
W3C WebRTC
WG Meeting

May 25, 2021
8:00 - 10:00 AM Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the May 2021 interim meeting of

the W3C WebRTC WG!
○ During this meeting, we will cover

displayMediaCaptureHandle, Screenshot API,
conditional audio suppression, region capture,
webrtc-encoded-transform and
mediacapture-transform.

3

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/May_25_2021
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/May_25_2021
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/May_25_2021
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

Issues for Discussion Today
● 08:10 AM - 08:35 AM Capture Handle (Elad Alon) #166
● 08:35 AM - 08:40 AM HC: Counter-Proposal (Jan-Ivar / Elad)
● 08:40 AM - 08:50 AM Conditional Audio Suppression (Elad) #161
● 08:50 AM - 09:10 AM Region Capture (Elad) #158
● 09:10 AM - 09:25 AM WebRTC encoded-transform (Youenn)
● 09:25 AM - 09:55 AM Media-capture transform (Harald)
● 09:55 AM - 10:00 AM Wrap-up and Next Steps

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

5

https://github.com/w3c/mediacapture-screen-share/issues/166
https://github.com/w3c/mediacapture-screen-share/issues/161
https://github.com/w3c/mediacapture-screen-share/issues/158

Capture Handle - Exposition
● Introducing VC-MAX, your one stop shop for all your fictional-VC

needs.
○ Fictive video-conferencing software specializing in illustrating

points.
○ FaaS - fiction as a service.
○ Any resemblance to real software project, living or dead, is purely

coincidental.
● VC-MAX exposes a “Share” button that calls getDisplayMedia and

transmits the resulting tracks to remote participants.
● VC-MAX wants to collaborate with various presentation software.

When the user chooses to share MS ForcePoint, OpenOffice-365 or
Doodle Slides, VC-MAX would like to embed user-facing controls for
navigating the presentation - previous slide, next slide, etc.

6

https://en.wikipedia.org/wiki/Presentation_program

Capture Handle - Puzzle Pieces

7

● Assume MS ForcePoint, OpenOffice-365 and Doodle Slides all
define their own APIs for navigating a presentation, subject to
appropriate authentication, access-control, etc.
○ The shapes of these APIs are out of scope.
○ Virtually guaranteed that the API includes some session ID.

● VC-MAX needs to discover:
○ The captured application’s identity. (ForcePoint? Doodle?)
○ The session ID.

● Our discussion’s scope is discovery of these generic bare
essentials. Their use is left as an exercise to the reader. :-)

What could we do with no changes to the browser?

● The presentation software could embed a QR code¹.
● VC-MAX could scan for that QR code.

Problems?

● Unergonomic.
● Inefficient. (VC-MAX must continuously scan for the QR code and remove

the user-facing controls if no longer capturing the presentation.)
● Can be disrupted by other documents drawing to the screen.
● Reader of content needs to verify all of it (none of it is mediated by the UA).

(1) QR code used to keep the illustration simple. Similar solutions yield similar problems.

Capture Handle - Hacky Approach

8

On the captured app:

● Allow opt-in exposure of the origin.
● Allow a custom handle to be set.

○ Let it be a string. That string could be a serialized JSON carrying an
arbitrary amount of data.

● Allow the captured app to specify which origins may read the values it
exposes.

● Call these the capture-handle.

On the capturing app:

● Allow checking the current capture-handle.
● Allow registering a handler for capture-handle-update events.

Capture Handle - Suggested Solution

9

Capture Handle - Suggested Solution (Captured App)

10

 // Code on Slides-3000

 navigator.mediaDevices.setCaptureHandleConfig({

 exposeOrigin: true,

 handle: JSON.stringify({

 description: "See slides-3000.com for our API description. " +

 "It supports such amazing actions as nextSlide, " +

 "prevSlide, goFullScreen, etc.",

 sessionId: mySessionId(),

 }),

 permittedOrigins: {“*”},

 });

 // Code on VC-MAX

 const mediaStream = await navigator.mediaDevices.getDisplayMedia();

 const captureHandle =

 mediaStream.getVideoTracks()[0].getSettings().captureHandle;

 if (captureHandle.origin == "preso.slides-3000.com") {

 const sessionId = JSON.parse(captureHandle.handle).sessionId;

 Let commsChannel = ...; // Specific to Slides-3000.

 commsChannel.postMessage(sessionId, "goFullScreen");

 ...

