W3C WebRTC
WG Meeting

Thursday, April 11, 2019
9:30 AM Pacific Time

W3C WG IPR Policy

e This group abides by the W3C Patent Policy
https://www.w3.org/Consortium/Patent-Policy/

e Only people and companies listed at
https://www.w3.0rg/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!

e \Welcome to the interim meeting of the W3C
WebRTC WG!

o During this meeting, we hope to make progress on
open issues in webrtc-pc, webrtc-stats,
mediacapture-main and screen capture.

About this Virtual Meeting

Information on the meeting:

e Meeting info:

o https://www.w3.0rg/2011/04/webrtc/wiki/April 11 2019
e Link to latest drafts:

o https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
https://www.w3.org/TR/mst-content-hint/
https://w3c.github.io/webrtc-nv-use-cases/

o https://w3c.github.io/webrtc-dscp-exp/

e Link to Slides has been published on WG wiki
e Scribe? IRC http://irc.w3.org/ Channel: #webrtc
e The meeting is being recorded.

O O O 0O 0O O O

https://www.w3.org/2011/04/webrtc/wiki/April_11_2019
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
https://www.w3.org/TR/mst-content-hint/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-exp/
https://www.w3.org/2011/04/webrtc/wiki/April_11_2019
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

For Discussion Today
e WebRTC-PC

O O O 0O O O

Issue 2026: Should WPT webrtc folder be renamed to webrtc-pc? (Youenn)

Issue 2080: Simulcast: Which layer gets dropped first? (Harald)

Issue 2141: Missing specification for how to assign bandwidth between layers (Harald)
Issue 2116: Simulcast Stats Implications (Varun & Henrik)

Issue 2121: Constrainable properties on remote tracks are under-specified (Henrik)
Issue 2150: transceiver.stop() needs more work (Jan-lvar)

e Screen Sharing

O

©)

Issue 102: Clarify what audio is captured and what “application” means in the context of
restrictOwnAudio (Henrik)

Issue 103: Which audio constraints from media capture are applicable? (Henrik)

e Mediacapture-main

(@)
(@)

Issue 551: Should we allow empty string device IDs? (Youenn)
Issue 559: Spec does not handle fingerprinting related to exposing non-default capture devices

(Youenn)

Issue 561: enumerateDevices can be used to track user devices in background pages

(Youenn)

Issue 562: What constraint name should be exposed in case of a getUserMedia query with

multiple failing constraints (Youenn)

Issue 573: Why do we have overconstrained event? (Henrik) 5

https://github.com/w3c/webrtc-pc/issues/2026
https://github.com/w3c/webrtc-pc/issues/2080
https://github.com/w3c/webrtc-pc/issues/2141
https://github.com/w3c/webrtc-pc/issues/2116
https://github.com/w3c/webrtc-pc/issues/2121
https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/mediacapture-screen-share/issues/102
https://github.com/w3c/mediacapture-screen-share/issues/103
https://github.com/w3c/mediacapture-main/issues/551
https://github.com/w3c/mediacapture-main/issues/559
https://github.com/w3c/mediacapture-main/issues/561
https://github.com/w3c/mediacapture-main/issues/562
https://github.com/w3c/mediacapture-main/issues/573

If Time Permits...

e WebRTC-PC issues relating to rollback and ICE restart
o Issue 2165: A simpler glare-proof setLocalDescription() (Jan-lvar)
o Issue 2166: A simpler non-racy rollback (Jan-lvar)
o Issue 2167: {iceRestart: true} works poorly with ONN (Jan-lvar)

https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/issues/2167

WebRTC-PC Issues

o |Issue 2026: Should WPT webrtc folder be renamed to webrtc-pc? (Youenn)

