
RTCRtpSender/Receiver
Justin Uberti

Peter Thatcher
Oct 2014

Recap
(stuff we already agreed on)

Core Issue: Insufficient Object Model

TrackTrack TrackInternet

JavaScript App JavaScript App

TrackPeerConnection PeerConnection

No per-track
API surface

Tracks handle
raw media

We solved this for stats, by adding
objects for each thing we care
about, but these objects are
hidden inside PeerConnection

Solution Diagram

TrackTrack TrackInternet

JavaScript App JavaScript App

TrackPeerConnection PeerConnection

ICEDTLSRtpSenderSender ICE DTLS Receiver
Receiver

Applications now have an API
surface with the right multiplicity
to do per-track operations

interface RTCRtpSender {
 readonly attribute MediaStreamTrack track;
};

interface RTCRtpReceiver {
 readonly attribute MediaStreamTrack track;
};
interface TrackEvent : Event {
 readonly attribute RtpReceiver receiver;
 readonly attribute MediaStreamTrack track;
 sequence<MediaStream> getStreams();
};

partial interface RTCPeerConnection {
 // |streams| parameter indicates which particular streams should be referenced in signaling
 // Fails if |track| has already been added
 RTCRtpSender addTrack(MediaStreamTrack track, MediaStream... streams); // replaces addStream
 void removeTrack(RTCRtpSender sender); // replaces removeStream
 sequence<RTCRtpSender> getSenders(); // replaces getLocalStreams
 sequence<RTCRtpReceiver> getReceivers(); // replaces getRemoteStreams
 EventHandler ontrack; // replaces onaddstream

};

API: Recap

Next Steps

Transports

● Like RTP streams, transports are also not exposed well from
PeerConnection; hard to get commonly needed data
○ per-transport ICE state
○ active local and remote candidates
○ Remote DTLS certificates

● Easy to fix with our object model

○ RTCRtpSender and RTCRtpReceiver add a .transport
property, yielding a RTCDtlsTransport object

○ Multiple senders can share a RTCDtlsTransport
○ RTCDtlsTransport connects to an RTCIceTransport object

Example Diagram

TrackTrack

Internet

JavaScript App

n

ICEDTLSRtpSenderSender

TrackTrack ICEDTLSRtpSenderSender

API: Transports
partial interface RTCRtpSender {

 readonly attribute RTCDtlsTransport transport;

};

partial interface RTCRtpReceiver {

 readonly attribute RTCDtlsTransport transport;

};

interface RTCDtlsTransport {

 readonly attribute RTCIceTransport transport; // the associated ICE transport

 readonly attribute RTCDtlsTransportState state; // current DTLS state (e.g. connected, failed)

 sequence<ArrayBuffer> getRemoteCertificates(); // the certs in use by the remote side

 attribute EventHandler? onstatechange;

};

interface RTCIceTransport {

 readonly attribute RTCIceConnectionState state; // the current ICE state

 RTCIceCandidatePair? getSelectedCandidatePair(); // the currently active candidate pair

 attribute EventHandler? onstatechange;

 attribute EventHandler? onselectedcandidatepairchange;

};

EncodingParameters

● Now that we have RTCRtpSender, what can we do with it?
○ Read the current encoding parameters
○ Make some changes to the track encoding
○ Some changes don't require negotiation:

■ e.g. changing max send bitrate
○ Changes that do require negotiation result in onnegotiationneeded, and

don't take effect until setLocalDescription:
■ e.g. pausing a MST, results in "a=sendonly"

○ Cannot change things that would be inconsistent with SDP
■ e.g. changing the send codec

● Any functionality that is needed must have no negotiation,
or have well-defined SDP

API: EncodingParameters (1.0)
partial interface RTCRtpSender {

 RTCRtpParameters getParameters();

 // Specifies the details of what to send (e.g. bitrate)

 // do .get() -> change -> .set()

 void setParameters(RTCRtpParameters parameters);

};

dictionary RTCRtpParameters {
 // In 1.0, only N=1 encodings are allowed. To change encodings,

 // in the future, N can be > 1, for simulcast or layered coding

 sequence<RTCRtpEncodingParameters> encodings;

}

dictionary RTCRtpEncodingParameters {

 unsigned int ssrc; // identifies the encoding; readonly

 boolean active; // sending or "paused/onhold"

 unsigned int maxBitrate = null; // maximum bits to use for this encoding

};

Example
// put stream on hold

var sender = pc.getSenders()[0];

var params = sender.getParameters();

params[0].active = false;

sender.setParameters(params);

pc.onnegotiationneeded = () =>

 pc.createOffer().then(offer => pc.setLocalDescription(offer).then(() => signal(offer)));

// turn it up to 11 (Mbps)

var sender = pc.getSenders()[0];

var params = sender.getParameters();

params[0].maxBitrate = 11000000;

sender.setParameters(params);

Capabilities

● Problem: I can't know what the browser is capable of
without calling createOffer and inspecting the SDP.
○ e.g.: does the browser support VP9?

