WHATWG-stream ALL the THINGS

And get off the main thread?

While working on RTCQuicTransport

People kept asking for
-~ T e : 3 =
WHATWG streams | | = $o Vi T i TMsdﬁ-,;

At first | was ...

But maybe it's not so bad for QUIC data channels
interface RTCQuicTransport { WHAT ": lﬂw H“'

RTCQuicStream createSendStream(); Foon
RTCQuicStream createBidirectionalStream();
ReadableStream<RTCQuicStream> receiveStreams();
WritableStream<ReadableStream> sendStreams();

}

interface RTCQuicStream {

readonly attribute ReadableStream? readable; ACTUALLY MAKES.US

readonly attribute WritableStream? writable; FATD

Will others come along t00?

+ ‘ - ’ 1/1

SCTP data channels?

partial interface RTCDataChannel {
WritableStream sendStream();
ReadableStream<ReadableStream> receiveStreams();

}

MSE?

partial interface SourceBuffer {
WritableStream appendStream();

}

RTP?

partial interface RtpSender {
ReadableStream<EncodedMediaOrFeedback> readEncodedFrames();
WritableStream<EncodedMediaOrFeedback> writeReceiverFeedback();

}

partial interface RtpReceiver {
WritableStream<EncodedMediaOrFeedback> writeEncodedFrames();
ReadableStream<EncodedMediaOrFeedback> readFeedback();

}

i | _. !
| Then we couldreally conne

1ty ¥ ﬂ_:ﬂ F
" el 2 1 -
" "N. I Wi
7 & A K, D
2 " ~

SCTP to MSE?

var sctp = ...; // SCTP RTCDataChannel
var mse = ...; // MSE SourceBuffer
var parser = transformStream(parseMessage);

sctp.readStreams()
.pipeThrough(parser)
.pipeInto(mse.appendStream())

QUIC to MSE?

var quic = ...; // RTCQuicTransport
var mse = ...; // MSE SourceBuffer
var parser = transformStream(parseMessage);

quic.receiveStreams()
.pipeThrough(parser)
.pipeInto(mse.appendStream())

such neutral

QUIC to WebRTC?

var quic = ...; // RTCQuicTransport

var receiver = ...; // RtpReceiver

var parser = transformStream(parseMessage);

var serializer = transformStream(serializeMessage);

quic.receiveStreams()
.pipeThrough(parser)
.pipeInto(receiver.writeEncodedFrames())
receiver.readFeedback()
.pipeThrough(serializer)
.pipeInto(quic.sendStreams());

WebRTC to QUIC?

: : much ruin diet
var quic = ...; // RTCQuicTransport

var sender = ...; // RtpSender
var serializer = transformStream(serialize);
var parser = transformStream(parseMessage);

wow such fempt

sender.readEncodedFrames()
.pipeThrough(serializer)
.pipeInto(quic.sendStreams());
quic.receiveStreams()
.pipeThrough(parser) e
.pipeInto(sender.writeReceiverFeedback()) 5 " _ﬂ 2
strait fo my

very taste wowr

E2EE

var sender = ...; // RtpSender

var receiver = ...; // RtpReceiver
transformStream(encryptFrame);
transformStream(decryptFrame);

var encryptor
var decryptor

sender.readEncodedFrames ()
.pipeThrough(encryptor)
.pipeInto(sender.writeEncodedFrames());

receiver.readEncodedFrames()
.pipeThrough(decryptor)
.pipeInto(receiver.writeEncodedFrames());

RTP to RTP? (without transcoding)

var sender = ...; // RtpSender
var receiver = ...; // RtpReceiver

receiver.readEncodedFrames()
.pipeInto(sender.writeEncodedFrames());

RTP to MSE? (history!)

var rtp ...; // RtpReceiver
var mse = ...; MSE SourceBuffer
var serializer = transformStream(serialize);

rtp.readEncodedFrames()
.pipeThrough(serializer)
.pipeInto(mse.appendStream());

But you can already
do this without streams

The real value comes from

Getting off the main JS thread
(click the link for more slides)

https://docs.google.com/presentation/d/1nunzO21RJDGCwe_tVpUVBi_Aka84ukhAwMaFH1WYZ3Y/edit?usp=sharing

What would the stream chunks be?

typedef MediaOrFeedback EncodedMediaFrame or
RTCKeyFrameRequest or RTCMediaStats

interface EncodedMediaFrame {

attribute DOMTimeStamp timestamp;
attribute DOMString mimeType;
attribute SourceBuffer encodedData;

interface EncodedAudioFrame : EncodedMediaFrame {

}

attribute unsigned short channels;
attribute unsigned long samplesPerSecond;
attribute unsigned long samples;

interface RTCKeyFrameRequest {
attribute DOMTimeStamp? lastDecodedTimestamp;

}

interface RTCMediaStats {
attribute RTCTrackSenderStats? senderStats;
attribute RTCTrackReceiverStats? receiverStats;

interface EncodedVideoFrame : EncodedMediaFrame {
attribute DOMTimeStamp? duration;
attribute bool keyFrame;
attribute unsigned short rotation; // in degrees

}

Pros/Cons of WHATWG streams vs not

better:

® piping, esp. if we can get off the main thread (see upcoming slides)

® piping, esp. if other things adopt streams
o receiveStream.pipeThrough(parser).pipeInto(...)
o transport.receiveStreams.pipeThrough(parser).pipeInto(...)

worse.

e Uncertain maturity, adoption, performance, ease of impl of streams
e Can't write fin bit and last chunk at the same time

® More clunky for simple things
o receiveStream.readable.getReader().read(view).then(...)
o transport.receiveStreams.getReader.read().then(...)

Conclusion

It seems that switching to using WHATWG streams would be better if:

e We can also get something like WorkletTransformStream or web workers to
pipe things off the main thread

e We can also get things to pipe to/from (RTP, MSE)

e We can implement this whole thing in a performant way

