W3C WebRTC
WG Meeting

December 14, 2020
8:00 AM - 9:30 AM Pacific Time

W3C WG IPR Policy

e This group abides by the W3C Patent Policy
https://www.w3.org/Consortium/Patent-Policy/

e Only people and companies listed at
https://www.w3.0rg/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!

e \Welcome to the 2nd December interim
meeting of the W3C WebRTC WG!

o During this meeting, we will talk about
getCurrentBrowsingContextMedia and HTML
capture, Capabilities and Testing.

e \We promise that this is the very last virtual
interim of 2020!

o So enjoy the Holidays, and stay safe!

One last request...

e Please respond to the Doodle Poll for a
Virtual Interim during the week of January
18-22, 2021:

o https://doodle.com/poll/Sxzvpsp3iwedwiyu
e Poll closes today (December 14, 2020).

https://doodle.com/poll/5xzvpsp3iw6dwfyu

About this Virtual Meeting

e Meeting info:

(@)

https://www.w3.0rg/2011/04/webrtc/wiki/December 14 2020

e Link to latest drafts:

o

0O O O o0 O O O o0 O O O o0 o

o

https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.qithub.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-ex
https://qithub.com/w3c/webrtc-insertable-streams
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice

e Link to Slides has been published on WG wiki
e Scribe? IRC http://irc.w3.org/ Channel: #webrtc
e The meeting is being recorded. The recording will be public.

https://www.w3.org/2011/04/webrtc/wiki/December_14_2020
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-exp/
https://github.com/w3c/webrtc-insertable-streams
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/December_14_2020
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

Issues for Discussion Today

Capture This Tab (Elad)
First Class HTML Capture (Jan-lvar)

WebRTC Capabilities
o PR 2597: Allow piggybacking getCapabilities on most recent Offer or

Answer (Henrik)
Testing (Dr. Alex)

WebRTC Extensions
o Issue 52: Invalid TURN credentials: What Function Should Fail? (Henrik)

Media-Capture Main
o PR 742: Define the fitness distance for unexposed constraints (Jan-lvar)

https://github.com/w3c/webrtc-pc/pull/2597
https://github.com/w3c/webrtc-extensions/issues/52
https://github.com/w3c/mediacapture-main/pull/742

getCurrentBrowsingContextMedia
(Elad Alon)

Save users from accidentally sharing their tentative job-search during their 1:1
with their current manager.

State of the art:
e getDisplayMedia allows the app to call upon the user to pick a share-source.
e The source cannot be restricted by the app; i.e. the app cannot specify that it's interested in tab-sharing.
e Some risk of user sharing wrong thing; e.g. whole screen or a different tab .

Proposal:
e Add getBrowserContextMedia - allow app to prompt the user for permission to share the current tab.

Benefits:
e Apps can reduce the risk of the user sharing the wrong thing. Avoid users accidentally sharing their job-search
with their manager.
e The app can intelligently process captured content, based on intimate knowledge with the placement of elements
in the captured stream - cropping, annotations, etc.

Use cases:
e Sharing of a document (e.g. Google Slides) to a meeting can be done via a button-click from the page, with a
browser prompt to allow/disallow, rather than to choose the current tab.
o Also, with getBrowserContextMedia, an app like Google Slides needs not worry about:
i. Detecting if the user chose another tab by mistake (technically difficult).
ii. Explaining the mistake to the user and asking him to try again.
e Recording a [video-conferencing / gaming / etc.] session to a local file and/or streaming it (e.g. Twitch).
e Useful for embedding defect-reporting mechanisms in an application - can capture a video of the bug.

The main security issue is the ability of a page to
capture output from other sites, breaking the
origin-isolation model of Web security.

- Ancient Scandinavian proverb

Risks

Scenario #1

Top-level frame
(embedding frame)

Scenario #2

Embedded
frame #1

Scenario #3

Scenario #4

Embedded
frame #2

1. Browsing context capturing itself

Browsers attempt to prevent applications from spying on the user. For example, to prevent applications from deducing
whether a user has visited certain other websites, Chrome intentionally mis-reports to the application the color of links
(unless they have not been set to a non-default color by the application itself); this prevents the application from finding
out if links are purple, meaning that they have been visited.

