
W3C WebRTC
WG Meeting
February 27, 2020
8 AM Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the interim meeting of the W3C

WebRTC WG!
○ During this meeting, we hope to bring the group up

to date on KITE test results, and make progress on
privacy concerns and WebRTC extensions.

3

About this Virtual Meeting
Information on the meeting:
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/February_27_2020
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-stats/
○ https://www.w3.org/TR/mst-content-hint/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://w3c.github.io/webrtc-dscp-exp/
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is being recorded.

4

https://www.w3.org/2011/04/webrtc/wiki/February_27_2020
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
https://www.w3.org/TR/mst-content-hint/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-exp/
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/February_27_2020
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

KITE Test Results (Dr. Alex)
● Quick Follow-up on last meeting decision to

update test results. Dom + DrAlex
● Special Simulcast test using open source

Medooze SFU with two modes:
○ Lenient (test plan B)
○ Lean and Mean (Spec only)

● Used during IETF Hackathons (+HTA), for
W3C updates, and by Apple (youenn?)

5

KITE Test Results (Dr. Alex) - Browsers

6

Lots of work. Critical mass only in EU. Difficult to
maintain (cosmo effort). Needs update => IETF 107.
Madrid better (july).

KITE Test Results (Dr. Alex) - SFUs

7

Issues for Discussion Today
● Media Capture and Streams

○ Issue 642: Only Firefox turns off device on disabled track. Stronger language needed?
(Jan-Ivar)

○ Issue 655: How to avoid wide-lens & telephoto on new phones (Jan-Ivar)
○ Issue 652: In-browser device picker (Jan-Ivar)

● Extensions
○ Insertable Streams (Harald)
○ Capture timestamps (Henrik)
○ RTP Header Extensions (Harald)
○ Content-Hints (Harald)

8

https://github.com/w3c/mediacapture-main/issues/642
https://github.com/w3c/mediacapture-main/pull/655
https://github.com/w3c/mediacapture-main/issues/652

Issues for Discussion Today
● Media Capture and Streams

○ Issue 642: Turn off device on disabled track. (Jan-Ivar)
○ Issue 655: How to avoid wide-lens & telephoto on new phones

(Jan-Ivar)
○ Issue 652: In-content device selection a mistake. Leaks; Complex

9

https://github.com/w3c/mediacapture-main/issues/642
https://github.com/w3c/mediacapture-main/pull/655
https://github.com/w3c/mediacapture-main/issues/652

Issue 642: Turn off device on disabled track. (Jan-Ivar)

Camera & mic may be temporarily disabled using track.enabled. Sole use case:

 micMute.onclick = () => audioTrack.enabled = !micMute.checked;
 endCall.onclick = () => pc.close();
 camMute.onclick = () => videoTrack.enabled = !camMute.checked;

This is semantically complete (says it all) & works in all browser permission models.

But some browsers don’t turn off the camera HW light...

Users demand privacy.

Better privacy on camera mute in Firefox 60

👁
😬

https://github.com/w3c/mediacapture-main/issues/642
https://w3c.github.io/mediacapture-main/getusermedia.html#dom-mediastreamtrack-enabled
https://blog.mozilla.org/webrtc/better-privacy-on-camera-mute-in-firefox-60/

Issue 642: Turn off device on disabled track. (Jan-Ivar)

Sites want this behavior! Here’s what they do to work around it (a good example of
where a spec not being explicit about behavior causes web compat headaches).
 camMute.onclick = async () => { // Our users demand camera HW light off in other browsers. Let’s hack!
 try {
 videoTrack.enabled = !camMute.checked;
 await wait(3000); // because users
 if (camMute.checked == !videoTrack) return;
 if (camMute.checked) {
 videoTrack.stop(); // kill the light!
 } else if (videoTrack && videoTrack.readyState != “live”) { // revive the camera!
 selfView.removeTrack(videoTrack);
 videoTrack = null; // avoid racing with ourselves
 videoTrack = (await navigator.mediaDevices.getUserMedia(stashedConstraints)).getVideoTracks()[0]);
 await micTransceiver.sender.replaceTrack(videoTrack);
 }
 } catch (e) { /* 🤷🏼‍♂ */ }
 }

● Irony: Does NOT work in all browser permission models (extra needless Firefox prompts)
● Typically hacks camera only, leaving any microphone light lit (e.g. on Microsoft LifeCam)
● Odd corners like adding and renegotiating with ended tracks if someone joins.

