
RTCRtpSender/Receiver
Justin Uberti

Peter Thatcher
Oct 2014



Recap
(stuff we already agreed on)



Core Issue: Insufficient Object Model
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No per-track 
API surface

Tracks handle 
raw media

We solved this for stats, by adding 
objects for each thing we care 
about, but these objects are 
hidden inside PeerConnection



Solution Diagram
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Applications now have an API 
surface with the right multiplicity 
to do per-track operations



interface RTCRtpSender {
  readonly attribute MediaStreamTrack track;
};

interface RTCRtpReceiver {
  readonly attribute MediaStreamTrack track;
};
interface TrackEvent : Event {
  readonly attribute RtpReceiver receiver;
  readonly attribute MediaStreamTrack track;
  sequence<MediaStream> getStreams();
};

partial interface RTCPeerConnection {
  // |streams| parameter indicates which particular streams should be referenced in signaling
  // Fails if |track| has already been added
  RTCRtpSender addTrack(MediaStreamTrack track, MediaStream... streams);  // replaces addStream
  void removeTrack(RTCRtpSender sender);    // replaces removeStream
  sequence<RTCRtpSender> getSenders();      // replaces getLocalStreams
  sequence<RTCRtpReceiver> getReceivers();  // replaces getRemoteStreams
  EventHandler ontrack;  // replaces onaddstream

};

API: Recap



Next Steps



Transports

● Like RTP streams, transports are also not exposed well from 
PeerConnection; hard to get commonly needed data
○ per-transport ICE state
○ active local and remote candidates
○ Remote DTLS certificates

● Easy to fix with our object model

○ RTCRtpSender and RTCRtpReceiver add a .transport 
property, yielding a RTCDtlsTransport object

○ Multiple senders can share a RTCDtlsTransport
○ RTCDtlsTransport connects to an RTCIceTransport object



Example Diagram
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API: Transports
partial interface RTCRtpSender {

  readonly attribute RTCDtlsTransport transport;

};

partial interface RTCRtpReceiver {

  readonly attribute RTCDtlsTransport transport;

};

interface RTCDtlsTransport {

  readonly attribute RTCIceTransport transport;    // the associated ICE transport

  readonly attribute RTCDtlsTransportState state;  // current DTLS state (e.g. connected, failed)

  sequence<ArrayBuffer> getRemoteCertificates();   // the certs in use by the remote side 

  attribute EventHandler? onstatechange;

};

interface RTCIceTransport {

  readonly attribute RTCIceConnectionState state;  // the current ICE state

  RTCIceCandidatePair? getSelectedCandidatePair(); // the currently active candidate pair

  attribute EventHandler? onstatechange;  

  attribute EventHandler? onselectedcandidatepairchange;

};



EncodingParameters

● Now that we have RTCRtpSender, what can we do with it?
○ Read the current encoding parameters
○ Make some changes to the track encoding
○ Some changes don't require negotiation:

■ e.g. changing max send bitrate
○ Changes that do require negotiation result in onnegotiationneeded, and 

don't take effect until setLocalDescription:
■ e.g. pausing a MST, results in "a=sendonly"

○ Cannot change things that would be inconsistent with SDP
■ e.g. changing the send codec

● Any functionality that is needed must have no negotiation, 
or have well-defined SDP



API: EncodingParameters (1.0)
partial interface RTCRtpSender {

  RTCRtpParameters getParameters();

  // Specifies the details of what to send (e.g. bitrate)

  // do .get() -> change -> .set()

  void setParameters(RTCRtpParameters parameters);

};

dictionary RTCRtpParameters {
  // In 1.0, only N=1 encodings are allowed. To change encodings, 

  // in the future, N can be > 1, for simulcast or layered coding

  sequence<RTCRtpEncodingParameters> encodings;

}

dictionary RTCRtpEncodingParameters {

   unsigned int       ssrc;        // identifies the encoding; readonly

   boolean            active;             // sending or "paused/onhold"

   unsigned int       maxBitrate = null;  // maximum bits to use for this encoding

};



Example
// put stream on hold

var sender = pc.getSenders()[0];

var params = sender.getParameters();

params[0].active = false;

sender.setParameters(params);

pc.onnegotiationneeded = () =>

    pc.createOffer().then(offer => pc.setLocalDescription(offer).then(() => signal(offer)));

// turn it up to 11 (Mbps)

var sender = pc.getSenders()[0];

var params = sender.getParameters();

params[0].maxBitrate = 11000000;

sender.setParameters(params);



Capabilities

● Problem:  I can't know what the browser is capable of 
without calling createOffer and inspecting the SDP.
○ e.g.: does the browser support VP9?