Screen-capture allows an application to circumvent these protections - anything that's visible as purple to the user, will be
seen as purple by the capture, including links.

When examining this particular example, some ways to preserve the privacy of the user’s history come to mind, including:
e Forcing links’ color to the default color if a screen-capture is active.
e Denying new screen-captures, and breaking off active screen-captures, if a default-color link is ever visible on the

page.

Even when considering just this one example (link-purpling), we cannot think of any cure which would not be more bitter
than the disease. We conclude that the only reasonable mitigation would be to make the user acutely aware of the risks of
permitting screen-capture. The confirmation-dialog will remain our only mitigation of these risks as a whole, but individual
issues could be given special attention as they come up. For example, if link-purpling is ever considered sufficiently
dangerous, we could apply one of the aforementioned mitigations that are specific to that issue. We don't, however, have a
general, scalable solution for concealing the user’s history/identity from the application.

2. Embedded resource capturing the embedding resource

Risk
An embedded resource (e.g. iframe) might capture information from the embedding resource (e.g. top-level application).

Mitigation

The display-capture feature-policy solves this issue for getDisplayMedia, and can do so for
getCurrentBrowsingContextMedia as well. Namely, code from a cross-origin resources is not allowed to call either of these
functions, unless the iframe-tag includes the relevant allow attribute, specifying allow="display-capture”.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy/display-capture
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#attr-allow

3. Embedding resource capturing an embedded resource

Risk
An embedding resource (e.g. top-level application) might capture information from an embedded resource (e.g. iframe).

Mitigation’s Limitations

1. Common and desirable scenario. The mitigation must allow approved captures to proceed uninterrupted - there
should be no break in the capture while determining whether the capture is allowed. This rules out hypothetical
mitigations that would pause the capture until the embedded resource fully/partially loads, and leaves us with a
feature-policy communicated via an HTTP header as our only option.

2. Should not be so restrictive as to prevent real usage of the feature. An opt-in mechanism would be prohibitively
restrictive - complex applications would require too many web-servers to be configured (and configuration
maintained). We are forced to consider only mechanisms that default to allowing the capture. (Also helpful if
applying the mitigation to getDisplayMedia.)

3. Existing mechanisms would be problematic to use, because they would tie together different functionalities that the
embedded resource might not be interested in combining. We are compelled to introduce a new feature-policy.

Mitigation
Define a new feature-policy, allow-capture-by-embedder, settable via an HTTP response header, but not via an iframe’s
allow attribute. A resource served with this HTTP response header may only be captured by allowlisted embedders.

allow-capture-by-embedder

When allow-capture-by-embedder is specified for a resource:

1. Attempts to capture the display by the embedder are only allowed if the embedder is allowlisted (or is same-origin).
2. Anyrunning display-capture by the embedder is broken off.

The policies supported by allow-capture-by-embedder will be:

e ¥ Capturing is allowed by any embedder. This is the default, and applies either if the policy is not specified at all, or
if it's specified without an explicit policy value.

e ‘self’: Capturing is allowed by embedders from the same origin only. (Note that same-origin embedders may

nevertheless transfer this permission to resources from other origins.)

‘none’; No embedders are allowed to capture (until they stop embedding this resource).

e ’<origin(s)>: This policy can be added to ‘self’. It specifies specific origins which are still allowed to capture the
current resource. (This permission is still transitive.)

4. One embedded resource capturing another embedded resource

Risk
If multiple resources are embedded, any one of them could end up capturing any of the others.
Mitigation

We define the mitigation of scenario #2 as transitive - any embedded resource that allows its embedder to capture it,
assumes this permission to be inherited by any resource that is allowed to capture the embedder itself.

Top-Level
Document
. (TL) .

