Media Stream Track
Suspend/Resume/Remove/Stop

Adam Roach
Tuesday, November 12, Shenzen, China

Monday, November 11%, Kirkland, WA, USA



What are the operations we care
about here?

1. Hardware or OS mute/unmute

2. Javascript disables/enables a track
3.

(-

avascript suspends/resumes RTP for a
track

4. Javascript stops a track or removes it from
the session



User Presses Hardware or OS
“Mute” Button on Camera or Mic

» Application in sending browser receives
“onmute” event

— Assuming the browser can figure out that the user
did this
» Sending browser may either:

— Continue to feed whatever is coming off the
hardware into the codec, or

— Encode black frames / silence / comfort noise
« RTP flows as normal

* Receiving party receives no events, produces
no state changes.



Sender Blacks Out/Silences Media

» Javascript sets “enabled=false” on sending
MediaStreamTrack

» RTP keeps flowing, but encodes black
frames or silence / comfort noise, according
to media type

* No events are triggered on sending end

* Recelving party receives no events,
produces no state changes




Receiver Blacks Out/Silences Media

» Javascript sets “enabled=false” on receiving
MediaStreamTrack

» RTP keeps flowing, but playout (e.g. into
<audio> or <video> tag) is suspended

— Browser may elect to generate comfort noise
* No events are triggered on receiving end

» Sending party receives no events, produces
no state changes, cannot detect this
condition at all.



Sender Suspends RTP

» Javascript twiddles “new thing” on sending track

* “onnegotiationneeded” is triggered; media direction
is updated in SDP

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=recvonly

* On receipt of this offer, the other side triggers
“onmute.”



Receiver Suspends RTP

» Javascript twiddles “new thing” on receiving track

* “onnegotiationneeded” is triggered; media direction
is updated in SDP

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=sendonly

* On receipt of resulting answer, this side triggers
“onmute.”

 Other side doesn’t trigger any events




RTP Suspended Both Ways

* Javascript twiddles “new thing” on both sending and receiving
track

« “onnegotiationneeded” is triggered; media direction is updated
in SD

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=1lnactive

 On receipt of this offer, the other side triggers “onmute” for
stream we're sending

* On receipt of resulting answer, this side triggers “onmute” for
stream we're receiving




Remove Sending Track

» Javascript calls stop() or removeStream on sending track

* “onnegotiationneeded” is triggered
— MSID is removed
— Media direction is updated in SDP

m=audio 25384 RTP/SAVPF © 96
a=msid-ma—ta
a=recvonly

e Other side calls onremovestream

» If the track is later re-added, it triggers an onaddstream
— Does this cause issues? It’'s not clear that anything breaks.



Remove Received Stream

* Javascript calls stop() or removeStream on received stream

* “onnegotiationneeded” is triggered; media direction is updated
in SD

m=audio 25384 RTP/SAVPF © 96
a=msid:ma ta
a=sendonly

* Other side doesn’t trigger any events

* Issue: SDP signaling is indistinguishable from suspended RTP
— Do we care?



Remove Both Streams

» Javascript calls stop() or removeStream on both streams
— Although not necessarily at the same time

 “onnegotiationneeded” is triggered; port is set to O

m=audio © RTP/SAVPF ©
a=sendrecvw

e Other side calls “onremovestream” for stream it was
receiving

e Issue: Is there some event called on the stream it had
been sending?



Event Summary

Operation

HW or OS Mute

HW or OS Unmute
Disable sending MST
Enable sending MST
Disable receiving MST
Enable receiving MST
Suspend sending MST
Resume sending MST
Suspend receiving MST

Resume receiving MST

Stop or remove sending MST

Stop or remove receiving MST

Local Event
onmute

onunmute

onnegotiationneeded
onnegotiationneded

onnegotiationneded,
onmute

onnegotiationneded,
onunmute

onnegotiationneeded

onnegotiationneeded

Remote Event

onmute

onunmute

onremovestream
?