��

��

https://github.com/w3c/mediacapture-main/issues/642
https://www.microsoft.com/accessories/en-us/products/webcams/lifecam-hd-3000/t3h-00011

Issue 642: Turn off device on disabled track. (Jan-Ivar)

Refresher on how Firefox works (fiddle):

1. Relinquishes hardware device when all its tracks are disabled.
2. Reacquires hardware device when any of its tracks are re-enabled (Takes ~1 second to reacquire device)
3. Failure to reacquire fires ended event on track(s).
4. Live indicator always on for 3 seconds minimum (“MUST remain observable for a sufficient time”)
5. Accessible mandated Privacy Indicator remains in URL bar while muted.
6. Privacy mitigation plan is to have Firefox fire muted event if re-enabled without focus (Bug 1598374)

Proposal: Enforce web compat around this behavior in all browsers

Spec today¹: ”when a track becomes either muted or disabled, and this brings all tracks connected to the device to be either
muted, disabled, or stopped, then the UA MAY, using the device's deviceId, deviceId, set [[devicesLiveMap]][deviceId] to false”

1) This is only a close approximation to hardware lights, inasmuch as having physical and logical “privacy indicators” align is POLA.

12

MUST

https://github.com/w3c/mediacapture-main/issues/642
https://jsfiddle.net/jib1/ru16j2y8/
https://w3c.github.io/mediacapture-main/getusermedia.html#privacy-indicator-requirements
https://w3c.github.io/mediacapture-main/getusermedia.html#track-muted
https://bugzilla.mozilla.org/show_bug.cgi?id=1598374
https://w3c.github.io/mediacapture-main/getusermedia.html#life-cycle-and-media-flow

Issue 642 / PR 662: Relinquish device when all tracks muted/disabled.

13

https://github.com/w3c/mediacapture-main/issues/642
https://github.com/w3c/mediacapture-main/pull/662

Flagship phones have multiple back cameras now. How to distinguish wide-lens?
Wide-lens usually means fixed-focus, represented by 0 in android, so might this work?

 {video: {focusDistance: {exact: 0}}} // pick wide-lens video camera
 {video: {focusDistance: {min: 0.0001}}} // avoid wide-lens video cameras

But relies on a side-effect: Apparently no rule says all wide lenses have fixed focus.

Also, what if the phone has wide-lens & telephoto? E.g. Samsung S10 specs:

● Primary - 12 MegaPixels, f/1.5- f/2.4 Dual Aperture, 26mm Focal Length, 1/2.55" Sensor Size, 1.4µm Pixel Size, Dual Pixel Phase
Detection AutoFocus, Optical Image Stabilization

● Secondary - 12 MegaPixels, f/2.4 Aperture, 52mm Focal Length, 1/3.6" Sensor Size, 1.0µm Pixel Size, AutoFocus, Optical Image
Stabilization, 2x Optical Zoom

● Tertiary - 16 MegaPixels, f/2.2 Aperture, 12mm Focal Length, Ultra-Wide

AFAICT these are 35mm equivalent focal lengths, “a measure that indicates the angle
of view”, because photography.

Issue 655: How to avoid wide-lens & telephoto on new phones (jib)

🤷🏼‍♂

https://stackoverflow.com/questions/59636464/how-to-select-proper-backfacing-camera-in-javascript?noredirect=1#comment105459298_59636464
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#LENS_INFO_MINIMUM_FOCUS_DISTANCE
https://w3c.github.io/mediacapture-image/#focus-distance
https://w3c.github.io/mediacapture-image/#focus-distance
https://www.techpinas.com/2019/02/samsung-galaxy-s10e-vs-s10-vs-s10-specs.html
https://rechneronline.de/optical-instruments/objective.php
https://en.wikipedia.org/wiki/35_mm_equivalent_focal_length
https://github.com/w3c/mediacapture-main/pull/655

