
WHATWG-stream ALL the THINGS

And get off the main thread?

While working on RTCQuicTransport

People kept asking for
WHATWG streams

At first I was ...

But maybe it's not so bad for QUIC data channels

interface RTCQuicTransport {

 RTCQuicStream createSendStream();

 RTCQuicStream createBidirectionalStream();

 ReadableStream<RTCQuicStream> receiveStreams();

 WritableStream<ReadableStream> sendStreams();

}

interface RTCQuicStream {

 readonly attribute ReadableStream? readable;

 readonly attribute WritableStream? writable;

 ...

}

But it's sad being lonely

Will others come along too?

SCTP data channels?

partial interface RTCDataChannel {

 WritableStream sendStream();

 ReadableStream<ReadableStream> receiveStreams();

}

MSE?

partial interface SourceBuffer {

 WritableStream appendStream();

}

RTP?

partial interface RtpSender {

 ReadableStream<EncodedMediaOrFeedback> readEncodedFrames();

 WritableStream<EncodedMediaOrFeedback> writeReceiverFeedback();

}

partial interface RtpReceiver {

 WritableStream<EncodedMediaOrFeedback> writeEncodedFrames();

 ReadableStream<EncodedMediaOrFeedback> readFeedback();

}

Then we could really connect some pipes

SCTP to MSE?

var sctp = ...; // SCTP RTCDataChannel

var mse = ...; // MSE SourceBuffer

var parser = transformStream(parseMessage);

sctp.readStreams()

 .pipeThrough(parser)

 .pipeInto(mse.appendStream())

QUIC to MSE?

var quic = ...; // RTCQuicTransport

var mse = ...; // MSE SourceBuffer

var parser = transformStream(parseMessage);

quic.receiveStreams()

 .pipeThrough(parser)

 .pipeInto(mse.appendStream())

QUIC to WebRTC?

var quic = ...; // RTCQuicTransport

var receiver = ...; // RtpReceiver

var parser = transformStream(parseMessage);

var serializer = transformStream(serializeMessage);

quic.receiveStreams()

 .pipeThrough(parser)

 .pipeInto(receiver.writeEncodedFrames())

receiver.readFeedback()

 .pipeThrough(serializer)

 .pipeInto(quic.sendStreams());

WebRTC to QUIC?

var quic = ...; // RTCQuicTransport

var sender = ...; // RtpSender

var serializer = transformStream(serialize);

var parser = transformStream(parseMessage);

sender.readEncodedFrames()

 .pipeThrough(serializer)

 .pipeInto(quic.sendStreams());

quic.receiveStreams()

 .pipeThrough(parser)

 .pipeInto(sender.writeReceiverFeedback())

E2EE

var sender = ...; // RtpSender

var receiver = ...; // RtpReceiver

var encryptor = transformStream(encryptFrame);

var decryptor = transformStream(decryptFrame);

sender.readEncodedFrames()

 .pipeThrough(encryptor)

 .pipeInto(sender.writeEncodedFrames());

receiver.readEncodedFrames()

 .pipeThrough(decryptor)

 .pipeInto(receiver.writeEncodedFrames());

RTP to RTP? (without transcoding)

var sender = ...; // RtpSender

var receiver = ...; // RtpReceiver

receiver.readEncodedFrames()

 .pipeInto(sender.writeEncodedFrames());

RTP to MSE? (history!)

var rtp = ...; // RtpReceiver

var mse = ...; MSE SourceBuffer

var serializer = transformStream(serialize);

rtp.readEncodedFrames()

 .pipeThrough(serializer)

 .pipeInto(mse.appendStream());

But you can already
do this without streams

The real value comes from

Getting off the main JS thread
(click the link for more slides)

https://docs.google.com/presentation/d/1nunzO21RJDGCwe_tVpUVBi_Aka84ukhAwMaFH1WYZ3Y/edit?usp=sharing

Possible or a pipe dream?

WHATWG streams + off-thread processing looks like a powerful combo!

But how hard is it to get to implement WHATWG streams?

And will everyone pick them up?

What would the stream chunks be?
typedef MediaOrFeedback EncodedMediaFrame or

RTCKeyFrameRequest or RTCMediaStats

interface EncodedMediaFrame {

 attribute DOMTimeStamp timestamp;

 attribute DOMString mimeType;

 attribute SourceBuffer encodedData;

}

interface EncodedAudioFrame : EncodedMediaFrame {

 attribute unsigned short channels;

 attribute unsigned long samplesPerSecond;

 attribute unsigned long samples;

}

interface RTCKeyFrameRequest {

 attribute DOMTimeStamp? lastDecodedTimestamp;

}

interface RTCMediaStats {

 attribute RTCTrackSenderStats? senderStats;

 attribute RTCTrackReceiverStats? receiverStats;

}

interface EncodedVideoFrame : EncodedMediaFrame {

 attribute DOMTimeStamp? duration;

 attribute bool keyFrame;

 attribute unsigned short rotation; // in degrees

}

VP8 opus FIR stats

Pros/Cons of WHATWG streams vs not

better:

● piping, esp. if we can get off the main thread (see upcoming slides)

● piping, esp. if other things adopt streams
○ receiveStream.pipeThrough(parser).pipeInto(...)

○ transport.receiveStreams.pipeThrough(parser).pipeInto(...)

worse:

● Uncertain maturity, adoption, performance, ease of impl of streams

● Can't write fin bit and last chunk at the same time

● More clunky for simple things
○ receiveStream.readable.getReader().read(view).then(...)

○ transport.receiveStreams.getReader.read().then(...)

Conclusion

It seems that switching to using WHATWG streams would be better if:

● We can also get something like WorkletTransformStream or web workers to
pipe things off the main thread

● We can also get things to pipe to/from (RTP, MSE)
● We can implement this whole thing in a performant way

