
W3C
WebRTC/MediaCapture

WG Meeting
June 7, 2017

8 AM PDT
Chairs: Stefan Hakansson

Bernard Aboba
Harald Alvestrand (Emeritus) 1

W3C WG IPR Policy
● This group abides by the W3C patent policy

https://www.w3.org/Consortium/Patent-Policy-20040205
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the interim meeting of the W3C

WebRTC WG!
● During this meeting, we hope to make

progress on issues arising from the CR
review of webrtc-pc

● Editor’s Draft updates to follow meeting

3

webrtc-pc

● The CR review completed on May 31.
○ 107 new issues were filed!

● We are targeting “Issue clusters” in this
meeting - hoping it will be fruitful.

● Reminder: we are continuing to solicit
feedback from implementers on features not
on their radar for implementation.

4

About this Virtual Meeting
Information on the meeting:
● Meeting info:

○
● Link to latest drafts:

○
○
○

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is being recorded.
● WebEx info here 5

https://www.w3.org/2011/04/webrtc/wiki/June_7_2017
https://www.w3.org/2011/04/webrtc/wiki/June_7_2017
https://rawgit.com/w3c/mediacapture-main/master/getusermedia.html
https://rawgit.com/w3c/mediacapture-main/master/getusermedia.html
https://rawgit.com/w3c/webrtc-pc/master/webrtc.html
https://rawgit.com/w3c/webrtc-pc/master/webrtc.html
https://rawgit.com/w3c/webrtc-stats/master/webrtc-stats.html
https://rawgit.com/w3c/webrtc-stats/master/webrtc-stats.html
https://www.w3.org/2011/04/webrtc/wiki/June_7_2017
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc
https://www.w3.org/2011/04/webrtc/wiki/June_7_2017

For Discussion Today
● WebRTC-PC Issues

■ Tracks (Taylor)
● Issue 1161: Do we need a “trackremoved” event?
● Issue 1181: End removed tracks remotely again
● Issue 1207: Setting a remote description may cause discontinuity

■ Data Channel (Taylor)
● Issue 1148: How do applications know a DataChannel’s buffer capacity?
● Issue 1287: When data cannot be sent

■ DTLS, Certificates and Algorithms (Bernard)
● Issue 1092/PR 1115: DTLS Failures
● Issue 1159/PR 1160: Do we need getAlgorithm()?
● Issue 1250: RTCDtlsTransport: why no getCertificates()?
● Issue 1259: What keygenAlgorithm values are supported?

6

https://github.com/w3c/webrtc-pc/issues/1161
https://github.com/w3c/webrtc-pc/issues/1161
https://github.com/w3c/webrtc-pc/issues/1181
https://github.com/w3c/webrtc-pc/issues/1181
https://github.com/w3c/webrtc-pc/issues/1207
https://github.com/w3c/webrtc-pc/issues/1207
https://github.com/w3c/webrtc-pc/issues/1148
https://github.com/w3c/webrtc-pc/issues/1148
https://github.com/w3c/webrtc-pc/issues/1287
https://github.com/w3c/webrtc-pc/issues/1287
https://github.com/w3c/webrtc-pc/issues/1092
https://github.com/w3c/webrtc-pc/pull/1115
https://github.com/w3c/webrtc-pc/issues/1092
https://github.com/w3c/webrtc-pc/issues/1159
https://github.com/w3c/webrtc-pc/pull/1160
https://github.com/w3c/webrtc-pc/issues/1159
https://github.com/w3c/webrtc-pc/issues/1250
https://github.com/w3c/webrtc-pc/issues/1250
https://github.com/w3c/webrtc-pc/issues/1259
https://github.com/w3c/webrtc-pc/issues/1259

For Discussion Today (cont’d)
● WebRTC-PC Issues

■ Objects (Taylor)
● Issue 1174: ssrc in RTCRtpEncodingParameters is inconsistent with

ORTC
● Issue 1178: When IceTransport and DtlsTransport objects are

created/changed
■ Miscellaneous (Bernard)

● Issue 1215: Rollback: a feature “at risk”?
● Issue 1283: Centering, Scaling, Cropping

7

https://github.com/w3c/webrtc-pc/issues/1174
https://github.com/w3c/webrtc-pc/issues/1174
https://github.com/w3c/webrtc-pc/issues/1178
https://github.com/w3c/webrtc-pc/issues/1178
https://github.com/w3c/webrtc-pc/issues/1215
https://github.com/w3c/webrtc-pc/issues/1215
https://github.com/w3c/webrtc-pc/issues/1283
https://github.com/w3c/webrtc-pc/issues/1283

