W3C
WebRTC/MediaCapture
WG Meeting

January 11, 2018
8 AM PDT

W3C WG IPR Policy

e This group abides by the W3C patent policy
https://www.w3.org/Consortium/Patent-Policy-20040205

e Only people and companies listed at
https://www.w3.0rg/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!

e \Welcome to the interim meeting of the W3C
WebRTC WG!

e During this meeting, we hope to:

o Make progress on open issues in webrtc-pc, media
capture and webrtc-stats

o Introduce the webrtc-quic and webrtc-ice documents
o Discuss updates to the WG Charter

e Editor’s Draft updates to follow meeting

Current Status of WebRTC-PC

e 96 open issues:
o 23 relating to ldentity
19 editorial
13 arising from test suite development
11 PR exists
4 questions
4 pending IETF actions
2 icebox

O O O O O O

About this Virtual Meeting

Information on the meeting:

e Meeting info:

o https://www.w3.0rg/2011/04/webrtc/wiki/January 11 2018
Link to Slides has been published on WG wiki

Scribe? IRC http://irc.w3.org/ Channel: #webric

The meeting is being recorded.

WebEXx info here

February Virtual Interim: Focus on Screen Capture

5

https://www.w3.org/2011/04/webrtc/wiki/January_11_2018
https://www.w3.org/2011/04/webrtc/wiki/January_11_2018
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc
https://www.w3.org/2011/04/webrtc/wiki/January_11_2018

Links to the latest drafts

® https://rawgit.com/w3c/mediacapture-main/master/getusermedia.

html
® https://rawgit.com/w3c/webrtc-pc/master/webrtc.html
https://w3c.github.io/mediacapture-screen-share/
® https://w3c.github.io/webrtc-stats/

New documents:

e https://w3c.github.io/webrtc-quic/
® https://w3c.github.io/webrtc-ice/
e https://w3c.github.io/webrtc-dscp-exp/

https://rawgit.com/w3c/mediacapture-main/master/getusermedia.html
https://rawgit.com/w3c/mediacapture-main/master/getusermedia.html
https://rawgit.com/w3c/webrtc-pc/master/webrtc.html
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/webrtc-quic/
https://w3c.github.io/webrtc-ice/
https://w3c.github.io/webrtc-dscp-exp/

Agenda for Today

e 16:00 -16:45 UTC: Issues
o WebRTC-PC
o Media-Capture
o Statistics

o 16:45-17:15 UTC: Introduction to new
documents
o webrtc-quic
o webrtc-ice

e 17:15-17:30 UTC: Charter Review

https://w3c.github.io/webrtc-quic/
https://w3c.github.io/webrtc-ice/

For Discussion Today
e WebRTC-PC Issues

O
O

Issue 1662: addTransceiver woes? (Stefan)

Issue 1689: Why is
RTCRtpSynchronizationSource.voiceActivityFlag
required-but-nullable? (Jan-lvar)

Issue 1497: Not possible to tell how old
"RTCRtpContributingSource.timestamp’ is (Jan-lvar)
Issue 1690: RTCRtpContributingSource.timestamp
needs a clearer definition (Taylor)

Issue 1695: Effect of mute/disable on on-the-wire
framerate is not described (AdamBe)

https://github.com/w3c/webrtc-pc/issues/1662
https://github.com/w3c/webrtc-pc/issues/1689
https://github.com/w3c/webrtc-pc/issues/1497
https://github.com/w3c/webrtc-pc/issues/1690
https://github.com/w3c/webrtc-pc/issues/1695

For Discussion Today (cont’d)

e Media Capture Issues
o Issue 472: How to implement web-compatible camera
downscaling? (Jan-lvar)

e Statistics Issues

o Issue 235: Is keeping stats around a memory problem?
(Jan-lvar)

e webrtc-quic and webrtc-ice (Peter Thatcher)
e WebRTC WG re-charter (Bernard)

https://github.com/w3c/mediacapture-main/issues/472
https://github.com/w3c/webrtc-stats/issues/235
https://w3c.github.io/webrtc-quic/
https://w3c.github.io/webrtc-ice/