● Solution: Why don't you just tell me what you support?
=> RTCRtpSender.getCapabilities
○ just like MediaDevices.getSupportedConstraints

API: getCapabilities
partial interface RTCRtpSender {

 static RTCRtpCapabilities getCapabilities(

 optional DOMString kind);

};

partial interface RTCRtpReceiver {

 static RTCRtpCapabilities getCapabilities(

 optional DOMString kind);

};

dictionary RTCRtpCapabilities {

 sequence<RTCRtpCodecCapability> codecs;

 sequence<RTCRtpHdrExtCapability>

 headerExtensions;

};

dictionary RTCRtpCodecCapability {

 DOMString kind; // audio | video

 DOMString name; // e.g. PCMU

 unsigned long clockRate; // sampling

 unsigned long numChannels; // 1 or 2

};

dictionary RTCRtpHdrExtCapability {

 DOMString kind; // audio | video

 DOMString uri; // ...ssrc-audio-level

};

Example
var videoCodecs = RTCRtpSender.getCapabilities("video").codecs;

var supportsVP9 = false;

for (var i = 0; i < codecs.length; ++i) {

 if (codecs[i].name.toLowerCase() === "vp9") {

 supportsVP9 = true;

 }

}

● readonly in current API
● If we make it mutable, it makes for an easy solution to a

long-existing problem: how to switch between front and
back camera?

 getUserMedia(video: {facingMode: "front"}) (stream) =>

 pc.addTrack(stream.getVideoTracks()[0]);

 getUserMedia(video: {facingMode: "back"}) (stream) =>

 pc.getSenders()[0].track = stream.getVideoTracks()[0];

API: RtpSender.track

● No signaling needed when track is changed
● MSID remains the same in future signaling
● Implies that MSID is actually a property of the

RTCRtpSender/Receiver
● But RTCRtpSender/Receiver already are associated with a

m= line, e.g. a MID
● As such, do we still need MSID for correlation?

Observations

● MID correlates of sender/receiver with generated SDP
● Can also have MSID (open for discussion)

 partial interface RTCRtpSender {

 attribute MediaStreamTrack track;

 readonly attribute DOMString mid; // MID of sender; used in RTP hdrext

 readonly attribute DOMString msid; // MSID of initial track; may not == track.id

 };

 partial interface RTCRtpReceiver {

 readonly attribute MediaStreamTrack track;

 readonly attribute DOMString mid; // MID from signaling

 readonly attribute DOMString msid; // MSID from signaling; always == track.id

 };

API: RtpSender.mid/msid

Consensus?

Now that we have all these objects

The next logical step is to allow apps to configure the objects
directly. Advanced apps don't need a PeerConnection to use an
RtpSender with a DtlsTransport and an IceTransport (although
simple apps will likely want to use PeerConnection)

WebRTC 1.0: Configuration via PeerConnection.setLD/setRD

PeerConnection

RTPSender

PeerConnection

JavaScript Application (Sender) JavaScript Application (Receiver)

TrackTrack RTPSender DTLS
Transport

ICE Transport Internet ICE Transport
DTLS

Transport

RTP
Receiver

RTP
Receiver

TrackTrack

RTPSender

JavaScript Application (Sender) JavaScript Application (Receiver)

TrackTrack RTPSender DTLS
Transport

ICE Transport Internet
DTLS

Transport

RTP
Receiver TrackTrackICE Transport

RTP
Receiver

WebRTC 1.1: Direct configuration via .setParameters

Benefits of direct control

● RTCRtpSender.setParameters can do more, because it's
unconstrained by the rule of "any functionality that is
needed must have no negotiation, or have well-defined SDP"

● More of a "do what I say" API; any negotiation logic handled
in JS

● More flexible for different forms of signalling

Example
var ice = new RTCIceTransport();
var dtls = new RTCDtlsTransport(ice);
var sender = new RTCRtpSender(dtls);
sender.setParameters({
 codecs: [
 {name: "vp8", payloadType: 100, ...}
],
 encodings: [
 // Simulcast
 {ssrc: 1, scale: 0.25, ...}
 {ssrc: 2, scale: 0.5, ...}
 {ssrc: 3, scale: 1.0, ...}
],
 rtcp: { cname: "doohickey" }
});
signal(sender.getParameters()); // Let the remote side know.