Proposal A: A new (“35mm equivalent”) focalLength constraint:

 {video: {focalLength: {min: 0.026}}} // avoid all wide-lenses < 26mm
 {video: {focalLength: {min: 0.052}}} // pick telephoto

Proposal B: A new angleOfView constraint:

 {video: {angleOfView: {max: 68}}} // avoid all wide-lenses < 26mm
 {video: {angleOfView: {max: 38}}} // pick telephoto

Conversions: = 67.8872 = 37.2

Bonus Q: Where to specify this? Mediacapture-main or Mediacapture-image?

Issue 655: How to avoid wide-lens & telephoto on new phones (jib)

https://shuttermuse.com/calculate-field-of-view-camera-lens/
https://www.wolframalpha.com/input/?i=2+*+arctan%28.035%2F%282*.026%29%29*+%28180%2F%CF%80%29+
https://www.wolframalpha.com/input/?i=2+*+arctan%28.035%2F%282*.052%29%29*+%28180%2F%CF%80%29+
https://github.com/w3c/mediacapture-main/pull/655

In 2020, exposing all your devices to the web beyond the one you’re using, is not POLA.
It goes beyond fingerprinting, revealing actual private information users did not intend to
share about what they own and have plugged in. This may include devices personalized
with names, high-entropy prototype devices, perhaps even embarrassing (adult) devices

It’s not "the minimal information needed to achieve user goals".

PING wants privacy-by-default in-browser device picker:
1. site asks for category (or categories) of device
2. browser prompts user for one, many or all devices
3. site gains access to only the device + label, of hardware the user selects.

Web developers need this API to work in all browsers before it’s usable.

Issue 652: In-browser device picker (Jan-Ivar)

https://github.com/w3c/mediacapture-main/issues/640#issuecomment-549540203
https://github.com/w3c/mediacapture-main/issues/652

The TAG joins PING in wanting this. w3ctag/design-principles#152:

Discourage device enumeration, prefer less powerful alternatives
“The Rule of Least Power suggests that we should go with the least powerful API which meets its use cases.”

“we ... recommend that, when API designers need to expose devices in some manner, they consider [in order]:

1. An availability-style API is best: it allows the site to use the device the user wants to use without exposing
device information. It is the least powerful option.

2. A picker-style API also respects user preferences. It exposes device information, but only of one device.
This minimizes the fingerprinting data exposed.

3. A filtered device enumeration API exposes a subset of devices, so is potentially better re: fingerprinting
than the next possibilities

4. A sorted device enumeration API exposes too much information, but at least it does so in a way that
makes the site's job easier

5. A device enumeration API is to be resorted to only when the other options are infeasible for some reason
(compat, perhaps).”

Issue 652: In-browser device picker (Jan-Ivar)

https://github.com/w3ctag/design-principles/issues/152
https://www.w3.org/2001/tag/doc/leastPower.html
https://github.com/w3c/mediacapture-main/issues/652

Issue 652: In-browser device picker (Jan-Ivar)

On availability-style API: Nothing prevents UAs from letting users customize browser
default cam/mic & expose a single device per kind. No spec work seems needed for this.

On picker-style API: How far do we go?
Goal 1: Get rid of in-content device selection & label in enumerateDevices #640

Goal 2: Somehow prevent browsers from granting all devices of a kind by default.

Let’s focus on goal 1. We may never reach consensus on goal 2.

What’s a minimal approach? What are the minimal API changes needed?

https://github.com/w3c/mediacapture-main/issues/652
https://github.com/w3c/mediacapture-main/issues/640

Issue 652: In-browser device picker — minimal approach (Jan-Ivar)

Use cases. New visitor: (browsers that do per-device grants will need a picker)
 await navigator.mediaDevices.getUserMedia({video: true});
 await navigator.mediaDevices.getUserMedia({video: {facingMode: “environment”}});
 await navigator.mediaDevices.getUserMedia({video: {width: {min: 1280}}});