Issue 2080: Simulcast: Which layer gets dropped first? (Harald)

e Issue 2141: Missing specification for how to assign bandwidth between layers
(Harald)

e |Issue 2116: Simulcast Stats Implications (Varun & Henrik)

e Issue 2121: Constrainable properties on remote tracks are under-specified
(Henrik)

e |Issue 2150: transceiver.stop() needs more work (Jan-lvar)

https://github.com/w3c/webrtc-pc/issues/2026
https://github.com/w3c/webrtc-pc/issues/2080
https://github.com/w3c/webrtc-pc/issues/2141
https://github.com/w3c/webrtc-pc/issues/2116
https://github.com/w3c/webrtc-pc/issues/2121
https://github.com/w3c/webrtc-pc/issues/2150

Issue 2026 : Should WPT webrtc folder be renamed to webrtc-pc?
(Youenn)

e Advantages

o Consistency with other specs

m XMLHttpRequest folder was renamed to xhr

o Allow running only the webrtc-pc tests in test runner

o [Easier tooling, for instance to allow the spec to refer to the WPT tests
e Downsides

o Might disrupt existing WPT PRs

o Might disrupt WPT users, browser vendor Cls in particular

https://github.com/w3c/webrtc-pc/issues/2026

Issue 2080: Simulcast: Which layer gets dropped first? (Harald)

e Proposal: Drop the last one in the list on the a=simulcast: line

o This is consistent with the IETF specification

o We already promise to follow the IETF specification. No new text needed.
e Corollary: Have to specify order on the a=simulcast: line

o Suggestion: Same order as on the encodings array
e This is done and merged as #2071

No action needed on what the subject line says. The text of #2080 describes an
editorial matter of getting things to be obvious in the spec.

Any comments/concerns?

https://github.com/w3c/webrtc-pc/issues/2080
https://github.com/w3c/webrtc-pc/pull/2071

Issue 2141: Missing specification for how to assign
bandwidth between layers (Harald)

e At the Prague hackathon, it was discovered that Chrome was allocating all the bandwidth to one of the
layers, starving others.

e This is a bug - but if we want to test for it as part of the WG’s test suite, we’d better have a description that
says what'’s right.

e Congestion control has traditionally had a lot of latitude. So we don’t want to overconstrain too much. Still,
it should be possible to do better than nothing.

e Drop order of layers is described in draft-ietf-mmusic-sdp-simulcast. Bandwidth allocation isn't.

e SFUs frequently send different layers to different clients, so having one good layer and one bad layer is a
Bad Thing.

e Suggested text could be “If congestion occurs, each layer SHOULD be given a share of bandwidth such
that it remains useful - for instance, if frame rate is reduced, it should be reduced proportionally on all
non-stopped layers”.

e \Where should it go?

10

https://github.com/w3c/webrtc-pc/issues/2141

Issue 2116: Simulcast Stats Implications - Part 1 (Henrik)

Current stats is not ready to accurately describe Simulcast scenarios.
Problem 1: Simulcast adds multiple RTP streams per sender. The sender (and likewise receiver) stats
dictionaries are currently a mix of “sender”, “RTP stream” and “track/source” stats.
e frameWidth, audiolLevel, etc
Solution:
e Move RTP stream-specific stats to RTC[In/Out]boundRtpStreamStats (Issue 402).
o This affects a few stats that have been there for over a year :(
o But “sender” and “receiver” stats have not been implemented, only their predecessor: “track” stats :)
e Multiple simulcast streams = 1 sender but multiple outbound-rtps (Issue 394).

e Move track/source stats to a new dictionary, RTCMediaSourceStats (Issue 400).

11

https://github.com/w3c/webrtc-stats/issues/402
https://github.com/w3c/webrtc-stats/issues/394
https://github.com/w3c/webrtc-stats/issues/400
https://github.com/w3c/webrtc-pc/issues/2116

Issue 2116: Simulcast Stats Implications - Part 1 (Henrik)

Problem 2: How to know which simulcast stream maps to which outbound-rtp?
Solution:
e Add RTCOutboundRtpStreamStats.rid (Issue 395).

e Related, add RTC[Audio/Video]SenderStats.mid (Issue 396).
o Applies to “receiver” too.

e Add RTCEncodingParameterStats so that we know encoding properties of each outbound-rtp
stream (Issue 398).