WebRTC-PC Issues

Issue 1662: addTransceiver woes? (Stefan)

Issue 1689: Why is
RTCRtpSynchronizationSource.voiceActivityFlag
required-but-nullable? (Jan-lvar)

Issue 1497: Not possible to tell how old
"RTCRtpContributingSource.timestamp’ is (Jan-lvar)
Issue 1690: RTCRtpContributingSource.timestamp needs
a clearer definition (Taylor)

Issue 1695: Effect of mute/disable on on-the-wire
framerate is not described (AdamBe)

10

https://github.com/w3c/webrtc-pc/issues/1662
https://github.com/w3c/webrtc-pc/issues/1689
https://github.com/w3c/webrtc-pc/issues/1497
https://github.com/w3c/webrtc-pc/issues/1690
https://github.com/w3c/webrtc-pc/issues/1695

Issue 1662: addTransceiver woes? (Stefan)
e #1662 raises two questions for addTransceiver (kind):

o 1. What is the direction (in SDP offer, and transceiver.direction)
o 2.Whatisthe mid ?

e Mid question resolved (‘pending’ mid at creation, may be overridden by SDP answer)
e Direction: What is the default (Note: can be overridden by app)

o Spec now says: default is always “sendrecv”

o Has been argued that if transceiver is created with “kind” as first argument the default direction
should be “recvonly”

o My recommendation: keep “sendrecv”, simple and no strong reason for changing

e Follow up question: Should replaceTrack work if no track was ever attached?
O Conclusion: yes (in fact, the ‘warm-up’ example (Example 13) in the spec requires it)

e Further conclusions:
o Need to clarify “send”
o Need to clarify that the direction should not be considered when determining if negotiation is
needed 11

https://github.com/w3c/webrtc-pc/issues/1662

Issue 1689: Why is
RTCRtpSynchronizationSource.voiceActivityFlag
required-but-nullable? (Jan-lvar)

e WebIDL team advice: prefer optional over null. (both only for feature detection).
e Let’s allow implementations to not implement voiceActivityFlag yet (like Firefox):

O dictionary RTCRtpSynchronizationSource : RTCRtpContributingSource {

reguired boolean? voiceActivityFlag; // unimplemented, null=no-header-ext, false=v, true=v
b
e Where implementation is required, use optional over null:

O dictionary RTCRtpContributingSource { ...

reguired byte? audiolLevel; // undefined=no-header-ext, 0-255=level
b
e Internally inconsistent, but consistent with best practice.

12

https://github.com/w3c/webrtc-pc/issues/1689
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-byte

Issue 1497: Not possible to tell how old
"RTCRtpContributingSource.timestamp’ is (Jan-lvar)

Issue 1690: RTCRtpContributingSource.timestamp needs a
clearer definition (Taylor)

e Define timestamp in reference to context's global monotonic clock.

e Prefer to have something that gives "something like the wall clock" for logs, and for
somewhat better backwards compatibility.

e Comparable syncOrContribSource.timestamp - stats.timestamp

e Sounds like we want a timestamp that's comparable to either:

a. performance.timing.navigationStart + performance.now() // page-load reset
b. performance.timeOrigin + performance.now() // monotonic to browser-start\®

e Ignore footgun of “don’t compare it to Date.now()!” (fiddle)

13

https://github.com/w3c/webrtc-pc/issues/1497
https://github.com/w3c/webrtc-pc/issues/1690
https://jsfiddle.net/jib1/t1vmjvvw/

Issue 1695: Effect of mute/disable on on-the-wire
framerate is not described (AdamBe)

e From the original mediacapture-main issue (#441)
o At what framerate should the “blackness” from a muted or disabled MediaStreamTrack be
transmitted?
o Firefox and Chrome seem to be doing different things here
o The effect may be observable with MediaRecorder and stats
e Discussion at TPAC
o According to minutes [1], we decided to specify 1 fps as an advice.
e Currently in the spec:
o “If track is ended, or if track.muted is set to true, the RTCRtpSender sends silence (audio) or a
black frame (video).”