Tracks (Taylor)
● Issue 1161: Do we need a “trackremoved” event?
● Issue 1181: End removed tracks remotely again
● Issue 1207: Setting a remote description may cause discontinuity

8

https://github.com/w3c/webrtc-pc/issues/1161
https://github.com/w3c/webrtc-pc/issues/1161
https://github.com/w3c/webrtc-pc/issues/1181
https://github.com/w3c/webrtc-pc/issues/1181
https://github.com/w3c/webrtc-pc/issues/1207
https://github.com/w3c/webrtc-pc/issues/1207

Issue 1161/Issue 1181: What happens remotely when a track
is “removed”? (Taylor)

● Before the introduction of transceivers, calling removeTrack resulted in the remote track
being ended. This works in Firefox today, or in Chrome with adapter.js.

● Now, calling removeTrack will only result in the transceiver’s direction being changed; not
clear what event(s) will fire.
○ Section 5.1 says “ended” event will fire (is this leftover text?)
○ Section 5.3 says “muted” event will fire on receiver.track.

● Should this be changed, and if so how?
○ Suggestion in issue 1161 is to simply add a “trackremoved” event.
○ Suggestion in issue 1181 is to end the remote track when this occurs, and create a

new one when applicable. Meaning an RTCRtpReceiver can have multiple
associated tracks over its lifetime.

9

https://github.com/w3c/webrtc-pc/issues/1161
https://github.com/w3c/webrtc-pc/issues/1181
https://github.com/w3c/webrtc-pc/issues/1161

Issue 1207: Setting a remote description may cause
discontinuity (Taylor)

● Currently, setting a remote description discards any codec changes the application might
have done:
○ “The effect of reordering or removing codecs lasts until the codecs are renegotiated.

After the codecs are renegotiated, they are set to the value negotiated, and
setParameters needs to be called again to re-apply codec preferences.”

● So, there is some time in between “setRemoteDescription” and “setParameters”
where a frame encoded with an unintended codec could leak out. This could feasibly
cause negative side effects, since a new encoder needs to be prepared, a new I-frame
created, etc.

● Can we change the API such that the application’s selected codec doesn’t need to change
due to setRemoteDescription? For example, allow codec selection via a codecPayloadType
RTCRtpEncodingParameter, like in ORTC?

10

https://github.com/w3c/webrtc-pc/issues/1207
https://github.com/w3c/webrtc-pc/issues/1207
http://draft.ortc.org/#dom-rtcrtpencodingparameters-codecpayloadtype

Data Channel (Taylor)
● Issue 1148: How do applications know a DataChannel’s buffer

capacity?
● Issue 1287: When data cannot be sent

11

https://github.com/w3c/webrtc-pc/issues/1148
https://github.com/w3c/webrtc-pc/issues/1148
https://github.com/w3c/webrtc-pc/issues/1287
https://github.com/w3c/webrtc-pc/issues/1287

Issue 1287: When data cannot be sent (Taylor)

● A data channel has a buffer; when “send” is called while this buffer is full, the
data channel is closed with prejudice. This was done to match WebSockets.

● The reasoning for the WebSocket decision (as far as I’ve gathered) was:
“Throwing an exception if the buffer is full might be ignored by the application,
causing a loss of data integrity. Closing the connection doesn’t have this problem,
and is something applications likely are prepared to handle anyway.”

● However, this reasoning doesn’t completely apply to WebRTC DataChannels. A
DataChannel doesn’t typically get closed due to errors (such as an SCTP-level
timeout); before that happens an ICE restart will typically have occurred.

● My proposal: Make “send” throw an exception when the buffer is full, like a
non-blocking socket.

12

https://github.com/w3c/webrtc-pc/issues/1287
https://github.com/w3c/webrtc-pc/issues/1287

Issue 1148: How do applications know a DataChannel’s
buffer capacity? (Taylor)

● If the answer to the previous discussion was “keep things the way they are”: how
does an application reliably prevent itself from filling the DataChannel’s buffer?
○ Look at each browser’s code or experiment to see how big its buffer is (what

people do today).
○ Compute pc.sctp.maxMessageSize - channel.bufferedAmount?
○ Expose a “bufferSize” attribute.
○ Introduce a guaranteed minimum buffer size to the spec. Applications will

know as long as “bufferedAmount” doesn’t go above this, they’re safe.