Repeat visitor: (picker undesired, unless previous device removed and multiple choices)
 await navigator.mediaDevices.getUserMedia({video: {deviceId}});
 await navigator.mediaDevices.getUserMedia({video: {deviceId: {exact: deviceId}}});
 await navigator.mediaDevices.getUserMedia({video: true});

Changing (or adding a 2nd) camera view in a world without labels: (picker is required)
 await navigator.mediaDevices.getUserMedia({video: {existingDeviceId}});
 await navigator.mediaDevices.getUserMedia({video: {existingDeviceId: [...ids]}});

Lazy getter, or don’t know about stream.clone(): (picker would be web compat bug) ❌
 await navigator.mediaDevices.getUserMedia(sameConstraints);

https://github.com/w3c/mediacapture-main/issues/652

New visitor/repeat visitor: Firefox already has an in-browser device picker for this.

 await navigator.mediaDevices.getUserMedia({video: true, audio: true});

Lists {min … max}, w/ideal chosen by default.

But it only appears if permission is absent.

Strong emphasis on permission and defaults.

No known obstacles to other browsers adding something comparable if they want to.

Issue 652: In-browser device picker — minimal approach (Jan-Ivar)

https://github.com/w3c/mediacapture-main/issues/652

Changing camera: We need an in-browser picker shown regardless of permission:
 button.onclick = async () => {
 if (numberOfVideoInputDevices < 2) return;
 const constraints = {
 video: {existingDeviceId: cameraTrack.getSettings().deviceId}
 };
 cameraTrack = (await navigator.mediaDevices.getUserMedia(constraints)).getVideoTracks()[0];
 button.innerText = cameraTrack.label;
 }

A new existingDeviceId constraint
tells UA this is a request for a device
other than the (non-ideal) specified,
and it always prompts the user.
(It’s up to UX whether to default to or
exclude the specified device as a choice.
We dunno if JS intends to replace or supplement it)

Share another camera
jan-ivar.github.io wants to share a different camera. Choose which camera to share.

Issue 652: In-browser device picker — minimal approach (Jan-Ivar)

https://github.com/w3c/mediacapture-main/issues/652

Issue 652: In-browser device picker (Jan-Ivar)

Pros (of minimal API):

● Should suffice to let us experiment with picker UX specifically to replace current
in-content device selection only. We retain the option of going further later.

● Knowing which video track is potentially being replaced may be useful for UX, e.g.
on devices with limits on the number of simultaneous devices that can be open.

● Might let us throw (OverconstrainedError) if there’s no second device available.
● Signals our intent to solve post-gUM selection (UA could make it only work then)
● Least disruption of existing models.

Cons:

● The constraint is still barely more than a glorified boolean
● (Unless we prevent it, e.g. by demanding the existingDeviceId track be active),

JS may exploit API to launch picker upfront anyway, so pick a better boolean
already.

https://github.com/w3c/mediacapture-main/issues/652

Better booleans: chooseUserMedia unless we change the semantics of getUserMedia.

Option A: Morph already-expressive gUM w/transition plan inspired by {sdpSemantics}:

 await navigator.mediaDevices.getUserMedia({video: true, semantics: “browser-chooses”});
 await navigator.mediaDevices.getUserMedia({video: true, semantics: ”user-chooses”});

Step 1: Implement picker in all browsers
Step 2: Announce {semantics} and default to “browser-chooses” in all browsers
Step 3: Sites prepare to avoid redundant pickers (preferably using exact, clone())
Step 4: Flip default to “user-chooses” in all browsers
Step 5: (Optional) Deprecate {semantics} in all browsers (mention caveat)

Option B: Concede status quo with above syntax. Option C: Concede status quo with:

 await navigator.mediaDevices.getUserMedia({video: true}); // browser chooses
 await navigator.mediaDevices.chooseUserMedia({video: true}); // user chooses

Issue 652: In-browser device picker (Jan-Ivar)

https://github.com/w3c/mediacapture-main/issues/652

Issue 652: In-browser device picker (Jan-Ivar)

https://github.com/w3c/mediacapture-main/issues/652

If difficult to enforce per-device exposure rule, enforce per-device-type exposure
● Expose all microphones if one microphone is granted
● Expose all cameras if one camera is granted
● Do not expose speakers once output speaker picker API is available