[1] https://www.w3.0rg/2017/11/06-webrtc-minutes.html#item19

14

https://github.com/w3c/webrtc-pc/issues/1695

For Discussion Today (cont’d)

e Media Capture Issues
o Issue 472: How to implement web-compatible camera
downscaling? (Jan-lvar)

e Statistics Issues

o Issue 235: Is keeping stats around a memory problem?
(Jan-lvar)

e webrtc-quic and webrtc-ice (Peter Thatcher)
e WebRTC WG re-charter (Bernard)

15

https://github.com/w3c/mediacapture-main/issues/472
https://github.com/w3c/webrtc-stats/issues/235
https://w3c.github.io/webrtc-quic/
https://w3c.github.io/webrtc-ice/

Media Capture

e Issue 472/PR 502: How to implement web-compatible
camera downscaling? (Jan-lvar)

16

https://github.com/w3c/mediacapture-main/issues/472
https://github.com/w3c/mediacapture-main/pull/502

Issue 472/PR 502: web-compatible camera downscaling (jib)

Peter's {resizeMode: “crop-and-scale”} constraint from TPAC, modulo "box-and-scale" *

resizeMode | ConstrainDOMString | This string (or each string, when a list) should be a member of VideoResizeModeEnum. The
members describe the means by which the resolution can be derived by the UA. In other
words, whether the UA is allowed to use cropping and downscaling on the camera output.

The UA may disguise concurrent use of the camera, by cropping and/or downscaling to
mimic native resolutions when "none" is used, but only when the camera is in use in another
browsing context. &)

enum VideoResizeModeEnum { none This resolution is offered by the camera, its driver, or the OS.

"none", i isqui
Note: The UA may report this value to disguise concurrent use, but

crop-and-scale only when the camera is in use in another browsing context.

}
crop-and- | This resolution is downscaled and/or cropped from a higher
scale camera resolution by the user agent. @
“The UA SHOULD use the one with the smallest fithess distance, as calculated in step 3, but MAY prefer ones

with resizeMode set to "none" over "crop-and-scale”.”

*) "box-and-scale" adds pixels and is incompatible with the constraints algorithm (these fitness distances would compete with "crop-and-scale" and
"none" modes, with unpredictable and undesirable results). 17

https://github.com/w3c/mediacapture-main/issues/472
https://github.com/w3c/mediacapture-main/pull/502
https://docs.google.com/presentation/d/1Sg_1TVCcKJvZ8Egz5oa0CP01TC2rNdv9HVu7W38Y4zA/edit?ts=59f90fe9#slide=id.g2a6f3cad35_11_0

Statistics

e Issue 235: Is keeping stats around a memory (really speed)
problem? (Jan-lvar)

18

https://github.com/w3c/webrtc-stats/issues/235

Issue 235: Is keeping stats around a speed problem? (jib)

getStats() gathers a non-trivial amount of live data, and is often called at a high frequency.
Two uses of getStats: a) Live operational feedback, b) Accounting. Mirrors different impls:

a. Firefox reports snapshots of live objects that exist at that time. Removed tracks disappear
b. Chrome stores everything that ever happened.

Uncapped accumulation of stats slows down getStats() over time + complicates result parsing:

[...(await sender.getStats()).values()].find(s => s.type == “track”) // latest track stats?

Use-cases: “always-on” meeting rooms, security feeds, flipping between cameras (front/back):
a. Repeated removeTrack/addTrack accumulates RTCRtpTransceivers + related stats.

b. Repeated sender.replaceTrack accumulates “track” stats, even flipping same tracks.

c. Frequent ICE restarts accumulate old ice candidates.

Spec since 2012: “The basic statistics model is that the browser maintains a set of statistics referenced by a selector.

The selector may, for example, be a MediaStreamTrack. For a track to be a valid selector, it MUST be a MediaStreamTrack
that is sent or received by the RTCPeerConnection object on which the stats request was issued.”