● Solution: Why don't you just tell me what you support?
=> RTCRtpSender.getCapabilities
○ just like MediaDevices.getSupportedConstraints



API: getCapabilities
partial interface RTCRtpSender {

  static RTCRtpCapabilities getCapabilities(

      optional DOMString kind);

};

partial interface RTCRtpReceiver {

  static RTCRtpCapabilities getCapabilities(

      optional DOMString kind);

};

dictionary RTCRtpCapabilities {

  sequence<RTCRtpCodecCapability> codecs;

  sequence<RTCRtpHdrExtCapability> 

    headerExtensions;

};

dictionary RTCRtpCodecCapability {

    DOMString     kind;  // audio | video

    DOMString     name;  // e.g. PCMU

    unsigned long clockRate;   // sampling

    unsigned long numChannels; // 1 or 2

};

dictionary RTCRtpHdrExtCapability {

    DOMString kind;  // audio | video

    DOMString uri;   // ...ssrc-audio-level

};



Example
var videoCodecs = RTCRtpSender.getCapabilities("video").codecs;

var supportsVP9 = false;

for (var i = 0; i < codecs.length; ++i) {

  if (codecs[i].name.toLowerCase() === "vp9") {

    supportsVP9 = true;

  } 

}



● readonly in current API
● If we make it mutable, it makes for an easy solution to a 

long-existing problem: how to switch between front and 
back camera?

      getUserMedia(video: {facingMode: "front"}) (stream) =>

          pc.addTrack(stream.getVideoTracks()[0]);

      getUserMedia(video: {facingMode: "back"}) (stream) =>

         pc.getSenders()[0].track = stream.getVideoTracks()[0];

API: RtpSender.track



● No signaling needed when track is changed
● MSID remains the same in future signaling
● Implies that MSID is actually a property of the 

RTCRtpSender/Receiver
● But RTCRtpSender/Receiver already are associated with a 

m= line, e.g. a MID
● As such, do we still need MSID for correlation?

Observations



● MID correlates of sender/receiver with generated SDP
● Can also have MSID (open for discussion)

      partial interface RTCRtpSender {

        attribute MediaStreamTrack track;

        readonly attribute DOMString mid;   // MID of sender; used in RTP hdrext

        readonly attribute DOMString msid;  // MSID of initial track; may not == track.id

      };

      partial interface RTCRtpReceiver {

        readonly attribute MediaStreamTrack track;

        readonly attribute DOMString mid;   // MID from signaling

        readonly attribute DOMString msid;  // MSID from signaling; always == track.id

      };

API: RtpSender.mid/msid



Consensus?



Now that we have all these objects

The next logical step is to allow apps to configure the objects 
directly.  Advanced apps don't need a PeerConnection to use an 
RtpSender with a DtlsTransport and an IceTransport (although 
simple apps will likely want to use PeerConnection)



WebRTC 1.0: Configuration via PeerConnection.setLD/setRD
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WebRTC 1.1: Direct configuration via .setParameters



Benefits of direct control

● RTCRtpSender.setParameters can do more, because it's 
unconstrained by the rule of "any functionality that is 
needed must have no negotiation, or have well-defined SDP"

● More of a "do what I say" API; any negotiation logic handled 
in JS

● More flexible for different forms of signalling



Example
var ice = new RTCIceTransport();
var dtls = new RTCDtlsTransport(ice);
var sender = new RTCRtpSender(dtls);
sender.setParameters({
  codecs: [
    {name: "vp8", payloadType: 100, ...}
  ],
  encodings: [
    // Simulcast
    {ssrc: 1, scale: 0.25, ...}
    {ssrc: 2, scale: 0.5, ...}
    {ssrc: 3, scale: 1.0, ...}
  ],
  rtcp: { cname: "doohickey" }
});
signal(sender.getParameters()); // Let the remote side know.