 } else if (captureHandle.origin == “encounter.doodle.com”) {

 ...

 }

Capture Handle - Suggested Solution (Capturing App)

11

Application don’t actually have to expose their origin. If the session ID is
sufficiently unguessable, a separate cloud API could be set up exposing
validate().
 const captureHandle =

 mediaStream.getVideoTracks()[0].getSettings().captureHandle;

 if (slides3000CloudBasedHelper.validate(captureHandle)) {

 ...

 }

If a site exposes its origin, though, a round-trip to the identification service
could be saved.

Note that the captured site chooses to allow exposing the origin; the browser
sets the actual value to be read on the capturing side.

Capture Handle - Interesting Note

12

Capturing-side

dictionary CaptureHandle {
 DOMString origin;
 DOMString handle;
};

partial dictionary MediaTrackSettings {
 CaptureHandle captureHandle;
};

partial interface MediaStreamTrack {
 attribute EventHandler oncapturehandlechange;
};

[Exposed=Window]
interface CaptureHandleChangeEvent : Event {
 constructor(CaptureHandleChangeEventInit);
 [SameObject] readonly CaptureHandle captureHandle;
};

Capture Handle - IDL
Captured-side

dictionary CaptureHandleConfig {
 boolean exposeOrigin = false;
 DOMString handle = “”;
 sequence<DOMString> permittedOrigins = [];
};

partial interface MediaDevices {
 void setCaptureHandleConfig(
 optional CaptureHandleConfig config = {});
};

13

Privacy/Security concerns? Probably not.

● Opt-in
● User-driven
● Theoretically no-op (see QR-hack - already possible!)
● More robust than steganography
● Captured app only discovers it’s captured if capturer informs it
● App-controlled handle-opaqueness (or possibly “opacity”)
● Non-spoofable origin-exposure
● Excessive events not a viable attack

Capture Handle - Stop Worrying, Love the Bomb.

14

🔮 All major presentation websites use site-isolation and opt into html capture.
They can capture themselves using getViewportMedia() with permission.
● Use case: user clicks button in presentation program to join integrated meeting.

They register for preferential positioning and treatment in getDisplayMedia()’s
new picker, which relegates non-conforming choices under other…, using e.g.:

 const id = await navigator.mediaDevices.registerIntent("presentation");
 // id is exposed in track.getSettings().presentationId in VC website

● Use case: user clicks “Present” in VC meeting to find their open presentation
● Use case: user can navigate slides from VC meeting in most presentations.

All major presentation websites use site-isolation and opt into html capture,
because these APIs are not available otherwise. → a safer web.

getDisplayMedia() & getViewportMedia() in 2023 (jib)

2021 > 2023 (Elad Alon)
The Capture Handle origin-trial in Chrome starts with m92 (2021-07-20)
Looking forward to sharing developer-feedback soon. Would be interesting
to hear if devs are happy with Capture Handle, or if they ask for something
more along the lines of the Mozilla’s proposal.

Some specific reservations against the previous slide’s proposal:

● registerIntent(): Apps jockey for position with false promises.
● Browser-assigned IDs:

● Force an additional step of translation to the app’s actual ID space
before collaboration starts.

● Don’t allow (opt-in) exposure of the captured tab’s origin.

What are the benefits of the previous slide’s approach?

16

Issue 161 / PR164 Conditional Audio Suppression
Suppose this meeting weren’t virtual. We’re all sitting in a room, taking turns
presenting from our laptops to a projector and a set of speakers. The next
speaker presents a tab. Do they want the audio to flow out of both their
laptop’s speakers as well as the PA system’s? Probably not.

Solution? Define a new constraint - suppressLocalAudioPlayback.

When this constraint is applied, audio from captured source is not played out
over the local speakers.

This can also help with echo cancellation on a single-machine setup, as
playing the locally captured audio in a VC as though it came from another
participant simplifies things for the echo canceller.