Still possible to use groupId to get microphone corresponding to camera

Issue 640: Only reveal labels of devices user has given permis.. (Youenn)

https://github.com/w3c/mediacapture-main/issues/640

Issue 639: Enforcing user gesture for getUserMedia (Youenn)

● Problem: getUserMedia should only be callable on user gesture
○ Most modern APIs add such restrictions
○ This is not web compatible

● Can we start shipping such restrictions in getUserMedia?
● Potential ideas

○ Require a user gesture past initial page load
○ Require user gesture once a previous call to getUserMedia was denied for the

given page
■ Implemented in Safari

26

https://github.com/w3c/mediacapture-main/issues/639

Extensions for Discussion Today
● Insertable Streams (Harald)
● Capture timestamp (Henrik)
● RTP Header Extensions (Harald)
● Content-Hints (Harald)

27

Insertable Streams (Harald)
● Purpose: Javascript-defined processing of (un)encoded

video/audio data at sender & receiver
● Use case 1: Web client interoperability with deployed

multiuser conferencing with end-to-end encryption
○ This use case requires encoded data access
○ Waiting for a group conferencing standard is not an option

● Proof-of-concept implementation done
● Explainer here:

○ https://github.com/alvestrand/webrtc-media-streams/blob/master/explainer.md
○ Considerably changed from previous iterations - not all docs updated

28

https://github.com/alvestrand/webrtc-media-streams/blob/master/explainer.md

Insertable Streams - WebIDL API
partial dictionary RTCConfiguration {

 boolean forceEncodedVideoInsertableStreams =
false;

 boolean forceEncodedAudioInsertableStreams =
false;

};

partial interface RTCRtpSender {

 RTCInsertableStreams createEncodedVideoStreams();

 RTCInsertableStreams createEncodedAudioStreams();

};

partial interface RTCRtpReceiver {

 RTCInsertableStreams createEncodedVideoStreams();

 RTCInsertableStreams createEncodedAudioStreams();

};

29

dictionary RTCInsertableStreams {

 ReadableStream readable;

 WritableStream writable;

};

enum RTCEncodedVideoFrameType {

 "Empty", "key", "delta",

};

interface RTCEncodedVideoFrame {

 readonly attribute RTCEncodedVideoFrameType type;

 readonly attribute unsigned long long timestamp;

 attribute ArrayBuffer data;

 readonly attribute ArrayBuffer additionalData;

};

Insertable Streams - example use
let senderTransform = new TransformStream({

 async transform(chunk, controller) {

 let view = new DataView(chunk.data);

 let newData = new ArrayBuffer(chunk.data.byteLength + 4);

 let newView = new DataView(newData);

 // Invert and pad the bits in the frame

 for (let i = 0; i < chunk.data.byteLength; ++i)

 newView.setInt8(i, ~view.getInt8(i));

 // Set the padding bytes to zero.

 newView.setInt8(chunk.data.byteLength + i, 0);

 chunk.data = newData;

 controller.enqueue(chunk);

 },

 });

let senderStreams =
videoSender.getEncodedVideoStreams();

// After ICE and offer/answer exchange.

senderStreams.readable

 .pipeThrough(senderTransform)

 .pipeTo(senderStreams.writable);

30

Insertable Streams - Relation to
other efforts
WebCodec
● Aims to reuse

“VideoFrame” and
“AudioFrame” types

● Experience will be fed
back to that effort

TransferableStreams
● Allows processing in

WebWorkers
● Uses unmodifed

proposal
● Origin trial will also

enable TS

31

Insertable Streams - Change from
previous API proposal

● Previous API was “factory” based
○ This presented some challenges in Chrome

implementation
● Current API allows easy shimming of a

“factory” based API on top of it - all in JS

32

Insertable Streams - Next Steps

● Experiment with API in a real app under
Chrome’s “origin trial” mechanism

● Synchronize with WebCodecs as appropriate
● Propose (revised) API for standardization

33

Capture Timestamp (Henrik)
Problem 1: How to calculate the end-to-end delay?
● e2eDelay = time passed between capturing at one endpoint

 and playout at another endpoint.