F1 capturing TL allowed by TL capturing F2 allowed by
display-capture allow-capture-by-embedder
[<iframe> [<iframe> }

(F1) F1 capturing F2 transitively (F2)
allowed v

That is, assume TL is the top-level document, and it embeds to iframes, F1 and F2. If F2 allows itself to be captured by

TL (managed by allow-capture-by-embedder), and TL allows itself to be captured by F1 (using display-capture), then F2
transitively allows itself to be captured by F1.

getTabMedia() secured by COEP

(Jan-lvar - Mozilla)

HTML Capture Security Risks

1. Cross-origin resource capture (rendered with user’s cookies from other site)
violates CORS; active attacks on personal info from multiple sites.

2. User information harvesting from same-origin and cross-origins:

a. Link purpling (browser history) A .

b. Form autofill (address, credit card info) [|

c. Web Extensions (e.g. LastPass) N

d. Font size (vision, age), coloring, and | . f‘” |
Other preferences mmm— | —

View Saved Logins ’

e. File input element may contain private
info

getTabMedia scope: Support highly motivated use cases

getTabMedia Goals:
1. Solve prohibitive UX flow for “Present Google Slides” & “record this meeting’.
2. Promote web over native; Present safely with integrated HTML capture.

Stream thyself!
Google’s neat idea: Google Slides streaming itself into an ongoing meeting using
existing tech like RTCPeerConnection.

Stream thyself!
Record web conference in progress from client perspective, including web layout.

Appeal: A page only needs to capture itself. Buy-in ensured by requiring code in a
highly motivated target. No threat of capture from outside.

Defining “Stream thyself!”

Proposal A: Capture top-level browsing context’s active document’s viewport.

S e\

() oo

https://emojipedia.org/large-red-circle/

Defining “Stream thyself!”

Proposal B: Intersection of TLBC’s active document’s & iframe’s viewports.

page

<iframe>
<script>
await navigator.mediaDevices.getTabMedia();

FINER CONTROL

SoLves
CROPPING

https://emojipedia.org/large-red-circle/

Testing (Dr. Alex)

e Simulcast testing with external SFU

e Browsers vendors do not oppose
(with explicit no commitment about when will they act on it)

e Candidate SFUs : Medooze / MediaSoup / aioRTC

o Given the past 2 years experience, Medooze passes.

O aioquic used for QUIC, included in WPT. No answer to contact on linkedin.
o MediaSoup tech lead volunteers.

e Next steps
o Harald is checking with WPT
o Inaki on stand-by

21

COEP Explainer

From https://web.dev/why-coop-coep/ (TL;DR: “If the web could be designed from scratch”)

Cross Origin Embedder Policy (COEP) prevents a document from loading any cross-origin resources that don't explicitly grant the document
permission (using CORP or CORS). With this feature, you can declare that a document cannot load such resources.

<script> &=

 <=

COEP: require-corp @

It's required (along with Cross Origin Opener Policy (COOP) which we don’t care about) to access SharedArrayBuffer.

<video> %.
—}

loco
</>

JS

2

a.example

b.example

CORP: cross-origin

CORS

CORP: same-origin

q:

https://web.dev/why-coop-coep/#coep
https://wicg.github.io/cross-origin-embedder-policy/
https://github.com/whatwg/html/pull/5334/files

COEP Explainer

From https://web.dev/why-coop-coep/

“The web is built on the same-origin policy: a security feature that restricts how documents and
scripts can interact with resources from another origin. ...

For a long time, the combination of CORS and opaque resources was enough to make
browsers safe. ...

This all changed with Spectre, which makes any data that is loaded to the same browsing
context group as your code potentially readable. If evil.com embeds a

cross-origin image, they can use a Spectre attack to read its pixel

data, which makes protections relying on "opaqueness" ineffective.”