12

https://github.com/w3c/webrtc-pc/issues/2116
https://github.com/w3c/webrtc-stats/issues/395
https://github.com/w3c/webrtc-stats/issues/396
https://github.com/w3c/webrtc-stats/issues/398

Issue 2116: Simulcast Stats Implications - Part 2 (Varun)

Can the receiver know encoding/source stream it is receiving via getStats?
e Can we correlate which SSRC'’s data is being forwarded by the SFU (in the

case of simulcast), so that receiver is able to log it via getStats on the receiver
side?

13

https://github.com/w3c/webrtc-pc/issues/2116

huh?

User A

SSRC AH, AL

%‘

SFU

User B

14

huh?

User A

SSRC AH, AL

%‘

SFU

User B

SSRC BR1

15

huh?

User A

SSRC AH, AL

%‘

SFU

User B

SSRC BR1

Due to network conditions
SFU MAY forward AH or AL
over BR1 to User B

16

huh?

User A

SSRC AH, AL

%‘

SFU

How does User B know

Due to network conditions
SFU MAY forward AH or AL

which encoding (AH or AL?)
was received on BR1

over BR1 to User B

17

Proposal

e SFU in RTP packets with SSRC BR1 add the CSRC of the forwarded
Stream SSRC AH or AL?

18

Proposal

e SFU in RTP packets with SSRC BR1 add the CSRC of the forwarded
Stream SSRC AH or AL?

e If this makes sense,
a. Expose CSRC info in getStats() — which we probably already do.
b. Do we support CSRC for video?

19

Issue 401 SVC Stats

Scalability Mode | Spatial | Resolution | Temporal | Inter-layer
Layers |Ratio Layers dependency
e There can be multiple scalable layers within a single RtpStream EE’ 1 j

L2T1 2 21 1 Yes
L2T2 2 2:1 2 Yes
L2T3 2 21 3 Yes
e In getStats we want to know L3T1 3 21 1 Yes
o what is the layer dependency (e.g. scalability mode) il L 2 Yos
L3T3 3 21 3 Yes
o Counter for how many packets or frames were sent or iz: 2 121 ; :ZZ
recelved L2T3h 2 1:54 3 Yes
m for a particular resolution L3T2_KEY 3 71 2 -
m for a particular frame rate L3T3_KEY 3 21 3 Yes
L4T5_KEY 4 21 5 Yes
L4T7_KEY 4 24 7 Yes
L3T2_KEY_SHIFT|3 2:1 2 Yes
L3T3_KEY_SHIFT|3 21 3 Yes
L4TS5_KEY_SHIFT |4 21 5 Yes
LAT7_KEY_SHIFT|4 21 7 Yes

20

https://github.com/w3c/webrtc-stats/issues/401

Issue 401 SVC Stats: Layer dependency

e Add _scalability mode (e.g., L1T2, L1T3) to
RTCInboundRtpStreamStats and RTCOutboundRtpStreamStats

21

https://w3c.github.io/webrtc-svc/
https://github.com/w3c/webrtc-stats/issues/401

Issue 401 SVC Stats: Resolution Stats

e Add Counter for how many packets or frames were sent or received for a
particular resolution
o perResolutionFramesSent/Received
o perResoultionPacketsSent/Received

e \We have encounterd this before with DSCPs

record<USVString, unsigned long> perDscpPacketsSent;

e PROPOSAL:

record<USVString, unsigned long> perResolutionFramesSent;

e UVString can be “height”, or “width”, or “height x width”
e If we just report height or width, we could use unsigned long instead

