
Simulcast in WebRTC 1.0
at the 2015 f2f

Understanding Simulcast
Scenario:	
 browser	
 talking	
 to	
 a	
 Selective	
 Forwarding	
 Unit	
 (SFU).	

Typically	
 not	
 needed	
 for	
 P2P	
 scenarios.	

Sender:	
 Sends	
 multiple	
 encodings	
 of	
 the	
 same	
 source,	
 differing	
 in	

framerate,	
 resolution	
 or	
 both.	
 	
 Streams	
 can	
 use	
 distinct	
 PT	
 and	

SSRC,	
 or	
 same	
 PT	
 and	
 distinct	
 SSRC.	

SFU:	
 selects	
 which	
 sender	
 stream	
 to	
 forward	
 to	
 a	
 receiver.	
 	
 	

Receiver:	
 If	
 PT/SSRC	
 does	
 not	
 change	
 when	
 switching	
 between	
 sender	

streams,	
 not	
 “simulcast”	
 from	
 receiver	
 point	
 of	
 view.	
 	
 This	
 is	
 the	

behavior	
 we	
 assume	
 for	
 this	
 discussion.	
 	

	

Choices for Discussion

Option	
 A:	
 Tell	
 createOffer	
 to	
 produce	
 simulcast	
 SDP	

Option	
 B:	
 Call	
 RtpSender.setParameters()	

Option	
 C:	
 Clone	
 tracks	
 (what	
 we	
 have	
 today)	

	

Option A: One Tiny Knob + MMUSIC-defined SDP

partial	
 interface	
 RTCRtpSender	
 {	

	
 	
 attribute	
 unsigned	
 short	
 maxSimulcastCount;	

};	

maxSimulcastCount of type unsigned short

This attribute controls the number of simulcast streams that will be offered for
the specific RTCRtpSender. The actual number of streams used for this
sender will depend on the answer that is passed to setRemoteDescription

What does this knob do?

The only effect of this knob is to add an “a=simulcast” line to the corresponding m-
section, and add on some additional PTs* in the offer, so that the answerer has
room to specify the parameters associated with additional simulcast encodings.

All other simulcast behavior is controlled by the MCU, following the negotiation
described in draft-­‐ietf-­‐mmusic-­‐sdp-­‐simulcast.

* Or whatever the mmusic draft settles on

So what does the offer look like, then?

Based on the current work in MMUSIC, something like:

	
 	
 	
 m=video	
 49300	
 RTP/AVP	
 97	
 98	

	
 	
 	
 a=rtpmap:97	
 H264/90000	

	
 	
 	
 a=rtpmap:98	
 H264/90000	

	
 	
 	
 a=fmtp:97	
 profile-­‐level-­‐id=42c01f;	
 max-­‐fs=3600;	
 max-­‐mbps=108000	

	
 	
 	
 a=fmtp:98	
 profile-­‐level-­‐id=42c01f;	
 max-­‐fs=3600;	
 max-­‐mbps=108000	

	
 	
 	
 a=imageattr:97	
 send	
 [x=[128:16:1280],y=[72:9:720]]	
 recv	
 	

	
 	
 	
 	
 	
 	
 	
 [x=[128:16:1280],y=[72:9:720]]	

	
 	
 	
 a=imageattr:98	
 send	
 [x=[128:16:1280],y=[72:9:720]]	

	
 	
 	
 a=simulcast	
 send	
 97;98	
 recv	
 97	

Harald’s Further Simplification

“Why do you even need a knob?”

This could well work without any API surface: all video m-lines could simply
include room for a preset number of simulcast encodings (Two? Three?)

This means that WebRTC implementations simply use the SDP negotiation
described in draft-­‐ietf-­‐mmusic-­‐sdp-­‐simulcast to activate simulcast, with no
additional API needed.

Option A Example

var	
 sender	
 =	
 pc.addTrack(...);	

sender.maxSimulcastCount	
 =	
 3;	

var	
 offer	
 =	
 pc.createOffer();	
 	
 //	
 Offer	
 now	
 has	
 3x	
 the	
 PTs	

//	
 ...	
 normal	
 setLocalDescription/setRemoteDescription	

var	
 count	
 =	
 sender.getParameters().encodings.length;	
 //	
 count	
 ==	
 3	

	

	

Option A Pros/Cons

Pros

●  Simple for JS, just one field

●  Simulcast streams are explicitly identified so capture/encoding adjustments
can be coordinated

Cons

●  Relies on simulcast SDP, which isn't done

○  Opinions differ on how far it is from done, however

●  Doesn't allow per-encoding control (without SDP munging)

●  Have to define all the behavior in JSEP (and what munging is allowed)

●  Simulcast streams use distinct payload types

Option B: Call RtpSender.setParameters

 var	
 sender	
 =	
 pc.addTrack(...);	
 //	
 ...	
 normal	
 createOffer/setLocalDescription/setRemoteDescription	

sender.setParameters({	

	
 	
 encodings:	
 [

	
 	
 	
 	
 sender.getParameters().encodings[0],	
 	

	
 	
 	
 	
 {resolutionScale:	
 2},	
 	

	
 	
 	
 	
 {resolutionScale:	
 4}	

	
 	
]	

});	

	

	

Option B Pros/Cons

Pros

●  No new API points

●  Per-encoding control

●  No reliance on SDP

●  Simulcast streams are explicitly identified so capture/encoding adjustments
can be coordinated.

●  Streams can use distinct PT/SSRC or just distinct SSRCs

Cons

●  Slightly more advanced JS

●  We have to write down what it means to add encodings

Option C: Clone tracks

var	
 track2	
 =	
 track.clone();	

track2.applyConstraints(...);	

var	
 track3	
 =	
 track1.clone();	

track3.applyConstraints(...);	

pc.addTrack(track);	

pc.addTrack(track2);	

pc.addTrack(track3);	

	

	

Option C Pros/Cons

Pros

●  No new API points. In fact, no spec or implementation changes at all!

●  Per-encoding control

●  Some applications are already doing it this way

Cons

●  More advanced JS

●  Existing implementations do not coordinate capture/encoding adjustments
between streams.

●  Each stream uses a distinct PT (unless PT reuse restrictions in BUNDLE
Section 10.2.1 can be satisfied).

Path Forward?

What do we do with this?

A. Simple knob + MMUSIC SDP

B. RtpSender.setParameters(encodings * N)

C. Track cloning (AKA do nothing)