17

https://github.com/w3c/mediacapture-screen-share/issues/161
https://github.com/w3c/mediacapture-screen-share/pull/164
https://github.com/w3c/mediacapture-screen-share/pull/164/files

Region Capture - Introduction (Elad alon)

19

Underlying assumption - getViewportMedia has been specced.

Apps can now self-capture.

Apps comprise multiple parts. These parts can be cross-origin. And
their location on the screen can move.

How does an app crop its video stream? When would it want to?

Region Capture - Motivation

20

Media
Content

(Presentation) (VC)
Assume this composite app, comprising
two separate, collaborating parts.

The presentation software can expose a
button for self-capture and sharing of the
resulting stream with remote participants.

A performant, ergonomic and secure way
of cropping away some content is
needed.

Why secure? Because not only the VC
part has to be cropped away. Maybe the
speaker notes, too. And cropping should
be robust to window-resizing, for
instance. Not a single mis-cropped frame
should be tolerated.

Share-me Button

Confidential speaker notes. Very embarrassing
if glimpsed by remote participants.

Region Capture - Who Crops?

The browser has to take charge of cropping.

● It is wasteful to produce and shuttle big frames.
● If cropping is carried out by the app, cross-origin iframes cannot

guarantee that they would communicate resize events quickly
enough to avoid mis-cropped frames (which are a privacy
violation).

21

Arguments were put forth that getViewportMedia should, by definition,
crop to the frame from which it is called. Making tracks transferable, it
was argued, would then make this solution complete, allowing the
presentation-frame to hand the track over to the VC-frame.

I do not believe that to be a good idea.

It encourages a hacky pattern whereby an invisible/occluded frame
lurks in the background, defining the intended crop-region. That frame
then invokes getViewportMedia. And that’s privacy-violating footgun,
on account of window resizing, etc.

A more dev-friendly solution would be allowing an arbitrary capturer to
crop to an arbitrary iframe or div. Devs like powerful, flexible tools.

Region Capture - Who Captures?

22

Region Capture - How is the Region Defined?
By cropping to an element known to the browser, we allow the browser to
track changes to placement, guaranteeing that all frames are cropped
correctly.

How can we specify which element to crop to?

● DOM node references cannot work between cross-origin frames. That’s a
show-stopper.

● The global attribute “id” is document-global, not page-global. But it’s
trivially easy to randomly select an ID that is universally unique with very
high probability. (If not unique, fail in some sensible way; TBD.)

● A new browser-assigned UUID could be defined. (Assign-on-read will
minimize the memory+CPU cost.)

Once assigned/read, the ID can be postMessage()-ed to the capturing frame.
23

● Using the crop-to-ID approach, apps can still crop-to-self and transfer the
track to another iframe if they find that pattern useful. This is not an
either-or situation.

● Recall that element-capture is a different tool with its own set of
trade-offs. Occluded content is captured, occluding content is missing
from the capture. Whether this is a bug or a feature depends on the app.
Ideally, the Web platform should offer both tools to developers.

Region Capture - Noteworthy Points

24

Region Capture - API Shape

25

Crop on capture-start, or crop once the MediaStreamTrack is produced?
Possibly support both flows?

Cropping on capture-start:

● Can be achieved with an additional parameter to getViewportMedia.
● Trivial to know which frame is the first one to be cropped as desired.
● Multiple possibilities for changing the crop-target. [Enumerated verbally.]

Cropping as a control on the track:

● Error if track is not derived from tab-capture of the current tab.
○ Or possibly any tab-captured? Allow a truly universal crop-target? 🤯

● Obvious how to support crop-target change.

Issue 58: SFrame error handling (Youenn)
SFrame processing can generate errors, mostly on decryption side
● Unknown key ID

○ Bad setup, race conditions
○ Application may want to fetch the right key

● Parsing error, authentication error
○ Potential attack by the SFU
○ Application may want to drop the connection

Useful to surface these errors to the JS application
● Should we have a default behavior in case of authentication error?