22

https://github.com/w3c/webrtc-stats/issues/401
https://heycam.github.io/webidl/#idl-record
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-unsigned-long
https://w3c.github.io/webrtc-stats/#dom-rtcoutboundrtpstreamstats-perdscppacketssent
https://heycam.github.io/webidl/#idl-record
https://heycam.github.io/webidl/#idl-USVString
https://heycam.github.io/webidl/#idl-unsigned-long

Issue 401 SVC Stats: FrameRate Stats

e Add Counter for how many packets or frames were sent or received for a
particular resolution
o distributionOfTimeSinceLastFrameSent
o distributionOfTimeSinceLastFrameReceived

e PROPOSAL:

record<double, unsigned long> distributionOfTimeSincelLastFrame*;

e double represents interframedelay (so this can be 16.66, 33.33, 66.66 etc)
o representing 15 FPS (66.66ms), 30 FPS (33.33ms) and 60 FPS (16.66ms)
o Example: {33.33: 50, 66.66: 2000 }
© UVString or double?

23

https://github.com/w3c/webrtc-stats/issues/401
https://heycam.github.io/webidl/#idl-record
https://heycam.github.io/webidl/#idl-double
https://heycam.github.io/webidl/#idl-unsigned-long

Issue 2121: Constrainable properties on remote tracks are
under-specified (Henrik)

Currently, the spec says MediaStreamTrackSettings of remote tracks “will only be populated with members to the
extent that data is supplied [via SDP and RTP data]. This means that certain members, such as facingMode,
echoCancellation, latency, deviceld and groupld, will always be missing”.

A reading of the spec allows remoteTrack.applyConstraints() to have an affect by transforming the track, but it's
under-specified, perhaps it should always reject? Chrome assumed constraints that “make sense” are still
applicable.

Status:
e Chrome has already shipped width, height, aspectRatio, resizeMode and frameRate.
o Implemented as downscaling and dropping frames.

Proposal:
e Specify these constraints as downscaling/dropping frames.
o Use case: Receive video in HD, but save a video to file in SD.
e Discuss other constraints separately, perhaps we don’t want to support them.

24

https://github.com/w3c/webrtc-pc/issues/2121
https://w3c.github.io/webrtc-pc/#mediatracksupportedconstraints-mediatrackcapabilities-mediatrackconstraints-and-mediatracksettings

Issue 2150 / PR 2168: transceiver.stop() needs more work (jib)

PROBLEM: The BUNDLE spec has painted us in a corner where calling stop () on the first transceiver in
“have-remote-offer” signalingState, is lethal: It stops all transceivers. Happens ONLY in that state! Racy.

Impossible to fix in BUNDLE. Yet this flies in the face of the design of negotiationneeded, which was to
manage the negotiation state-machine, separately from high-level actions.

The primary use-cases for transceiver.stop() are:

1. High-level (everyone): Relinquish resources after an app is done with a transceiver:

button.onclick = () => {
it (button.checked) {
this.transceiver = pc.addTransceiver(track, {streams: [stream]});
} else {
this.transceiver.stop();
}
}

1. The above code will work 99.9% of the time, but once in a blue moon it will stop all transceivers; footgun!

2. Low-level (expert): Reject an offered m-line in time for the answer (in “have-remote-offer”). 25

https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2168
https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

Issue 2150 / PR 2168: transceiver.stop() needs more work (jib)

1. Modifying JSEP’s definition of stopped seems fraught with peril. Best to leave it alone.
2. Some differences from direction:
a. stop() is terminal, and has instant (RTCP BYE) as well as negotiated effects.
b. currentDirection is a result of negotiation that happens after, whereas
stopped is an input to negotiation, that needs to happen ahead of negotiation.

Best to design something on top of JSEP, and leave JSEP alone.

REVISED GOAL: Have stopped miss the hazardous “have-remote-offer” window.

26

https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2168

Issue 2150 / PR 2168: transceiver.stop() needs more work (jib)

SOLUTION: A 2-step stopping procedure, inspired by direction vs. currentDirection.