& @& e,
REAYY v

https://web.dev/why-coop-coep/
https://web.dev/same-origin-policy/
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

Who'’s in charge of screen-sharing?

getDisplayMedia: The user &
getTabMedia: The site /;”f

@ gamestoday.info/pc/stellaris/stellaris-lore-spiritualist-vs-materialist-the-ultimate-debate/

gamestoday.info wants to

Click "Allow" to confirm that you are not
a robot

COEP Explainer on iframes

Web.Dev article doesn’t elaborate on it, but COEP applies to iframes as well.
COEP merely blocks loading, i.e. cross-origin iframes are still opaque.

a.example

b.example

looce ﬂ ﬁﬁ “
still opaque CORP: cross-origin

<iframe> &=

COEP: require-corp ¢z

<iframe> ?ﬂ\éjﬂ,— i

COEP: require-corp %

Compat: opting in today doesn’t mean you're opting into HTML capture. Need flag.

COEP Explainer on iframes

Proposal: Add a new “html-capture” modifier to COEP: require-corp

Cross-0Origin-Embedder-Policy:

<iframe> &

require-corp; html-capture

a.example

b.example

<iframe>

‘~

|

|COEP: require-corp; html-capture%

@ captured! TCORP: cross-origin

Require this for getTabMedia() to not reject with SecurityError.

Mitigate User information harvesting

e Require (a subset of) existing mediacapture-screen-share protections:
o MUST require User Gesture (transient activation)
o MUST follow Privacy Indicator Requirements Ly | @ cumenty being shared =
o MUST NOT store a "granted” permission entry

e Require additional protections:

o MUST require permission to use (“Allow site to record its rendering?”)

o MUST attempt to explain the risk to the user (“This may fingerprint you”)
o MUST mute/pause while document.visibilityState != “visible”
O

MUST require current global object == relevant global object, to reject
iframe.contentWindow.navigator.mediaDevices.getDocumentMedia()

MAY allow User Agents to further mitigate information leakage in this COEP mode
(but not to the point of making it an Ad-blocker blocker mode!)

https://html.spec.whatwg.org/multipage/interaction.html#transient-activation
https://w3c.github.io/mediacapture-screen-share/#privacy-indicator-requirements
https://www.w3.org/TR/permissions/#request-permission-to-use

Bikeshed on API

Good idea to define APl under mediacapture-screen-share, to leverage existing
protections there like the Privacy Indicator Requirements. We can still bikeshed:

awalt navigator.mediaDevices.getTabMedia();

or

await navigator.mediaDevices.getDocumentMedia();
or

await navigator.mediaDevices.getHTMLMedia();
or

await document.captureStream();

partial interface Document {
[SecureContext] Promise<MediaStream> captureStream();

¥

https://w3c.github.io/mediacapture-screen-share/#privacy-indicator-requirements

Bikeshed on Permissions policy

Sites use "display-capture" today to enable the highly user-driven getDisplayMedia
picker API|: @

<iframe src="https://B.com/index.html" allow="display-capture">

Given the security risks are slightly different, should we define a new policy? &
<iframe src="https://B.com/index.html" allow="tab-capture">

or
<iframe src="https://B.com/index.html" allow="html-capture">

Being specific avoids permission escalation.

Issues for Discussion Today

e WebRTC Capabilities
o PR 2597: Allow piggybacking getCapabilities on most recent Offer or

Answer (Henrik)

30

https://github.com/w3c/webrtc-pc/pull/2597

PR 2597: Allow piggybacking getCapabilities on most recent Offer or Answer
(Henrik)

Problem: It's not clear what the requirements are of getCapabilities().

1. As previously noted, for privacy reasons "browsers can consider mitigations

such as reporting only a common subset of capabilities”.
2. getCapabilities() is a synchronous API, but querying HW encoder/decoder

support might block JS.

Intended use case (example):
e Check codec capabilities and do RTCRtpTransceiver.setCodecPreferences()

before or during O/A exchange.

Is our intended use-case fulfilled if only a subset is reported?
e Only if getCapabilities() and createOffer()/createAnswer() match...
e Would an implementation where they don’'t match be spec-compliant?

https://github.com/w3c/webrtc-pc/pull/2597

PR 2597: Allow piggybacking getCapabilities on most recent Offer or Answer
(Henrik)
Proposal 1:
e Clarify that if a capability was exposed in createOffer() or createAnswer() it
must also be exposed in getCapabilities() if later called in the same document.
o Prevents having to parse SDP to obtain the full set of capabilities.
o X Does NOT prevent getCapabilities() from being HW-agnostic prior to
createOffer()/createAnswer(). Proposal 2: Require this to also match?
e Clarify that if a capability was exposed in getCapabilities() it MUST be returned
by future getCapabilities() in the same document.
o Prevents setCodecPreferences() from throwing InvalidModificationError
due to codec not being in the capability list.

