Media Stream Track
Suspend/Resume/Remove/Stop
Adam Roach
Tuesday, November 12th, Shenzen, China
Monday, November 11th, Kirkland, WA, USA


What are the operations we care about here?
Hardware or OS mute/unmute
Javascript disables/enables a track
Javascript suspends/resumes RTP for a track
Javascript stops a track or removes it from the session


User Presses Hardware or OS “Mute” Button on Camera or Mic
Application in sending browser receives “onmute” event
Assuming the browser can figure out that the user did this
Sending browser may either:
Continue to feed whatever is coming off the hardware into the codec, or
Encode black frames / silence / comfort noise
RTP flows as normal
Receiving party receives no events, produces no state changes.



Sender Blacks Out/Silences Media
Javascript sets “enabled=false” on sending MediaStreamTrack
RTP keeps flowing, but encodes black frames or silence / comfort noise, according to media type
No events are triggered on sending end
Receiving party receives no events, produces no state changes


Receiver Blacks Out/Silences Media
Javascript sets “enabled=false” on receiving MediaStreamTrack
RTP keeps flowing, but playout (e.g. into <audio> or <video> tag) is suspended
Browser may elect to generate comfort noise
No events are triggered on receiving end
Sending party receives no events, produces no state changes, cannot detect this condition at all.


Sender Suspends RTP
Javascript twiddles “new thing” on sending track
“onnegotiationneeded” is triggered; media direction is updated in SDP

m=audio 25384 RTP/SAVPF 0 96
a=msid:ma ta
a=recvonly

On receipt of this offer, the other side triggers “onmute.”


Receiver Suspends RTP
Javascript twiddles “new thing” on receiving track
“onnegotiationneeded” is triggered; media direction is updated in SDP

m=audio 25384 RTP/SAVPF 0 96
a=msid:ma ta
a=sendonly

On receipt of resulting answer, this side triggers “onmute.”
Other side doesn’t trigger any events



RTP Suspended Both Ways
Javascript twiddles “new thing” on both sending and receiving track
“onnegotiationneeded” is triggered; media direction is updated in SDP

m=audio 25384 RTP/SAVPF 0 96
a=msid:ma ta
a=inactive

On receipt of this offer, the other side triggers “onmute” for stream we’re sending
On receipt of resulting answer, this side triggers “onmute” for stream we’re receiving



Remove Sending Track
Javascript calls stop() or removeStream on sending track
“onnegotiationneeded” is triggered
MSID is removed
Media direction is updated in SDP

m=audio 25384 RTP/SAVPF 0 96
a=msid:ma ta
a=recvonly

Other side calls “onended”
If the track is later re-added, it triggers an onaddstream
Does this cause issues? It’s not clear that anything breaks.



Remove Received Stream 
Javascript calls stop() or removeStream on received stream
“onnegotiationneeded” is triggered; media direction is updated in SDP

m=audio 25384 RTP/SAVPF 0 96
a=msid:ma ta
a=sendonly

Other side doesn’t trigger any events
Issue: SDP signaling is indistinguishable from suspended RTP
Do we care?



Remove Both Streams
Javascript calls stop() or removeStream on both streams
Although not necessarily at the same time
“onnegotiationneeded” is triggered; port is set to 0

m=audio 0 RTP/SAVPF 0
a=msid:ma ta
a=sendrecv

Other side calls “onended” for stream it was receiving
Issue: Is there some event called on the stream it had been sending?



Event Summary
	Operation	Local Event	Remote Event
	HW or OS Mute	onmute	-
	HW or OS Unmute	onunmute	-
	Disable sending MST	-	-
	Enable sending MST	-	-
	Disable receiving MST	-	-
	Enable receiving MST	-	-
	Suspend sending MST	onnegotiationneeded	onmute
	Resume sending MST	onnegotiationneded	onunmute
	Suspend receiving MST	onnegotiationneded,
onmute	?
	Resume receiving MST	onnegotiationneded,
onunmute	?

	Stop or remove sending MST	onnegotiationneeded	onended
	Stop or remove receiving MST	onnegotiationneeded	?