Leave JSEP alone and define a new stopping property (in webrtc-pc only):

stopping of type boolean, readonly
The stopping attribute indicates that the stop() method has been called on this transceiver, but the

transceiver has not yet been stopped. If true, this transceiver will be stopped in the queued task that fires
the negotiationneeded eventin the stable signaling state. On getting, this attribute MUST return the value
of the [[Stopping]] slot.

In short, a stopping transceiver will be stopped on the next tick or once we're in “stable” state, whichever is
later, thus missing the “have-remote-offer” danger window.

Proposals:

A: Everything like today, but define a new stableStop() method that sets this new stopping attribute,
which triggers negotiation, causing the transceiver to always be stopped from stable state.

B: Like (A) except rename stableStop() to stop(), and rename old hazardous stop() to reject().

Only B is the real proposal. A is just a rhetorical device. 27

https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2168

Issue 2150 / PR 2168: transceiver.stop() needs more work (jib)

SOLUTION: A 2-step stop() that sets stopping immediately, and queues stopped to stable.

1

=

[Exposed=Window] interface RTCRtpTransceiver {

readonly attribute DOMString? mid;

[SameObject]

readonly attribute RTCRtpSender sender;

[SameObject]

readonly attribute RTCRtpReceiver receiver;

readonly attribute boolean stopping;

readonly attribute boolean stopped;
attribute RTCRtpTransceiverDirection direction;

readonly attribute RTCRtpTransceiverDirection? currentDirection;

void stop ();
void reject ();
void setCodecPreferences (sequence<RTCRtpCodecCapability> codecs);

o

Experts may use transceiver.reject() to reject m-lines like today (they’re experts!)
28

https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2168

Issue 2150 / PR 2168: transceiver.stop() needs more work (jib)

FAQ:

Q: When exactly will the transceiver be stopped?

Right before your negotiationneeded callback is called, on the same queued task. Doesn’t matter if you have one.
Q: | don’t use negotiationneeded. Will this break me?

No, you'll be fine. The following should continue to work:

transceiver.stop();
awalt pc.setLocalDescription(await pc.createOffer());

...because the createOffer/Answer algorithms are written to pick up on state changes before succeeding. The
order of queued tasks in JS guarantee we pick up the queued stopped from stop().

Q: What happens if | call stop() in “have-remote-offer”’?

The answer will be unaffected. You won'’t be stopped until you return to stable, where negotiationneeded fires
again to trigger a second negotiation. This allows for safe stopping of any transceiver, even in BUNDLE.
(Odd behavior? No. It's what already happens today if you were a few milliseconds later). 29

https://github.com/w3c/webrtc-pc/issues/2150
https://github.com/w3c/webrtc-pc/pull/2168
http://w3c.github.io/webrtc-pc/#dfn-final-steps-to-create-an-offer

Screen Sharing Issues

e Issue 102: Clarify what audio is captured and what “application” means in the context of
restrictOwnAudio (Henrik)
e Issue 103: Which audio constraints from media capture are applicable? (Henrik)

30

https://github.com/w3c/mediacapture-screen-share/issues/102
https://github.com/w3c/mediacapture-screen-share/issues/103

Issue 102: Clarify what audio is captured and what “application”
means in the context of restrictOwnAudio (Henrik)

Recap:
e getDisplayMedia({video:true,audio:true}) is supported, but audio is optional.
o Up to the browser whether or not to return any audio.
o When returning audio, up to the browser what audio is included.
e restrictOwnAudio:true means:
o The user agent MUST attempt to remove audio produced by the application that called
getDisplayMedia(). If unable to do so through processing, the user agent SHOULD exclude the

application’s audio from being captured.

Problem: “application” is vague... does it mean browser, document origin, document, window/tab, etc?
1. Does restrictOwnAudio require suppressing audio from child iframes? From parent iframes?
2. Does restrictOwnAudio require suppressing audio from other tabs of the same origin?