19

https://github.com/w3c/webrtc-stats/issues/235
https://jsfiddle.net/jib1/764pu3Lt/

Issue 235: Is keeping stats around a speed problem? (jib)

Proposal to fix this:

Omit objectDeleted stats from getStats, and add new methods to get them instead:

partial interface RTCRtpSender { partial interface RTCRtpReceiver {
RTCStatsReport getCompletedStats(); RTCStatsReport getCompletedStats();
} }
partial interface RTCPeerConnection {
RTCStatsReport getCompletedStats(optional MediaStreamTrack? selector = null);

b

These return deleted stats (tracks + “stopped” senders/receivers) synchronously from a cache.
Benefits: Simpler parsing (no filtering on booleans). Isolates overhead (out of live-update hot path).

Trivial to combine results in JS:
[...(await sender.getStats()).values(), ...sender.getCompletedStats().values()] // ALl tracks 9q

https://github.com/w3c/webrtc-stats/issues/235
http://w3c.github.io/webrtc-pc/#dom-rtcpeerconnection
http://w3c.github.io/webrtc-pc/#dom-rtcpeerconnection
http://w3c.github.io/webrtc-pc/#dom-rtcpeerconnection

Issue 235: Is keeping stats around a speed problem? (jib)

If previous proposal is well received, a question: Do we need “track” stats in getStats()?

Users can compute live “track” stats from “sender” stats using JS:

let = [...(awalit sender.getStats()).values()].find(s => s.type == “sender”);
let = [...sender.getCompletedStats().values()].filter(s => s.type == “track”);
let = oldTracks.reduce((n,) => n - old.framesSent, senderStat.framesSent);

21

https://github.com/w3c/webrtc-stats/issues/235

WebRTC-QUIC Status

At TPAC, we decided to start an extension spec
(to decide if we like it).

Now, here it is:

https://w3c.github.io/webrtc-quic/
https://github.com/w3c/webrtc-quic/issues

22

https://w3c.github.io/webrtc-quic/
https://github.com/w3c/webrtc-quic/issues

WebRTC-QUIC Approach

QuicTransport constructed from IceTransport
(and optional sequence of certificates)

Outgoing QuicStreamfrom .createStream()
Incoming QuicStreamfrom .onstream

Read with readInto(buffer)

Write with write(data)

Controls for buffering/back-pressure, finish (clean
end), reset (abrupt end)

Access to state

23

WebRTC-QUIC Stream states (summarized)

As "sender" As "receiver"
createStream: -> opening .onstream: -> open
stream frame acked -> open FIN/RST received -> closing

finish() or reset() -> closing finish or reset() -> closed
FIN/RST received -> closed

Write when opening/open Write when open/closing
Read when open/closing Read when open 24

WebRTC-QUIC Issues Raised

"QUIC" in the charter

QUIC vs SCTP

WHATWG streams

"unadorned" QUIC

ALPN

Unidirectional/bidrectional streams
O-RTT

25

"QUIC" in the charter

Instead of mentioning "QUIC" in the charter, should
we explain what we want to accomplish?

We should discuss in the charter discussion. But if
it's not QUIC, what is it?

26

QUIC vs SCTP

A desire for "good reasons" for QUIC vs SCTP.

Some of my reasons:

- Fewer round trips to setup

- Ease of deployment/termination

- Robustness, maturity, variety of impls

- Direction of future innovation/protocols

WHATWG streams

Basically choose between these two things.
Proposal: Keep the left w/o dependencies

readInto(Uint8Array);
write(Uint8Array);
waitForReadable(amount);
waitForWritable(amount);

(And implement WHATWG
streams on top, if you want
them)

attribute ReadableStream readableStream;
attribute WritableStream writableStream;

(With a big dependency on WHATWG ReadableStream
and WritableStream)

28

"unadorned" QUIC

To do multiple protocols on top of QUIC streams over
the same 5-tuple at the same time, need either a new
mechanism for segregating the QUIC streams, or

multiple QUIC connections. This is an issue with QUIC
in general.

Proposal: If a solution comes up for QUIC in general,
use it. Maybe propose one in QUIC WG.

29

ALPN

You're supposed to put a value in the ALPN field in
the client hello. It's supposed to identify the
"application protocol”. Who decides what that is?

Proposal: let the JS decide.

30

Unidirectional/bidrectional streams

The APl is bidirectional because unidirectional
streams didn't exist in QUIC until very recently. But
it does make sense to support both.

