getUserMedia(...).then(function(stream) {

 e.transceiver.sender.replaceTrack(track);

 });

}

●
●

●

Option C: Allow replaceTrack to activate a sender

pc.ontrack = function(e) {

 e.transceiver.sender.replaceTrack(null);

 getUserMedia(...).then(function(stream) {

 e.transceiver.sender.replaceTrack(track);

 });

}

Pros:

● No new API surface
●

Cons:

● Really kind of ugly and implicit

pc.setRemoteDescription(offer); // Transceiver created

pc.addTrack(track); // Track attached to sender

videoTag.srcObject = new MediaStream([pc.getReceivers()[0].track)]);

pc.getTransceivers()?

Option A: Never remove transceivers in a rollback

Pros:

● Simple.
● No problems with use of transceiver before rollback.

Cons:

● Transceivers might pile up with lots of rollbacks.
● Doesn’t fully restore to a pre-setRemoteDescription state.

Option B: Always remove transceivers in a rollback

Pros:

● Simple.
● Transceivers won’t pile up.

Cons:

● Any operations that affected the transceiver (such as addTrack, in the
previous example) will be thrown away.

Pros:

● Addresses both the common use cases and the corner cases.

Cons:

● We have to redefine addTrack to not activate a sender, but instead to propose
activating it in createAnswer, and then actually activate it in
setLocalDescription. Which is a lot like addTrack was before addTransceiver
was added.

Pros:

● Addresses both the common use cases and the corner cases.

Cons:

● More complex (define what “modified” means)

Pros:

● Addresses both the common use cases and the corner cases.

Cons:

● The transceiver from .ontrack doesn’t show up in getTransceivers() until later,
which is kind of weird.

Something like “if addTrack in a state with an offer which is then rolled back, re-
apply the same addTrack once an offer is reapplied”

Pros:

● Addresses both the common use cases and the corner cases.

Cons:

● Complex in the spec, and perhaps somewhat in the impl. Maybe some more
edge cases.

Pros:

● Addresses both the common use cases and the corner cases.
● Matches local and remote description

Cons:

● Add additional complexity for the JS. But maybe that’s a good thing.

Option H: Don’t support rollback of remote offer

Pros:

● Really simple: Avoids the problem altogether.

Cons:

● Apps can no longer rollback remote offers.

But… what’s the use case of rolling back a remote offer anyway?