13

https://github.com/w3c/webrtc-pc/issues/1148
https://github.com/w3c/webrtc-pc/issues/1148

DTLS, Certificates and Algorithms (Bernard)
● Issue 1092/PR 1115:DTLS Failures
● Issue 1250: RTCDtlsTransport: why no getCertificates()?
● Issue 1159/PR 1160: Do we need getAlgorithm()?
● Issue 1259: What keygenAlgorithm values are supported?

14

https://github.com/w3c/webrtc-pc/issues/1092
https://github.com/w3c/webrtc-pc/pull/1115
https://github.com/w3c/webrtc-pc/issues/1092
https://github.com/w3c/webrtc-pc/issues/1250
https://github.com/w3c/webrtc-pc/issues/1250
https://github.com/w3c/webrtc-pc/issues/1159
https://github.com/w3c/webrtc-pc/pull/1160
https://github.com/w3c/webrtc-pc/issues/1159
https://github.com/w3c/webrtc-pc/issues/1259
https://github.com/w3c/webrtc-pc/issues/1259

Issue 1092/PR 1115:DTLS Failures (Bernard)

● Currently we have RTCPeerConnection.onfingerprintfailure
○ Covers fingerprint verification failures, but not other DTLS errors.

● PR 1115:
○ Utilize RTCDtlsTransport.onerror for all DTLS errors.
○ Add “dtls-failure” to RTCErrorDetailType.

■ receivedAlert set to the value of the DTLS alert received
■ sentAlert set to the value of the DTLS alert sent

○ Do we need to add “fingerprint-failure” to RTCErrorDetailType?
■ RFC 8122 Section 6.2 mandates both clients and servers

terminate with “bad_certificate” on fingerprint mismatch.

15

https://github.com/w3c/webrtc-pc/issues/1092
https://github.com/w3c/webrtc-pc/pull/1115
https://github.com/w3c/webrtc-pc/issues/1092
https://github.com/w3c/webrtc-pc/pull/1115
https://github.com/w3c/webrtc-pc/pull/1115

Issue 1250: RTCDtlsTransport: why no getCertificates()?
(Fippo)

● In WebRTC-PC, the RTCDtlsTransport does not provide a way to retrieve the
DTLS certificates the transport was created with, whereas in ORTC, there is:
○ partial interface RTCDtlsTransport : RTCStatsProvider {

 sequence<RTCCertificate> getCertificates();
};

● PR 1130 clarified that when RTCConfiguration.certificates is not specified in the
RTCPeerConnection constructor, subsequently getConfiguration().certificates is
undefined but one or more RTCCertificate instances (“default certificates”) are
generated.
○ getConfiguration().certificates cannot be used to retrieve default certificates.

● Do we need to be able to retrieve default certificates?

16

https://github.com/w3c/webrtc-pc/issues/1250
https://github.com/w3c/webrtc-pc/issues/1250
http://draft.ortc.org/#dom-rtcdtlstransport
http://draft.ortc.org/#dom-rtcdtlstransport
http://draft.ortc.org/#dom-rtcstatsprovider
http://draft.ortc.org/#dom-rtcstatsprovider
https://heycam.github.io/webidl/#idl-sequence
http://draft.ortc.org/#dom-rtccertificate
http://draft.ortc.org/#dom-rtcdtlstransport-getcertificates()
http://draft.ortc.org/#dom-rtcdtlstransport-getcertificates()
https://github.com/w3c/webrtc-pc/pull/1130
https://github.com/w3c/webrtc-pc/pull/1130

Issue 1159/PR 1160: Do we need getAlgorithm()? (Bernard)

● Issue 496 asked how to tell if a cert was RSA or ECDSA.
○ Use cases: inspection of default certificates, debugging/unit tests,

convenience
○ getAlgorithm() subsequently added in PR 499

● Subsequent realization:
○ Without a way to retrieve default certificates, getAlgorithm() can only be

called on application-created certificates.
○ Application can store the keygenAlgorithm used to create the certificate.

● Proposal in PR 1160: remove getAlgorithm(). No known implementations.

17

https://github.com/w3c/webrtc-pc/issues/1159
https://github.com/w3c/webrtc-pc/pull/1160
https://github.com/w3c/webrtc-pc/issues/1159
https://github.com/w3c/webrtc-pc/issues/496
https://github.com/w3c/webrtc-pc/issues/496
https://github.com/w3c/webrtc-pc/pull/499
https://github.com/w3c/webrtc-pc/pull/1160

Issue 1259: What keygenAlgorithm values are supported?
(fluffy)

● Is there a way to discover what AlgorithmIdentifier values the browser supports?
● Other than the mandatory-to-implement algorithms (or trial and error), the answer

appears to be “no”.
○ Mandatory: { name: "RSASSA-PKCS1-v1_5", modulusLength: 2048, publicExponent: new

Uint8Array([1, 0, 1]), hash: "SHA-256" }, and { name: "ECDSA", namedCurve:
"P-256" }

● Is there interest in providing a solution to this?

