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Worker Interface
• Background task 


• Off main thread


• In JavaScript


• No access to DOM


• Uses PostMessage to communicate


• Limited access to APIs



Variants

• Shared Workers - accessed by multiple (same origin) 
pages


• Service Workers - can intercept fetch() and access page 
Cache


• Server Side - Cloudflare offers service worker API on their 
CDN edge - (cf streaming)



Worklets

• Workers that run on 
a specific browser 
thread


• Have own APIs
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Lifecycle

Web Workers Service Workers

Tab Many per tab One for all Tabs

Lifespan Same as Tab Independent

Good for Parallelism Offline



Relevance to WebRTC

• Recording, monitoring post processing media streams


• Silence removal from podcast recordings


• Async notification of barcodes in video (warehouse)


• Sharing of media across multiple pages without 
dropping a call (sans iframe)


• Answerphone :-)



Data Channel

• Collect data for use by multiple pages (like the audio 
example)


• Serve pages from behind NAT over the data channel



DEMO



WHAT YOU SAW

• Web app


• On small device 


• Behind NAT


• Rendered to a smartphone browser


• Also behind NAT





Benefits

• Low latency


• E2E encrypted


• WebPage and service not changed


• Dynamic device pages simple


• webRTC security promises



Conclusions
• We can leverage workers to solve some of our other use cases 


• Need:


• API access to webRTC in workers 


• Transferable:


•  peerconnection


•  datachannel 


• media streams