Proposal: Update createStream/onstream to
support both.

31

O-RTT

We don't have anything in the API for O-RTT, which
QUIC is capable of. Should we add support for it?

Proposal: Finish everything else we want and then
come back to this later.

32

WebRTC-ICE Status

At TPAC, we decided to start an extension spec
(to decide if we like it).

Now, here it is:

https://w3c.github.io/webrtc-ice/
https://github.com/w3c/webrtc-ice/issues

33

https://w3c.github.io/webrtc-ice/
https://github.com/w3c/webrtc-ice/issues

WebRTC-ICE Approach

e Extends existing IceTransport object with:

O

O O O O

Constructor (no need for PeerConnection)
gather(...) tostart gathering candidates
start(...) to start pairing/checking/selecting
onlocalcandidate to get local candidates
addRemoteCandidate to add remote
candidates

e Does not have separate IceGatherer object

® Does not support parallel forking

34

Tricky Parts: What if you don't call gather()?

If you don't call gather(), you won't get local candidates.
So you have to call both gather() and start().
Is that too big of a foot gun?

The alternative is to make start() semi-magic. But then ICE
restarts become less clear.

Proposal: Require calling both. You need to, anyway, for good

use of trickle ICE on the caller side. So it encourages good use.

35

Tricky Parts: ICE Restarts

To initiate a full ICE restart, two things must happen:

1. New local parameters (ufrag/pwd) and candidates
2. New remote parameters (ufrag/pwd) and candidates

Proposal:
- New gathering done via call to gather (), which changes local parameters
- New remote parameters via restart(), which changes remote parameters

Like when you first start, you must call both. Again, on the restarter side, this is good
trickle practice.

36

Tricky Parts: Changing gathering policy

If you want to add TURN servers without an ICE restart, like with
PeerConnection.setConfiguration, what do you do?

Proposal: Have a variant of gather () which doesn't change the local ufrag/pwd, but
just gathers new candidates.

37

Tricky Parts: Gathering done

Like with PeerConnection, it might be useful to signal
"end of candidates" easily out of the box.

Proposal: Make it just like WebRTC:
candidate.candidate =="" means "end of candidates".
It's ugly but it works and we don't have to specify

anything new.

38

Open Question: stats

Option A: iceTransport.getStats()

Option B: statCollector.getStats(iceTransport)

Which one?

39

An alternative to IceTransport: SliceTransport

SLICE: Simple, Low-level ICE

Basically, Cullen's idea from TPAC of a low-level ICE
where the JS gets to control (almost) everything.

40

Today

JS

Application

IceTransport in
Browser

ICE agent (gathering, pairing, timing, ...

ICE checks

STUN][TURN

UDP ports] [TCP ports

IP Network Enumeration

41

Cullen's idea

JS

Application

ICE agent (gathering, pairing, timing, ...

Low-level
components in
Browser

ICE checks

STUN][TURN

UDP ports] [TCP ports

IP Network Enumeration

42

New APlIs

JS

Application
Low-level SliceTransport
components in StunClient] [TurnClient
Browser

UdpPort] [TcpPort

NetworkManager

43

How to use them

Use NetworkManager to enumerate network interfaces and IPs
Use NetworkManager to open UdpPorts and TcpPorts.

Use UdpPort/TcpPort to connect to STUN/TURN servers

Use StunClient to obtain server reflexive addresses

Use TurnClient to allocation TurnAllocations

Signal addresses to remote side and obtain remote addresses

Pair addresses together

Use UdpPort/TcpPort/TurnAllocation + remote address to get
PacketTransports

Add PacketTransports to SliceTransport as IceNetworkRoutes
Send checks over IceNetworkRoutes

Select an IceNetworkRoute

44

SliceTransport: checking and selection

interface IceTransport {
// Can receive any network route and send on selected one
IceNetworkRoute addNetworkRoute(PacketTransport transport);
void selectNetworkRoute(IceNetworkRoute networkRoute);
void removeNetworkRoute(IceNetworkRoute networkRoute);

}

interface IceNetworkRoute {
// Sends an ICE check. Resolves when the response is received
Promise sendCheck(...);
// Checks responses automatically sent.
eventhandler oncheckreceived;