34

RTCRtpContributingSource.timestamp
tells you time of playout.

Just need time of capture…

Capture Timestamp (Henrik)
Problem 1: How to calculate the end-to-end delay?
● e2eDelay = time passed between capturing at one endpoint

 and playout at another endpoint.

RTP header extension abs-capture-time gives you…
● captureTimestamp
● estimatedClockOffset (more on this later)

Problem 2: How to measure A/V sync?
● Solution: Expose captureTimestamp.

35

Capture Timestamp (Henrik)
Example!

36

Problem:
● captureTimestamp is in

capturer’s (sender’s) clock.
● We only know of the receiver’s

clock.

Capture Timestamp (Henrik)
Example!

With clockOffset you can calculate captureTimestamp in
receiver’s clock, ergo you can calculate e2eDelay.

37

Capture Timestamp (Henrik)
Example!
● clockOffset is available in getStats() today.
● We just need to expose captureTimestamp!

38

Capture Timestamp (Henrik)
But this doesn’t work if there’s a middlebox! :’(

39

clockOffset transforms sender’s
clock to receiver’s clock.

But captureTimestamp is in
capturer’s clock.

Capture Timestamp (Henrik)
abs-capture-time’s estimatedClockOffset gives us the sender’s
estimate of the clockOffset between the capturer’s clock and the
sender’s clock. Thus:

sender’s captureTimestamp
 =
capturer’s captureTimestamp + estimatedClockOffset

This works regardless of how many “hops” between the capturer
and the receiver, by adding to estimatedClockOffset each “hop”.

40

Capture Timestamp (Henrik)
For more info, see webrtc-extensions PR#33 which added:

Based on abs-capture-time RTP header extension:

41

https://github.com/w3c/webrtc-extensions/pull/33

RTP Header Extensions (Harald)
This section:
a=extmap:14 urn:ietf:params:rtp-hdrext:toffset
a=extmap:2 http://www.webrtc.org/experiments/rtp-hdrext/abs-send-time
a=extmap:13 urn:3gpp:video-orientation
a=extmap:3 http://www.ietf.org/id/draft-holmer-rmcat-transport-wide-cc-extensions-01
a=extmap:12 http://www.webrtc.org/experiments/rtp-hdrext/playout-delay
a=extmap:11 http://www.webrtc.org/experiments/rtp-hdrext/video-content-type
a=extmap:7 http://www.webrtc.org/experiments/rtp-hdrext/video-timing
a=extmap:8 http://tools.ietf.org/html/draft-ietf-avtext-framemarking-07
a=extmap:9 http://www.webrtc.org/experiments/rtp-hdrext/color-space
a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid
a=extmap:5 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id
a=extmap:6 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

The need:
● Controlling what RTP header extensions get negotiated in SDP

○ SDP munging is not a long term viable method
● Controlling what RTP header extensions get sent in RTP

42

RTP header extensions (Harald)
● Done since last 2 VIs

○ Public design document published
○ PR on webrtc-extensions written
○ Intent to Prototype (Chromium/Blink) sent out
○ Proposal merged (#25) to webrtc-extensions

● Next steps:
○ Implement as Chrome experimental feature
○ Release as origin trial
○ Learn

43

https://docs.google.com/document/d/1y1hTsMeav5ijPvoqu1R6U4YC564i1QzgkMeIqWhgiis/edit
https://groups.google.com/a/chromium.org/g/blink-dev/c/65YdUi02yZk
https://github.com/w3c/webrtc-extensions/pull/25

Content-Hints (Harald)
Status update!
● Spec now includes RTCDegradationPreference
● Spec is more specific on actions resulting from

Content-Hint settings
● Spec says how Content-Hint and constraints interact
● It has a little bit of usage (0.013%)
● CfC for publishing a new WD sent Feb 20
● Favorable (but somewhat low) response
● Is it time to ask for CR publication?

44

https://chromestatus.com/metrics/feature/timeline/popularity/2526

For extra credit

45
Name that bird!

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The bird

46