18

https://github.com/w3c/webrtc-pc/issues/1259
https://github.com/w3c/webrtc-pc/issues/1259
https://w3c.github.io/webcrypto/Overview.html#rsassa-pkcs1
https://w3c.github.io/webcrypto/Overview.html#ecdsa
https://w3c.github.io/webcrypto/Overview.html#dfn-NamedCurve

Objects (Taylor)

● Issue 1174: ssrc in RTCRtpEncodingParameters is inconsistent with
ORTC

● Issue 1178: When IceTransport and DtlsTransport objects are
created/changed

19

https://github.com/w3c/webrtc-pc/issues/1174
https://github.com/w3c/webrtc-pc/issues/1174
https://github.com/w3c/webrtc-pc/issues/1178
https://github.com/w3c/webrtc-pc/issues/1178

Issue 1174: ssrc in RTCRtpEncodingParameters is
inconsistent with ORTC (Taylor)

● In the ORTC API, the “ssrc” field supports two modes of operation:
○ Set to a specific value, in which case the application must listen for an

“ssrcconflict” event and handle SSRC conflicts itself.
○ Undefined, in which case the user agent picks SSRCs itself and handles

SSRC conflicts automatically.
● WebRTC always uses the latter behavior. So, should its “ssrc” fields (including

rtx.ssrc and fec.ssrc) always be unset? When are they needed by the application?
● A consequence of WebRTC’s choice: if an SSRC conflict occurs between

“getParameters” and “setParameters”, setting the old SSRC results in an
InvalidModificationError?

20

https://github.com/w3c/webrtc-pc/issues/1174
https://github.com/w3c/webrtc-pc/issues/1174

Issue 1178: When IceTransport and DtlsTransport objects
are created/changed (Taylor)

● When precisely are the RTCIceTransport and RTCDtlsTransport objects
created and hooked up to RTCRtpSenders/RTCRtpReceivers?
○ When a local description is applied? (my suggestion)
○ When any offer is applied?

● Similarly, we should specify that if a remote answer finishes BUNDLE
negotiation, the obsolete transports are stopped and the “transport”
attribute of senders/receivers starts pointing to the bundle transport.

21

https://github.com/w3c/webrtc-pc/issues/1178
https://github.com/w3c/webrtc-pc/issues/1178

Miscellaneous (Bernard)
● Issue 1215: Rollback: a feature “at risk”?
● Issue 1283: Centering, Scaling, Cropping

22

https://github.com/w3c/webrtc-pc/issues/1215
https://github.com/w3c/webrtc-pc/issues/1215
https://github.com/w3c/webrtc-pc/issues/1283
https://github.com/w3c/webrtc-pc/issues/1283

Issue 1215: Rollback: Feature “at risk”? (Bernard)

● Should rollback be marked as a “feature at risk”?
○ What is the current implementation state?
○ What are the implementation plans?

23

https://github.com/w3c/webrtc-pc/issues/1215
https://github.com/w3c/webrtc-pc/issues/1215

Issue 1283: Centering, Scaling, Cropping (EKR)
● WebRTC-PC Section 5.2:

When sending media, the sender may need to rescale or resample the media to meet various requirements
including the envelope negotiated by SDP. When resizing video, the source video is first centered relative to
the desired video then scaled down the minimum amount such that the video fully covers the desired size, then
finally cropped to the destination size. The video remains centered while scaling and cropping. For example, if
the source video was 1280 by 720, and the max size that could be sent was 640 by 480, the video would be
scaled down by 1.5 and 160 columns of pixels on both the right and left sides of the source video would be
cropped off. This algorithm is designed to minimize occurrence of images with with letter box or or pillow
boxing. The media must not be upscaled to create fake data that did not occur in the input source.

● JSEP Section 3.6:

If the original resolution exceeds the size limits in the attribute, the sender SHOULD apply downscaling to the
output of the MediaStreamTrack in order to satisfy the limits. Downscaling MUST NOT change the track aspect
ratio.

24

https://github.com/w3c/webrtc-pc/issues/1283
https://github.com/w3c/webrtc-pc/issues/1283

For extra credit

25
Name that bird!

Thank you

Special thanks to:
Harald!!!
W3C/MIT for WebEx

WG Participants, Editors & Chairs

26