45

UDP PacketTransports

interface UdpPort {
readonly attribute IpPort localAddress;
UdpTransport connect(IpPort remoteAddress);
void close();
// Fired once for each new remote address
eventhandler onnewremoteaddress;

¥

// Only usable within SliceTransport, not by itself.

interface UdpTransport : PacketTransport {
readonly attribute IpPort localAddress;
readonly attribute IpPort remoteAddress;

void close();
1

46

TCP PacketTransports

interface ClientTcpPort {
readonly attribute IpPort localAddress;
Promise<TcpTransport> connect(IpPort remoteAddress,
TlsMode tlsMode);
void close();
}
// Only usable within SliceTransport, not by itself.
interface TcpTransport : PacketTransport {
readonly attribute IpPort localAddress;
readonly attribute IpPort remoteAddress;
void close();

}

47

How to get IP, UDP, TCP (with permission)

interface NetworkManager {
Promise<sequence<NetworkInfo>> EnumerateNetworks();
Promise<UdpPort> OpenUdpPort(IPAddress locallp);
Promise<ClientTcpPort> OpenClientTcpPort(
IPAddress locallIp, bool tls);
attribute eventhandler onnetworkschanged;

¥

interface NetworkInfo {
readonly attribute sequence<IPAddress> ips;
readonly attribute NetworkAdapterType type;

}

48

Getting STUN addresses

interface StunClient {
// Resolves when response is received
Promise<IpPort> sendBindingRequest(
PacketTransport transport, ...);

49

Getting TURN addresses

interface TurnClient {

Promise<TurnAllocation> sendAllocationRequest(PacketTransport transport,
}
interface TurnAllocation {

// TODO: Are refreshes automatic or controlled by 3JS?

readonly attribute IpPort serverAddress;

Promise sendCreatePermissionRequest(IpPort remoteAddress);

TurnTransport connect(IpPort remoteAddress);

void close();

eventhandler onnewremoteaddress; // IpPort

}

interface TurnTransport : PacketTransport {
// TODO: Are channels automatic or controlled by 3JS?
readonly attribute IpPort serverAddress;
readonly attribute IpPort remoteAddress;
void close();

)

50

Advantages

® Apps can optimize for their use case:

©)

O O O O O

O

TURN-first

Control over wifi/cell usage

Add non-relay candidates without an ICE restart
Continual gathering or ICE half-restarts
Long-lived candidates

Backup candidates pairs

Variable check rate

e New capabilities automatically/naturally:

©)

©)

©)

Connect to TLS host candidates
Parallel forking
TURN within TURN

51

WebRTC WG Charter (Bernard)

e Charter proposal:
o https://w3c.github.io/webrtc-charter/webrtc-charter.htm
[
e Changes:
o End date: 31 March 2020
o Teleconferences: approximately 1 per month
o Additional specifications:
m QUIC in WebRTC
m IceTransport extensions
m DSCP Control API
o Licensing: W3C Software and Document license

52

https://w3c.github.io/webrtc-charter/webrtc-charter.html
https://w3c.github.io/webrtc-charter/webrtc-charter.html
https://w3c.github.io/webrtc-quic/
https://github.com/w3c/webrtc-ice/
https://w3c.github.io/webrtc-dscp-exp/
https://www.w3.org/Consortium/Legal/copyright-software

WebRTC WG Charter Discussion (cont’d)

e Issues raised on the list:
o General stream API (for SCTP as well QUIC?)
o Use cases

o Protocol issues (for IETF)
m Multiplexing (e.g. single QuicTransport limitation)
m Pluggable congestion control for data channels
m Definition of QUIC data channel protocol
m ALPN usage with QUIC

o Collaboration with IETF beyond RTCWEB WG:
m QUIC WG (reliable and unreliable QUIC transport)
m Congestion control WGs (RMCAT, TSVWG) and RGs

(ICCRG)
e Please file Issues (and PRs)!

53

For extra credit

Name that bird!

54

Thank you

Special thanks to:
W3C/MIT for WebEx

WG Participants, Editors & Chairs
The bird

95