Proposal:
e Clarify that “application” means “document”.

o The answerto 1) and 2) is NO.
o Note: The optional nature of audio capture allows a UA to suppress more audio than “document” if

this is needed to achieve no application audio. A UA is allowed to implement this as “exclude tab”.
31

https://github.com/w3c/mediacapture-screen-share/issues/102
https://github.com/w3c/mediacapture-screen-share/pull/94/files

Issue 103: Which audio constraints from media capture are
applicable? (Henrik)

We have not defined which audio constraints are applicable to getDisplayMedia():
e volume

sampleRate

sampleSize

latency

channelCount

(echoCancellation - microphone-specific, N/A)

(autoGainControl - microphone-specific, N/A)

(noiseSuppression - microphone-specific, N/A)

We do not want filter sources for privacy reasons. But are any of these useful for processing?
|deal values? Resampling?

Probably not very useful.

Proposal: Don’t support any of them.

32

https://github.com/w3c/mediacapture-screen-share/issues/103

Mediacapture-main Issues

e Issue 551: Should we allow empty string device IDs? (Youenn)

e |Issue 559: Spec does not handle fingerprinting related to exposing non-default capture devices
(Youenn)

e Issue 561: enumerateDevices can be used to track user devices in background pages (Youenn)

e |Issue 562: What constraint name should be exposed in case of a getUserMedia query with multiple
failing constraints (Youenn)

e Issue 573: Why do we have overconstrained event? (Henrik)

33

https://github.com/w3c/mediacapture-main/issues/551
https://github.com/w3c/mediacapture-main/issues/559
https://github.com/w3c/mediacapture-main/issues/561
https://github.com/w3c/mediacapture-main/issues/562
https://github.com/w3c/mediacapture-main/issues/573

Issue 551: Should we allow empty string device IDs? (Youenn)

e Chrome exposes device ids ‘default’ values
e Safari exposes device ids “ values
o In case a page does not have ‘device-info’ permission
o To enforce mitigations for origins that had pages with ‘device-info’ permission
e Specification expects device ids to be per-origin unique identifiers
o “The origin-unique identifier for the source of the MediaStreamTrack. The
same identifier MUST be valid between browsing sessions of this origin, but
MUST also be different for other origins”
e Proposal
o Allow specific values to be non unique

o As long as these values do not relate to a specific user a4

https://github.com/w3c/mediacapture-main/issues/551

Issue 559: Spec does not handle fingerprinting related to exposing
non-default capture devices (Youenn)

e enumerateDevices/getUserMedia can be used for fingerprinting purposes

o enumerateDevices IS used for fingerprinting purposes
e Safariis building some mitigations

o Try to hit a sweet spot between protection and existing apps needs

o In particular, enumerateDevices will provide little information if ‘device-info’ or

‘camera’ or ‘microphone’ permission is not granted
m Enumeration of default devices only with “ deviceld values

e These mitigations do not always match the spec, hence the following issues

35

https://github.com/w3c/mediacapture-main/issues/559

Issue 561: enumerateDevices can be used to track user devices in
background pages (Youenn)

e devicechange event can only be fired on this condition:
o Page has focus or page is capturing or page has ‘device-info’ permission
e Spec tries to prevent device addition/removal leakage to background pages
o By not updating [[storedDeviceList]]
e The [[storedDevicelist]] protection can be bypassed and is not easy to fix
o Through polling, a background page knows when devices are added/removed
e Proposal
o Mandate enumerateDevices to delay processing until the devicechange
condition is met
o Mandate getUserMedia to delay processing similarly

36

https://github.com/w3c/mediacapture-main/issues/561

Issue 562: What constraint name should be exposed in case of a
getUserMedia query with multiple failing constraints (Youenn)

e OverconstrainedError.constraint allows a web page to identify why a query fails
o This can be used to silently gather information on the device setup without
user consent
e Mitigating this while still providing meaningful information to rightful apps is difficult
if not contradictory
e Proposal
o User agents MAY/SHOULD/MUST not report OverconstrainedError.constraint
if the context does not have ‘device-info’ permission

37

https://github.com/w3c/mediacapture-main/issues/562

Issue 573: Why do we have overconstrained event? 1/2 (Henrik)

getUserMedia() gives you a track with the capabilities/settings you asked for.
But even with the right settings, you might not get what you asked for.