Hopefully no implementation needs to be updated to fulfill these requirements.
e Revisit async APl in an extension spec.

https://github.com/w3c/webrtc-pc/pull/2597

Issues for Discussion Today

e \WebRTC Extensions
o Issue 52: Invalid TURN credentials: What Function Should
Fail? (Henrik)
e Media-Capture Main
o PR 742: Define the fitness distance for unexposed
constraints (Jan-lvar)

33

https://github.com/w3c/webrtc-extensions/issues/52
https://github.com/w3c/mediacapture-main/pull/742

Issue 52: Invalid TURN credentials: What Function Should Fail?
(Henrik)

e <content goes here>

https://github.com/w3c/webrtc-extensions/issues/52

PR 742: Define the fitness distance for unexposed constraints
(Jan-lvar)

e <content goes here>

https://github.com/w3c/mediacapture-main/pull/742

For extra credit

Name that Bird!

36

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The bird

37

Appendix A: No mitigation for x-origin video & image capture

Simple HTML header doesn’t protect non-iframe cross-origin resources at all

// A.com/index.html

// Headers: none

<video src="https://C.com/video1234567890.webm"> // @ captures video from C!
<iframe src="https://B.com/iframe.html” allow="html-capture">

// B.com/iframe.html

// Headers: Allow-Capture-By-Embedder: *
<video src="https://C.com/video1234567890.webm"> // @ captures video from C!

// C.com/video1234567890.webm
// Headers: none

Affects both videos and images ()

Appendix B: Poor mitigation for Cross-origin iframe capture

Simple HTML header easily defeated by wrapping an iframe in another iframe

// A.com/index.html
// Headers: none
<iframe src="https://B.com/wrapper_exploit.html" allow="html-capture">

// B.com/wrapper_exploit.html
// Headers: Allow-Capture-By-Embedder: *
<iframe src="https://C.com/index.html" allow="html-capture"> // @ captures C!

// C.com/1index.html
// Headers: none

...unless we continuously check headers all the way down, but we’re chasing DOM
changes (iframes added, iframe navigation, redirects etc. (¢)) = Poor man’s COEP.

Appendix C: Mitigate x-origin video & image capture w/COEP

COEP already requires videos & images be either CORP or CORS

// A.com/index.html

// Headers: Cross-0Origin-Embedder-Policy: require-corp

<video src="https://C.com/video1234567890.webm"> // C not loaded
<iframe src="https://B.com/iframe.html"” allow="html-capture">

// B.com/iframe.html

// Headers: Cross-0Origin-Embedder-Policy: require-corp

// Cross-0Origin-Resource-Policy: capture

<iframe src="https://C.com/index.html" allow="html-capture"> // C not loaded

// C.com/video1234567890.webm
// Headers: none

// D.com/publicVideo.webm
// Headers: Cross-0Origin-Resource-Policy: cross-origin (or Access-control-Allow-Origin: *)

Appendix D: Mitigate Cross-origin iframe capture with COEP

Leverages Cross-Origin-Embedder-Policy to opt-in iframes to capture

// A.com/index.html
// Headers: Cross-0Origin-Embedder-Policy: require-corp; html-capture
<iframe src="https://B.com/wrapper_exploit.html" allow="html-capture">

// B.com/wrapper_exploit.html

// Headers: Cross-0Origin-Embedder-Policy: require-corp; html-capture

// Cross-0Origin-Resource-Policy: cross-origin; html-capture

<iframe src="https://C.com/index.html" allow="html-capture"> // C not loaded

// C.com/1index.html
// Headers: none

COEP ensures iframes are origin clean or (mockup) explicitly opted-in to capture.
This being a powerful feature, a higher bar of entry = a good thing.

