
Intro to WORKERS
For webRTC

Tim Panton

Worker Interface
• Background task

• Off main thread

• In JavaScript

• No access to DOM

• Uses PostMessage to communicate

• Limited access to APIs

Variants

• Shared Workers - accessed by multiple (same origin)
pages

• Service Workers - can intercept fetch() and access page
Cache

• Server Side - Cloudflare offers service worker API on their
CDN edge - (cf streaming)

Worklets

• Workers that run on
a specific browser
thread

• Have own APIs

Paint

Worklet Custom CSS Main Thread

Audio
Worklet

Custom
Audio

Audio render

Thread

Animation

Worklet

Procedural

Animations

Compositor

Thread

Lifecycle

Web Workers Service Workers

Tab Many per tab One for all Tabs

Lifespan Same as Tab Independent

Good for Parallelism Offline

Relevance to WebRTC

• Recording, monitoring post processing media streams

• Silence removal from podcast recordings

• Async notification of barcodes in video (warehouse)

• Sharing of media across multiple pages without
dropping a call (sans iframe)

• Answerphone :-)

Data Channel

• Collect data for use by multiple pages (like the audio
example)

• Serve pages from behind NAT over the data channel

DEMO

WHAT YOU SAW

• Web app

• On small device

• Behind NAT

• Rendered to a smartphone browser

• Also behind NAT

Benefits

• Low latency

• E2E encrypted

• WebPage and service not changed

• Dynamic device pages simple

• webRTC security promises

Conclusions
• We can leverage workers to solve some of our other use cases

• Need:

• API access to webRTC in workers

• Transferable:

• peerconnection

• datachannel

• media streams