26

https://github.com/w3c/webrtc-encoded-transform/issues/58

Issue 58: SFrame error handling (Youenn)
Proposal (PR103)
● Expose an error event handler on SFrameTransform

○ In case SFrameTransform is used standalone
○ In case SFrameTransform is used as part of RTCScriptTransform

27

// main-page.js
const sender = pc.addTrack(track, stream)
sender.transform = new SFrameTransform
sender.transform.onerror = (event) => {
 if (event.type === "keyID")
 handleUnknownKey(event.keyID)
}

// rtc-script-worker.js
onrtctransform = (e) => {
 const transformer = e.transformer
 const metadataTransform = new MyMetadataTransform
 const sframeTransform = new SFrameTransform
 transformer.readable
 .pipeThrough(metadataTransform)
 .pipeThrough(sframeTransform)
 .pipeTo(transformer.writable);
 sframeTransform.onerror = (event) => {
 if (event.type === "authentication")
 accumulateAuthErrorAndDropConnectionIfNeeded()
 }
}

https://github.com/w3c/webrtc-encoded-transform/issues/58
https://github.com/w3c/webrtc-encoded-transform/pull/103/files

Issue 99: Use WebCodec Encoded Chunk (Youenn)
Two APIs for very similar concepts
● RTCEncodedAudioFrame and RTCEncodedVideoFrame
● EncodedAudioChunk and EncodedVideoChunk

Main differences
● WebCodec uses immutable encoded frames

○ WebRTC encoded transform expect scripts to change frames
■ Data ownership transferred at write step

● RTC specific metadata exposure

28

https://github.com/w3c/webrtc-encoded-transform/issues/99

Issue 99: Use WebCodec Encoded Chunk (Youenn)
Two options
● Status quo: use two different constructs

○ Keep a transformable frame in WebRTC encoded transform
■ Reuse subtypes and duck taping to maximize common code

● Merge the two APIs
○ Select a common 'data' handling

■ Allow mutation of EncodedXXChunk/Add clone+data method
○ Extend WebCodec frame metadata for RTC

● Proposal: keep status quo
○ Aligned with existing implementations

29

https://github.com/w3c/webrtc-encoded-transform/issues/99

Mediacapture-transform issues (Harald)
● Main issues under active discussion

○ #4 Is using ReadableStream/WritableStream the right approach?
○ #23 Out-of-main-thread processing by default
○ #29, #31 Is Audio necessary? (suggest leaving alone today)

● Related, but not strictly on this spec
○ Mediacapture-extensions issue #16 / PR #21/#24 - Transfer MST

More items can be found in last month’s slides, these are omitted for focus.

30

https://github.com/w3c/mediacapture-transform/issues/4
https://github.com/w3c/mediacapture-transform/issues/23
https://github.com/w3c/mediacapture-transform/issues/29
https://github.com/w3c/mediacapture-transform/issues/31
https://docs.google.com/presentation/d/1GaMOvxpi2wUI46dbEEqOQsSVDbga-Zj3jAUfLDntT8E/edit#slide=id.gcf6b8d0ca3_0_31

#4 Is using ReadableStream/WritableStream the right approach?

I believe the discussion has shown that it is.

- Developers like it
- No significant downsides of using it have been identified

I suggest we adopt this as our strategy for now and move on.

31

https://github.com/w3c/mediacapture-transform/issues/4

#23 Out-of-main-thread processing by default

Two trains of thought:

- Worker processing should be easy. Main-thread processing should be
possible. (Initial proposal)

- Worker processing should be mandatory. Main-thread processing should be
hard or impossible. (Proposals for making MSTG/MSTP worker-only)

So far, ~all the arguments have come from 3 browser vendors. We have not come
to agreement.

32

https://github.com/w3c/mediacapture-transform/issues/23

#16 Transfer MediaStreamTrack

Off-main-thread processing without MSP/MSTG on the main thread requires
MediaStreamTrack to be movable to a worker. Also good for other use cases.

Two suggestions, two differences:

- #21 Make Tracks Transferable, and entangle them with origin context
- Default operation is “move” - original track is destroyed; if needed, must use “.clone()”
- Lifetime strongly tied to original document

- #24 Make Tracks Serializable, and specify that they end when sources do
- Default operation is “copy” - original track survives; if not needed, must use “.stop()”
- Lifetime tied to source; cameras and microphones are original context only; other sources may

have other lifetimes.

33

https://github.com/w3c/mediacapture-extensions/issues/16

For extra credit

34
Name the lizard!

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The lizard

35