Example: poor lighting condition => less FPS than the camera aims for. This should
trigger “onoverconstrained”.

Problems:
e Overconstrained mutes the track... (foot-gun!)
o ...making it unusable (silent/black).

o ...which contradicts the definition of “mute”:
The muted/unmuted state of a track reflects whether the source provides any media at this moment.

o If applicable to remote WebRTC tracks, “onmute” has a different meaning.
e Quoting Jan-lvar:

o It's undesired: demand has not materialized in 5 yeatrs.

o It's redundant: just measure the output directly and react to it.

38

https://github.com/w3c/mediacapture-main/issues/573
https://github.com/w3c/mediacapture-main/issues/573#issuecomment-470700204

Issue 573: Why do we have overconstrained event? 2/2 (Henrik)

Devil's advocate counter-arguments:
e “It's undesired”. This may only true because the track gets muted, you might still be interested in whether or
not you get what you ask for if it didn’t get muted.
e ‘It’s redundant” Having the application measure the output directly and reacting may require application
logic to mimic parts of the constraints algorithm - this would be redundant too.
o Application-measurements means polling, which means there may be a delay before overconstrained
is noticed.

It might be possible to “fix overconstrained” by...
e Not muting the track on overconstraining.
e Add a boolean isOverconstrained attribute.
e Add an onunoverconstrained event.

But this APl is overkill for “am | getting the right framerate?” and is largely untestable.
Proposal: Remove “overconstrained”.

Remove it from the spec, no browser has implemented this.
Call for Consensus to remove has been out for a week, closing Real Soon Now.

39

https://github.com/w3c/mediacapture-main/issues/573

Jan-lvar’s extra slides

I’'m available to present these if there’s time and
interest. Otherwise please delete (I have copies).

Issue 2165: A simpler glare-proof setLocalDescription() (Jan-lvar)
Issue 2166: A simpler non-racy rollback (Jan-lvar)
|ssue 2167: {iceRestart: true} works poorly with ONN (Jan-lvar)

40

https://github.com/w3c/webrtc-pc/issues/2165
https://github.com/w3c/webrtc-pc/issues/2166
https://github.com/w3c/webrtc-pc/issues/2167

Issue 2165: A simpler glare-proof setLocalDescription() (jib)

In "Perfect neqgotiation in WebRTC", | discovered to my horror that the following, sadly, is glare-prone:

pc.onnegotiationneeded = async () => {
awalt pc.setLocalDescription(await pc.createOffer());
io.send({desc: pc.localDescription});

}

A remote offer may come in between createOffer & setlLocalDescription, causing it to fail. To safeguard we need:

pc.onnegotiationneeded = async () => {
const offer = await pc.createOffer();
if (pc.signalingState != "stable") return; // —- safeguard!
awalt pc.setlLocalDescription(offer);
io.send({desc: pc.localDescription});

}

But who’s going to remember that? Over an intermittent? Instead, | propose we allow a simpler and safe API.
pc.onnegotiationneeded = async () => io.send({desc: await pc.setLocalDescription()});

4
...and have it mean “call createOffer or createAnswer implicitly, if needed, based on signalingState”. Glare-proof!

https://github.com/w3c/webrtc-pc/issues/2165
https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

Issue 2165: A simpler glare-proof setLocalDescription() (jib)

Farfetched? No. Fun fact: the sdp argument to setLocalDescription() is already unused! a ritual:
awalt pc.setlLocalDescription(await pc.createOffer());
...IS identical to:
awalt pc.createOffer(); await pc.setLocalDescription({type: "offer"});
...because the spec already says to fish out [[LastCreatedOffer]] and use that here. Ditto answer.
Proposal A: The next natural step here is...

If [[LastCreatedOffer]] is null, instead of rejecting with InvalidModificationError, just invoke the
createdOffer algorithm implicitly to set it. Duh! Ditto answer.

Proposed B: Proposal A +
Default {type} to (effectively) signalingState.includes("offer")? "answer" : "offer"

100% backwards compatible. setRemoteDescription() would remain unchanged. 492

https://github.com/w3c/webrtc-pc/issues/2165

Issue 2166: A simpler non-racy rollback (Jan-lvar)

In "Perfect negotiation in WebRTC", | roll back offers to solve glare (“the polite peer”), but, sadly, rollback is racy:

io.onmessage = async ({data: {description, candidate}}) => {
if (description) {

if (description.type == "offer" && pc.signalingState == "have-local-offer"){
if (!polite) return;
await Promise.all([// —- safeguard!
pc.setlLocalDescription({type: "rollback"}), // - safeguard!
pc.setRemoteDescription(description) // —- safeguard!
1); // —- safeguard!

A remote candidate may come in between rollback & setRemoteDescription, causing it to be missed! To safeguard,
| use Promise.all to enqueue both methods ahead of any addiceCandidate that may come in. But needing
Promise.all to avoid intermittents is messed up! | propose we allow a simpler and safe API:

io.onmessage = async ({data: {description, candidate}}) => {
if (description) {
if (description.type == "offer" && pc.signalingState == "have-local-offer"){
if (!polite) return;
pc.allowRollback();
awalt pc.setRemoteDescription(description); 43

https://github.com/w3c/webrtc-pc/issues/2166
https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

Issue 2167: {iceRestart: true} works poorly with ONN (Jan-lvar)

How does one restart ICE today when using negotiationneeded? Here’s a good trick (but spot the bug!):

pc.onnegotiationneeded = async options => {
await pc.setlLocalDescription(await pc.createOffer(options));
io.send({desc: pc.localDescription});

b
pc.oniceconnectionstatechange = () => {
if (pc.iceConnectionState == “failed”) {
pc.onnegotiationneeded({iceRestart: true});
}
b

Clever reuse... Except this will fail if iceconnectionstatechange fires outside of “stable” state!

Furthermore, what if your ONN uses rollback (e.g. to implement “the polite peer”)? Your ICE restart just got rolled
back! What do you do? You need to write app logic to persist until the offer is applied and not rolled back by the
other peer. You will most likely never do this, leaving you open to intermittents.

Proposal:

pc.restartIce(); 44

https://github.com/w3c/webrtc-pc/issues/2167

Bonus slide: Perfect negotiation with a pushy SFU

Something | don’t cover in "Perfect negotiation in WebRTC", is dealing with an SFU. Fippo explained that SFUs
can be “pushy”: They’ll send an offer, followed immediately by second offer, a.k.a. a “better offer”.

Two strategies come to mind: A) “The uber-polite peer” who rolls back the fist offer, or B) the “submissive FIFO
peer” who queues the offers. Which strategy to pick depends on how many answers the SFU expects.

But here’s how to implement the “submissive FIFO peer”:

io.onmessage = async ({data: {description, candidate}}) => {
if (description) {
if (description.type == "offer" && pc.signalingState =="have-remote-offer"){

awalt Promise.all([
pc.setLocalDescription({type: "rollback"}),
pc.setRemoteDescription(description),
pc.createAnswer(),
pc.setlLocalDescription({type: "answer"})

1),

A second offer may come in while we’re busy responding to the first offer. To safeguard, | use Promise.all to
front-load the peer connection’s queue with all the methods | want done in sequence. This gets us all the way back
to “stable” before any new peer connection methods get a go! Race solved. 45

https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

For extra extra credit

Bk
T =

46

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The bird

47

